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Abstract: In this paper, we propose an interactive mobile gait training system that allows trainees
to interact actively with its content (the gait training content). The proposed system is a new type
of gait training one combining a mobile robot with virtual reality (contents). It is a mobile system
that projects virtual contents (for example, virtual footprints) for gait training on the actual ground
(or floor). The performance and effectiveness of the proposed system were examined through a
trainee’s foot recognition test and usability evaluation. The test results confirmed that the proposed
system showed an average recognition ratio of more than 97%, meaning that the system could
accurately recognize the trainee’s foot. In addition, as a result of usability evaluation, the overall
satisfaction was 86%, confirming that the proposed system is effective.

Keywords: gait training; AR; contents; mobile robot

1. Introduction

Stroke is a medical condition that occurs when the blood supply to part of the brain
is blocked, causing functional impairment of the body [1]. Symptoms in stroke trainees
typically include weakness in lower extremity muscle strength [2]. According to previous
studies, stroke trainees with weakened extremity muscle strength have abnormal gait
patterns, and the speed and duration of gait decrease [3]. Gait function plays an important
role in the quality of stroke trainees’ lives, and the decreased gait function is reported to
cause a great sense of loss to trainees with stroke symptoms [4]. Therefore, gait training to
strengthen the gait function of stroke trainees is very important in improving the health and
quality of life of chronic stroke trainees in a long-term perspective [5]. The representative
method of gait training is traditionally based on treadmills and robots [6–9]. Gait training
using a treadmill provides training effects by stimulating gait patterns symmetrically [10].
With the robot that is pre-programmed with ordinary gait style of general people inducing
the movement of the trainee’s lower extremities, gait training based on robots provides a
training effect that allows trainees to experience ordinary gait [11].

Recently, there has been increasing studies to enhance the interest and immersion of
trainees by adding virtual reality (VR) gait training content to these traditional gait training
systems [12,13]. As virtual reality-based interactive training systems can provide strong
feedback effects to trainees and improve motivation and adaptability [14–16]. LokoMat [17]
is a state-of-the-art customized rehabilitation robot that are different from conventional
methods that require traditional auxiliary equipment such as guardians or cane. It allows
trainees to walk on a treadmill and provides feedback through a monitor screen via VR
content. Walkbot [18] is a rehabilitation robot for trainees with gait disabilities. As a
wearable robot, it supports rehabilitation training that focuses on trainees’ joints (knee
joint, hip joint, and ankle joint) and children. The G-EO [19] robot provides gait training
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that simulates gait situations on flat land, slopes, and stairs, and the trainer can easily
customize simple content settings for individual trainees, providing efficient training in
a short time. Cosmos Robowalk [20] provides gait training using front and rear systems
together. Training can be conducted by adjusting the angle of the support/resistance cable
either vertically or horizontally. Rehawalk [21] is a robot designed for the analysis and
treatment of gait disabilities in neurology, orthopedic, and elderly rehabilitation. Trainees
with significantly reduced gait function (including ones in a wheelchair as well) can utilize
it, and all training elements can be set by trainers. However, since these systems are
carried out on a treadmill, they force the trainee to walk at a certain speed or higher and
provide content at a set speed. Table 1 shows the results of classifying existing systems
(i.e., treadmill systems) into some categories and comparing them with our systems in
terms of two attributes (immersion and activeness). Most immersive (virtual) gait contents
by the existing systems are provided in a passive way in which its content and training are
conducted regardless of a trainee’s gait.

Table 1. Comparison of existing and proposed systems.

Attributes Lokomat
[17]

Walkbot
[18]

G-EO
[19]

Robowalk
[20]

Rehawalk
[21]

Proposed
System1 [22]

(80%)

Proposed
System2

(98%)

Immersion O O O O O O O

Activation X X X X X O O

Therefore, in this paper, we propose an interactive mobile gait training system that
allows trainees to interact actively with the gait training content. The proposed system
recognizes the trainee’s gait and thus enables the interaction in which the training content
responds. Furthermore, the proposed system enables active gait training of the trainer
by continuously updating training content along the distance the trainee walked. The
paper is composed as follows. Section 2 describes the proposed system. Section 3 conducts
experiments to examine the performance of the proposed system and presents the results.
The conclusion is given in Section 4.

2. Proposed System

The proposed system is a system that provides interactive training content in real-time
according to the trainee’s gait, for which the system consists of (1) Sensing part, (2) Moving
part, and (3) Augmenting part, as shown in Figure 1. The proposed system operates as
shown in Figure 2. The detailed explanations of the block diagram are described in the
following subsections.
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Figure 2. Proposed system’s block diagram.

The system proposed in this paper is an extended version that improves the low
recognition rate (80%→98%) which was lacking in our previous research [22]. Since
the previous system recorded an unstable recognition rate of 80%, it was intended to
improve this. The system proposed in this study changed the recognition part from our
existing system (Image processing method, Camera) to a precision measurement method
(Triangulation Method, 2D-LIDAR (Light Detection and Ranging)).

2.1. Sensing Part

The sensing part is responsible for measuring the trainee’s feet coordinates when the
trainee interacts with the training content provided by the system. It shown in Figure 2
provides a measurement of 2D pointcloud data and a measurement of foot coordinates.
Generally, trainees are accompanied by gait aids (walkers, cane, etc.) because they have
difficulty in gait. Therefore, the sensing part of the system distinguishes the trainee’s feet
from the assistive device and measures the feet’s coordinates. The sensing part measures
the trainee’s feet coordinates based on 2D point cloud data and uses a 2D-LIDAR. as a
sensor for data collection. Figure 3 shows the procedure for measuring the feet coordinates
of a trainee using the 2D-LIDAR.
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Figure 3. A procedure for foot coordinate measurement of sensing part: (a) 2D point cloud collection;
(b) derivation of candidates through clustering; (c) distinction between gait aid devices and foot;
(d) measurement of foot coordinates.

First, in step (a), 2D point cloud data are collected in real time through a sensor. In step
(b), 2D point cloud data collected through the clustering process is classified into one object
unit. In step (c), the gait aid devices and the trainee’s feet are distinguished. All objects
classified in the clustering process are used as foot position candidates, and the candidates



Appl. Sci. 2023, 13, 580 4 of 12

are compared to find the actual trainee’s foot position. Since gait aids generally have sizes
and thicknesses smaller than those of the trainee’s foot, the trainee’s foot classification
proceeds based on the size of the objects. By comparing the sizes of the candidates, the
two largest candidates are selected as the feet of the trainer. Finally, in step (d), among the
selected two candidates, the candidate on the right is recognized as the right foot, and the
candidate on the left is recognized as the left foot.

Through the above procedure, the sensing part measures the coordinates of the
trainee’s feet in real time and transmits them to the moving part and the augmenting
part, allowing the robot to automatically move and the trainee to interact with the content.

2.2. Moving Part

The moving part is responsible for moving the system and transmitting the training
distance to the augmenting part. It keeps the distance between the robot and trainee
maintained constantly based on a trainee’s position and a robot’s travel distance. The
moving part uses a mobile robot and operates according to the procedure shown in Figure 4.
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In step (a), the distance between the system and the trainee is calculated. Both foot co-
ordinates are received from the sensing part, and the average value of the data is calculated
as the distance between the trainee and the system. In step (b), the direction of driving
is determined based on the calculated distance. If the distance between the system and
the trainee is less than 1 m, the system drives straight forward, or if the distance exceeds
1 m, it drives backward. In step (c), the system moves the robot. The robot keeps the
1 m distance by going straight and backward in the pre-programmed direction. Finally,
in step (d), the gait distance of the trainee is calculated through the amount of change in
the position of the robot. When the robot is automatically moved by the distance-keeping
algorithm, the robot’s self-position recognition function is used to accurately calculate the
robot’s position and travel distance. The self-position recognition function is a function of
calculating the position of the robot itself through measurements such as the diameter of
the wheels specified in the robot’s specifications, RPM, and the number of wheels the motor
has rotated. Through this function, the distance traveled by the robot is measured in real
time. Since the robot automatically moves the distance as the trainee moves, the trainee’s
gait distance can be obtained through the amount of change in the robot’s position.

Through the above procedure, the moving part continuously updates training content
according to the distance the trainee walked, enabling active gait training.

2.3. Augmentng Part

The augmenting part is responsible for augmenting the virtual content on the floor,
providing interaction with the trainee, and updating it in real time according to the training
distance. That is, it takes roles in matching a coordinate system, generating a virtual object
on foot coordinates (called virtual guide), and updating it based on training distance. In
this system, the content augmented on the floor is displayed in a size of 150 cm× 250 cm. In
order to provide interaction within the content to the trainee, the trainee’s feet coordinates
must be generated as objects inside the content. The above function operates according to
the procedure shown in Figure 5.
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First, in step (a), both feet coordinates are received from the sensing part, and the
system matches the coordinates from the sensing part and the augmenting part to use the
trainee’s both feet coordinates for content. Coordinate matching between the sensing part
and the augmenting part is performed using a checkboard. The checkboard is projected
according to the size of the projected content. Calculate the number of the projected
checkboard squares (Cx) of the horizontal length and the number of checkboard squares
(Cy) of the vertical length. During this process, the projected checkboard quadrilateral is a
square and has a length of A in the content. Using this, the proportional expression is as
shown in Equation (1).

150cm = Cx × A, 250cm = Cy × A (1)

In step (b), a virtual object for tracking the position of the trainee’s feet in real time is
generated using Equation (1). Through the above process, virtual feet objects centered on
each foot coordinates of the trainee are generated to interact with objects inside the content.
In addition, for real-time content updates based on the trainee’s gait distance, the trainee’s
gait distance must be calculated from the coordinates of the robot which are transmitted to
the augmenting part.

The above function operates according to the procedure shown in Figure 6. First, in
step (a), the travel distance of the robot is received from the moving part, and the gait
distance of the trainee is calculated accordingly. After this step, in order to reflect the
trainee’s gait distance in the content, the system matches the coordinates between the
moving part and the augmenting part. As described previously, a checkboard is used for
coordinate matching. Project the checkboard as the size of the projected content, and move
the robot forward by Ry. The proportional equation is obtained by counting the number of
checkboard squares that the robot passed. In step (b), the content is updated in real time
according to the travel distance of the trainee by moving the position of the virtual camera
inside the content using Equation (2).

Ry = Cy × A (2)
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Through the above process, virtual feet objects centered, respectively on the trainee’s
two-foot coordinates can be created to interact with the objects inside the content, and the
content can be updated according to the trainee’s travel distance.

3. Experiment

In this section, in order to examine the performance and usefulness of the proposed
system, trainee’s feet recognition experiments and usability evaluation were performed.

3.1. Experimental Environment

The experimental environment is shown in Figure 7. The experiment was conducted
on 10 people, and 100 virtual footprints (gait guides) were augmented within a space of
1 m × 20 m, as shown in Figure 7. After that, it was confirmed whether the trainee’s feet
were properly recognized in the virtual footprints. The experiment was conducted with an
ordinary participant on a gait aid although the ultimate goal of this system is to provide
training to actual brain lesion patients. To prevent wrong recognition for the trainee’s feet,
no object except only a trainee is allowed within the space of the range is 1 m × 20 m as
shown in Figure 7.
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3.1.1. Experiment 1: An Experiment for Foot Recognition

Prior to usability evaluation, trainee feet recognition experiments are performed
to verify the performance of the system. This experiment is to determine whether the
system accurately recognizes the trainee’s feet and interacts with augmented content on
the ground. Before verifying the foot recognition rate of the proposed system, the accuracy
was examined and compensated by comparing the known coordinates (i.e., denoted on
the floor) and the measured ones obtained using the 2D-LiDAR. In the experiment, the
cookie-shaped virtual footprints were augmented as shown in Figure 8, and the experiment
was conducted through the corresponding content.
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(b) a photograph of experiment for foot recognition.

The criterion for whether the recognition is successful is shown in Figure 9. When the
trainee steps on the virtual footprint, the ratio of the area where the trainee’s foot object
overlaps the virtual footprint is calculated. If the calculated ratio is more than 30%, and
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overlapping lasts for 0.5 s or more, it is classified as a success. On the other hand, if the
calculated rate is less than 30%, and maintained for less than 0.5 s, it is classified as failed.
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Figure 9. Criteria for foot recognition.

Since the proposed system projects virtual content on the floor, recognition perfor-
mance (recognition rate) may be affected by intensity of illumination. Therefore, the
experiment 1 was conducted under three illuminance (50 lux, 100 lux, 150 lux) considering
the various illuminance environments of Korean hospitals.

3.1.2. Experiment 2: Usability Evaluation

Usability evaluation was performed to verify the usefulness of the system. This
evaluation is carried out according to the procedure (20 min per person) shown in Figure 10.
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Figure 10. A procedure for usability evaluation.

Previous to the experiment, the test subjects were informed about the experiment
for three minutes and prepared a consent form. In this experiment, the test subjects were
to participate in gait training content for 5 min. After resting for 2 min, the test subjects
participated in gait training content for 5 min while wearing a walker to verify whether the
content was actually useful. In the usability evaluation, the crosswalk concept as shown in
Figure 11 was provided as the gait training content.
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After the experiment, a survey was conducted to verify the effectiveness of the system,
and the questions are shown in Table 2. In the questionnaire, a total of eight questions were
asked whether the basic functions provided in the content were appropriate and suitable
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for training. Non-validated questionnaires were used to carry out certain measures of
interest (that is, the basic functions provided by the proposed system) in the experiment.

Table 2. Questionnaire used for usability evaluation.

No Questionnaire Answer
Negative↔ Positive

System

1 Gait training system maintained a
certain distance 1-2-3-4-5-6-7

2 The speed of movement of the
system was appropriate 1-2-3-4-5-6-7

3 System was safe 1-2-3-4-5-6-7

Content

Feedback

4
Positive feedback helped improve

the trainee’s sense of
accomplishment

1-2-3-4-5-6-7

5 Negative feedback helped correct a
trainee’s misguided gait 1-2-3-4-5-6-7

6
Encouraging feedback allowed the
trainee to carry out the gait training

to the end
1-2-3-4-5-6-7

Virtual
footprints

7 The gait guide spacing of the gait
training system was appropriate 1-2-3-4-5-6-7

8
The size of the virtual footprints

projected onto the ground by
system was appropriate

1-2-3-4-5-6-7

Questionnaire 1 (Q1) confirms whether the moving part’s distance maintenance func-
tion is properly performed (i.e., whether the set distance is properly maintained). Ques-
tionnaire 2 (Q2) checks whether the robot’s moving speed (0.3 m/s) is appropriate for gait
training. In addition, Questionnaire 3 (Q3) verifies whether the system is safe. Confirm
whether the feedback provided is effective through Questionnaire 4 (Q4), Questionnaire 5
(Q5), and Questionnaire 6 (Q6). The feedback provided in Questions 4, 5, and 6 is shown
in Figure 12. Questionnaire 7 (Q7) and Questionnaire 8 (Q8) check whether the walking
guide is appropriate. A total of eight questions as above confirm whether the function of
the system is useful for gait training.
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3.2. Experimental Results
3.2.1. Result of Foot Recognition Experiment

The experiment on recognition performance was conducted on 10 subjects with three
illuminations under the premise that the foot should be recognized for 1 s with more than
30% overlapping with virtual gait content (such as virtual footprints).

As a result of the recognition experiment, as shown in Figure 13 the recognition rate
was 98.3% for 50 lux, 98.2% for 100 lux, and 98.4% for 150 lux. Whether the recognition
performance of the proposed system remains robust against various illuminance values
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was reviewed through the Kruskal–Wallis Test, a nonparametric test. The result of the
Kruskal–Wallis test is shown in Table 3 and showed that H = 0.635 and p = 0.727, and the
null hypothesis that the recognition rate is the same for the three illuminations is confirmed
as the p value is greater than 0.05. It is statistically confirmed that the proposed system can
maintain a recognition performance above a certain level (98% or more on average) for the
above three illuminations.
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Table 3. Result for foot recognition experiment—Kruskal–Wallis Test.

Variable Value

H 0.635

Df 0.635

p-value 0.727

3.2.2. Result of the Usability Evaluation

Usability evaluation was conducted as shown in Figure 11 below. By providing the
trainee with highlighted virtual footprints to be stepped on, and by providing positive
feedback with the next virtual footprints when the trainee stepped on the virtual footprint
correctly (as described earlier, it is considered correct if the foot is recognized for 1 s with
more than 30% overlapping with the virtual footprint (gait guide)). When recognition failed
(if the trainee did not step properly on the provided virtual footprint), it provided negative
feedback (incorrect) and encouraging feedback at the same time, allowing the training to
continue. The questions for usability evaluation analysis were classified into three types as
follows. Q1, Q2, and Q3 were classified as evaluation types for the system, Q4, Q5, and Q6
as evaluation types for feedback of the content, and finally Q7 and Q8 as evaluation types
for virtual footprints (walking guide) of the content. The evaluation results for each of the
three types are shown in Figure 14 below.
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As a result of the evaluation, it was confirmed that the satisfaction of the system
was higher than that of the content in general. The Kruskal–Wallis test was performed to
confirm whether the measured results were significant, and the results are shown in Table 4.

Table 4. Result for usability evaluation—Kruskal–Wallis Test.

Variable Value

H 3.21

Df 2

p-value 0.2

As a result of the Kruskal–Wallis test, it was confirmed that the satisfaction on the
three evaluation types was not statistically significant as the p value was greater than 0.05.
In other words, since the three types do not have a significant effect on satisfaction, the
questions cannot be analyzed by types. Therefore, the 7-point scale of each question was
converted into a percentage and then analyzed as follows based on the average value.

Result for usability evaluation was shown in Table 5. Q1 was a question about
maintaining the distance of the moving part, scored an average of 83.375 points, and the
SD and SE were second highest. The results imply that an error may occur due to a slip
phenomenon when the robot is moving. Q2 was a question about the speed of the system
movement, with an average score of 85.4125 points, indicating that the speed of the system
movement is appropriate. Q3 was a question about the safety of the system and scored an
average of 93.75 points. As the safety of this system was verified, it is thought that it may
be used for actual gait training later on. Q4 was a question about positive feedback, and the
highest average among feedback, 89.5878 points, was obtained. With the positive feedback,
it is confirmed that the trainee could have the greatest motivation. Q5 obtained 81.2375
points with the lowest average as a question about negative feedback, meaning that it is
confirmed that negative feedback was useful for gait training, but not helpful compared to
other feedback (positive, encouraging). Q6 was a question about encouraging feedback
and scored an average of 83.325 points. For Q6, 33.3 points (3 points on a 7-point scale) as
the lowest, 100 points (7 points on a 7-point scale) as the highest, and SD and SE appeared
to be the highest. This suggests that the motivation effects among trainees may appear
differently. Since it can be either a disturbance for some trainees or a motivating factor
for others, it would be necessary to provide more general encouragement feedback before
applying it to actual gait training. Q7 was a question about the spacing of the gait guide
(virtual footprints) and earned 87.5 points which was the second highest average. Q8 was
a question about the size of the gait guide (virtual footprints) and earned 85.4125 points.
These scores imply it is confirmed that the gait guide may be helpful for training.

Table 5. Result for usability evaluation.

Variable AVG SD SE

Q1 83.375 19.912 7.04

Q2 85.4125 13.89 4.91

Q3 93.75 12.39 4.38

Q4 89.5875 19.79 6.99

Q5 81.2375 16.51 5.83

Q6 83.325 26.73 9.45

Q7 87.5 14.76 5.21

Q8 85.4125 18.76 6.63

All 86.19
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The overall satisfaction was 86.19%, and the usefulness of the system could be verified
through usability evaluation.

4. Conclusions

In this paper, we proposed an interactive mobile gait training system that allows
trainees to interact actively with the gait training content. The proposed system consisted
of three parts: a sensing part, a moving part, and an augmenting part. The performance
and effectiveness of the proposed system were reviewed and evaluated through two tests
(trainee’s feet recognition and usability) using 10 subjects.

The foot recognition experiment was performed on a total of three illuminations, and
it was confirmed through the Kruskal–Wallis test that the recognition rate was not affected
by illumination. It was confirmed that the recognition rate was more than 97% for all
illuminance and that the trainee’s feet could be accurately recognized through the system.

Usability evaluation was performed on a total of three types (system, feedback, and
virtual footprint), and the Kruskal–Wallis test confirmed that the evaluation types had no
significant impact on satisfaction. Therefore, the analysis for each item was performed, and
as a result, an average of 86% or more satisfaction was obtained, and it was confirmed that
the system was useful for gait training.

As this study is a result obtained from ordinary subjects, future studies need to expand
the experiments on actual patients. One of the future studies is to verify the effectiveness
of the proposed system by conducting with more than 20 children with brain lesions.
Additionally, the system’s performance on different gait speeds would be examined as one
of future works.
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