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Abstract: Over the last few years, a number of studies have quantified the role of radiomics, dynamic
contrast enhancement and standard MRI (T2WI + DWI) in detecting prostate cancer; however, the
aim of this paper was to assess the advantage of combining radiomics with other multiparametric
magnetic resonance imaging (mpMRI) (T2-DWI-DCE) in improving the detection of prostate cancer.
This study used 10 prostate-cancer-tissue-mimicking phantoms to obtain preclinical data. We then
focused on 46 patients who underwent mpMRI and Transrectal Ultrasound (TRUS) guided biopsy
between September 2016 and December 2017. The texture analysis parameters combined with the
mpMRI and compared with the histopathology of TRUS biopsy have been assessed statistically by
principal component analysis (PCA) and discriminant component analysis (DCA). The prediction
model and goodness-of-fit were examined with the Akaike information criterion (AIC) and McFadden
pseudo-R-squared. In the PCA, there was a higher separation between cancerous and noncancerous
tissue in the preclinical compared with the clinical data. Both AIC and R2 showed an improvement
in the model in cancer prediction by adding the radiomics to mpMRI. The discriminant analysis
showed an accuracy of cancer prediction of 81% compared with 100% in the pre-clinical phantom
data. Combining radiomics with mpMRI showed an improvement in prostate cancer prediction. The
ex vivo experiments validated the findings of this study.

Keywords: mpMRI; prostate cancer; radiomic; dynamic contrast enhancement; tissue-mimicking phantom

1. Introduction

Prostate cancer is one of the most common cancers in men [1]. Diagnosing prostate
cancer entails moving through the following steps: a digital rectal examination (DRE);
estimation of prostate-specific antigen (PSA) in the blood; multiparametric MRI; and
a biopsy under the guidance of ultrasound. Poor and imprecise detection of prostate
cancer leads to morbidity and poor outcomes. Currently, 10 to 12 tissue samples (biopsies)
are taken from the prostate to identify the grade of cancer. This approach may lead to
haemorrhage and discomfort for the patients [2]; therefore, improving the sensitivity and
specificity of prostate cancer diagnosis using imaging might change the current diagnostic
protocol, such as by eliminating biopsy complications. Magnetic resonance imaging (MRI),
in particular the use of multiparametric protocols in a pre-biopsy setting combined with
targeted biopsies, has improved the detection rate of clinically significant prostate cancer [3].

Several imaging protocols (kinetic models) using parameters measuring changes in
microcirculation have been described [4]. The diagnostic sensitivity rates achieved by
combining quantitative measurements and semi-quantitative methods with mpMRI have
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shown improvements in cancer detection [5]. The Prostate Imaging Reporting and Data
System (PIRADS) was developed by the European Society of Urogenital Radiology (ESUR)
to provide a standard protocol in the interpretation of the prostate images [6]; however,
the PIRADS scoring system is subject to intra- and inter-operator variability [7]. There-
fore, employing different quantification methods such as radiomics and dynamic contrast
enhancement (DCE) extraction could potentially reduce the variability between observers.

Texture analyses and mathematical models to extract the image features have been
reported to improve diagnostic accuracy [8]. These mathematical models provide a quan-
titative value, based on the grey level in the image, and can improve the detection of
cancers [9]. Radiomics refers to a process of extracting large, quantifiable features from
medical images which will transform the medical images to quantitative data [10]. In
radiomics, an area of interest in defining the lesion and its pixel intensity will provide quan-
tification data that represent a greyscale value in this area. A change in the pixel intensity of
a particular area is strongly associated with a particular disease. In the histogram analysis,
different parameters, such as the mean, standard deviation, mode, maximum, minimum,
kurtosis and skewness, provide statistical information about the medical image [9]. The
aims of this study were to assess the advantages of combining texture analysis parameters
with other mpMRI (T2-DWI-DCE) parameters in improving the detection of prostate cancer.
Moreover, the advantages of the of the combined approach were validated in pre-clinical
study with tissue-mimicking phantom simulating the prostate cancer.

2. Materials and Methods
2.1. Study Population

This study had prior Caldicott institutional approval (Caldicott/IGTCAL6358). This
study recruited 65 patients who were investigated for prostate cancer between 2016 and
2017 at Ninewells Hospital. The study focused on the group who had undergone both
mpMRI and TRUS-guided biopsies. Patients with missing data for the DCE (n = 19) were
excluded from the study. Each prostate was divided into 12 regions, totalling 780 regions
for the cohort. Then, the analysis focused on 552 regions from 46 patients because in
19 patients, DCE data were missing. There were 40 regions with a Gleason score of 3 + 3,
88 regions had significant cancers (Gleason score 3 + 4 and more), and 424 regions were
negative for cancer on biopsies. The study design is summarised in Figure 1.
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2.2. Tissue-Mimicking Material

In MRI, many different phantoms have been used; however, agar and agarose are the
most commonly used [11]. The T2 relaxation time for agarose is similar to human tissue
which is between 40 and 150 ms, therefore providing a good simulation to human tissue [12].
It is known that the cancer appearance in the peripheral zone will lead to reducing the
signal intensity of the image; therefore, in the tissue-mimicking material, aluminium oxide
(Al2O3) was used to change and obtain a different visualisation between cancerous and
healthy tissue. In this study, different concentrations of agar were used, mainly 5% and 2%
agar. The aim of using different concentrations was to mimic different tissues inside the
prostate. The 2% agar was used to simulate the healthy tissue inside the prostate, whereas
the agar 5% was used to simulate the cancerous tissue inside the prostate because the
cancerous tissue will appear to have a higher stiffness inside the organ [13]. A mould was
created using Solidwork 2018, 3D CAD, Dassault Systems, France with known dimensions
ranging from 8 mm to 20 mm. Different percentages of contrast from aluminium oxide
were used to distinguish between the two phantoms, which meant that 2% aluminium
oxide was used for the smaller phantoms while 0.5% aluminium oxide was used for the
bigger ones. Therefore, in each phantom, there were two regions, hyperintense-echoic and
hypointense-echoic, as the cancer leads to the hypointense-echoic appearance in T2WI; the
ROIs were drawn in the two regions to assess the ability of these parameters to distinguish
between two areas.

2.3. MRI Protocol

MRI images were taken before the biopsy using a 3T scanner (Tim Trio, Siemens,
Erlangen, Germany). The European Society of Uro-radiology protocol was applied for
mpMRI to detect prostate cancer [14]. The MRI acquisition parameters are illustrated in
Table 1. A body surface coil (Siemens, Erlangen, Germany) was used to obtain DCE images,
and 2 mL/kg of Dotarem contrast agent was given to the patient intravenously. Before or
during the scan, 1 mL of Buscopan was given to all patients to avoid movements in the
bowel and rectum, which are located close to the prostate. Prostate gland imaging was
carried out using different sequences (T1WI-T2WI-DWI and DCE). There was a short slice
gap of 0.6 mm to avoid both the loss of useful information and missing any abnormality. In
the DCE, there were very short TR and TE to acquire a series of images after the injection
of the contrast. The slice thickness was 3 mm resolution to optimise the image resolution
and the time scanning. The mpMRI images were analysed and scored by experienced
uro-radiologists (with more than 5 years post-certification experience) using PIRADS v2.0.

Table 1. The MRI protocol during the scanning.

T1WI High Resolution T2WI DWI DCE

Axial Sagittal Axial Coronal DWI DWI High
b-Value

Dyn
Gd-MRI

Sequence 2DTSE 2DTSE 2DTSE 2DTSE 2DEPI 2DEPI 3D VIBE
TR (ms) 650 6000 4000 5000 3300 3300 4.76
TE (ms) 11 102 100 100 95 95 2.45

Flip angle (◦) 150 140 150 150 10
Slice thickness (mm) 3 3 3 3 3 3 3

Slice gap (mm) 0.6 0.6 0.6 0.6 0 0 0.6
Resolution (pixels) 320 320 320 320 192 192 192

FOV (mm) 200 200 200 200 280 280 280
b-values (s/mm2) 50, 100, 500, 1000 2000

Temporal resolution (s) 4

2.4. Texture Analysis

Ten parameters were extracted in texture analysis exercise, including the mean and
mode; most of these parameters have been reported to have a high association with
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cancerous lesions [9]. The mean represented the average pixel intensity, while the standard
deviation represented the dispersion of the histogram. The mode represented the value
that mostly occurred within the region of interest. Skewness measured the asymmetry
probability distribution of the histogram. In other words, if the result for skewness is close to
0, then the distribution of the information is symmetric, whereas an asymmetric distribution
far from 0 is either positive skewness with more values having positive values or negative
skewness with more values having negative values. Kurtosis measures the shape of the
probability distribution, reflecting the shape of the curve, meaning that negative kurtosis
indicated a flatter peak while positive kurtosis indicated a sharp peak. The parameters were
extracted from T2WI, based on the histogram analysis first-order statistics. The radiomic
features used in this study were mean, mode, median, range, variance, standard deviation,
skewness, kurtosis, minimum and maximum. These parameters are summarised in Table
S1. In this study, the prostate gland images were divided into 12 portions, based on the
mapping biopsy report as shown in Figure S1. Subsequently, OLEA software (Olea Sphere®,
v3; Olea Medical, La Ciotat, France) was used to perform the histogram analysis and extract
quantified data from 12 regions from each prostate phantom as shown in Figure S2.

2.5. Dynamic Contrast Enhancement (DCE)

Dynamic contrast enhancement in MRI is based on a series of images taken by MRI
before, during and after the injection of the contrast [15]. The most common contrast agent
used in MRI is gadolinium. The contrast agent will shorten the T1 relaxation time, which
will enhance the contrast in the organ; therefore, DCE is also known as permeability MRI.
The acquisition time for collecting the image needs to be shortened by up to 5 s to analyse
the early enhancement following injection of the contrast. The pharmacokinetic model
was used to obtain a quantification about microvasculature permeability and there were
some differences between the quantification results for different parameters due to the
different models used in the different protocols [4]. The microvessels will form a network
between the blood and tissue and, in most diseases that occur, certain changes occur in the
microvessels; therefore, these changes could be used as a biomarker to detect a particular
disease [4]. In this study, DCE was reported using 4D tissue software for the 12 portions
of the prostate The Syngo Tissue 4D image post-processing platform (Siemens, Germany)
as shown in Figure S3. The histopathology of the TRUS-guided biopsies was taken as a
reference standard when evaluating the sensitivity and specificity of combining DCE from
tissue 4D software, T2 weighted and DWI.

2.6. Statistical Analysis

Data processing was performed for both pre-clinical and clinical data, using SPSS 25
(IBM Corporation, New York, NY, US) and the free statistical software R (R Core Team,
2019). These tests were performed in 46 patients and for 10 phantom values. To estimate
the area under the curve (AUC) for prediction, making use of multiple variables together
with the existence of prostate cancer, receiver operating characteristic (ROC) curve analysis
was conducted.

In this study, we adopted three multivariate approaches. PCA is one of the most com-
monly used statistical methodologies to investigate patterns in large, correlated datasets [16].
PCA explores the structures in the dataset and extracts principal components by mapping
the original data to their equivalent components in the rotated space. It represents unsu-
pervised modelling with no associated response, i.e., PCA will rotate and scale the image.
PCA obtains a set of vectors (principal components) which are then used to measure the
variability of the dataset, i.e., plotting the first and the second principal components will
show the variation in the multidimensional dataset in a 2D plane. Discriminant analysis
of principal component (DAPC) was conducted to identify and describe clusters without
the influence of the response [17]. DAPC seeks to find differences between groups while
minimising the variation within clusters. DAPC transforms the data first using PCA, which
are then used to identify the existing clusters.
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DCA was also considered to test the hypothesis of separation between the two groups,
cancerous and healthy tissues [18]. DCA maximises the component axis for class separation.
Unlike the previous methods, it is considered as supervised modelling. Thus, the response
influences the components. Therefore, DCA is useful, not only as a support for PCA, but to
also predict future samples.

In addition, univariate and multivariate logistic regression was used to assess the
association of clinical characteristics and laboratory parameters to determine the best
predictors of prostate cancer. The analysis started with all variables in the model, i.e.,
backward elimination. This allowed for the construction of the optimal regression equation
to help determine the level of importance of each predictor variable. Two evaluation
techniques were considered: AIC and McFadden’s pseudo-R-squared. AIC estimates the
likelihood of a model to predict future values (Akaike, 1974), which, in turn, can be used to
evaluate a model [19]. A model with a lower AIC, among all other models, is considered to
have a good fit. McFadden’s pseudo-R-squared measures the goodness-of-fit of models.
The test can range from 0 to 1, although it can never reach 1 because of its calculation.
According to McFadden: “while R2 index is a more familiar concept to planners who
are experienced in ordinary regression analysis, it is not well-behaved a statistic as the
R2 measure, for maximum likelihood estimation. Those unfamiliar with R2 should be
forewarned that its values tend to be considerably lower than those of the R2 index and
should not be judged by the standards for a ‘good fit’ in ordinary regression analysis. For
example, values of 0.2 to 0.4 for R2 represent an excellent fit” [20].

Two-step logistic regression was performed to identify explanatory variables of signif-
icant prostate cancer. Mean, median, mode, standard deviation, sample variance minimum
and maximum were individually entered into a univariate logistic regression model where
the outcome was defined as having significant prostate cancer or not. Statistically signif-
icant variables were then entered into the multivariate logistic regression model. Odds
ratio (OR), 95% confidence interval (95% CI) of odds ratio, and p values were recorded
in Table S2.

The reproducibility of the radiomic measurements was assessed in a subgroup of
10 randomly selected phantoms by three observers. Excellent inter-rater reliability was
shown with a correlation coefficient of 0.98 in a single measure (p < 0.001) in five radiomic
parameters which were mean, median, mode, minimum, and maximum.

3. Results
3.1. Pre-Clinical

An ex vivo ROC curve was constructed to understand the effects of combining the
radiomic parameters and the accuracy of each parameter. There was a high prediction of
the cancerous lesions ex vivo, because the AUC was 1 after all radiomics in this study were
combined as shown in Figure S4.

PCA was applied to generate a set of principal components to assess the difference
between healthy and cancer patients. Based on Figure 2, non-cancerous materials were
separated from cancer-mimicking materials in the first and second components. PCA was
performed for the radiomic features in the phantoms to differentiate between cancerous
and non-cancerous lesions. Figure 2 shows the score plot based on the first and second
principal components. The first principal component explained 69% of the variation, and
the second component explained 24% of the variation.

This result was unsurprising since they both explained 93.5% of the variation in the
dataset. The distinction between non-cancerous and cancer-mimicking materials was
explored with DAPC and DCA. The results, as shown in Figure 3 and Figure S5, illustrate
the separation in support of the PCA.
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3.2. Clinical Data

Based on the ROC curve analysis of clinical data, there was a slight increase in the
area under the curve of all texture analysis parameters combined with multiparametric
MRI; the AUC was 0.82, whereas in the T2 + DWI alone, the AUC was 0.77. There was
no significant difference between adding either DCE or texture analysis parameters to
T2 + DWI; the AUC values were 0.79 and 0.82, respectively, as shown in Figure 4. For
the clinically significant prostate cancer, the prediction model combining mpMRI and
radiomics showed an improvement in AUC from 0.81 to 0.85.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

Figure 3. DCA and how it separates both groups with high accuracy and no overlap between the 

cancerous and healthy groups. The x-axis is the number of clusters, while the y−axis is the coefficient 

of discriminant analysis.  

3.2. Clinical Data 

Based on the ROC curve analysis of clinical data, there was a slight increase in the 

area under the curve of all texture analysis parameters combined with multiparametric 

MRI; the AUC was 0.82, whereas in the T2 + DWI alone, the AUC was 0.77. There was no 

significant difference between adding either DCE or texture analysis parameters to T2 + 

DWI; the AUC values were 0.79 and 0.82, respectively, as shown in Figure 4. For the clin-

ically significant prostate cancer, the prediction model combining mpMRI and radiomics 

showed an improvement in AUC from 0.81 to 0.85. 
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standard TRUS biopsy. The orange curve is a combination between radiomics and mpMRI, showing
a higher AUC of 0.82 compared with mpMRI alone in the red curve; the AUC was 0.77.

PCA was applied again to generate a set of principal components to assess the dif-
ference between healthy and cancerous tissues in the clinical data, using a combination
of radiomics and DCE compared with the biopsy. The score plot, looking closely at the
first two principal components, exhibited overlap between healthy tissue (normal prostate
gland) and prostate cancer in some areas, which described the missed diagnosis and some
separated areas indicating the efficiency of the adopted model in detecting the prostate
cancer. Healthy tissue (normal prostate gland) was mostly separated from cancer patients,
as shown in Figure 5.

Furthermore, the correlation matrix in Figure S6 showed a similar pattern of highly
correlated variables, i.e., highly correlated variables may cause PCA to overemphasise
their contribution.

DAPC was explored to identify clusters using PCA score vectors. The results were
exemplified through the density plot of the two clusters, as shown in Figure 6.

The DAPC showed an almost clear separation between the two clusters. Finally, DCA
showed a similar pattern to the previous methods, with a model accuracy of 81%, which
was determined using training and testing data, as shown in Figure 7.
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component explained 36% of the variation, and the second component analysis explained 18.3% of
the variation. The prediction model was a combination of the radiomic features with mpMRI, and
the findings were compared with the TRUS biopsy.
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3.3. Clinical Characteristics of Prostate Cancer

The overall model accuracy was evaluated using leave-one-out cross-validation (LOOCV).
Based on 300 different samples (a resampling method were used to generate different
samples), the model accuracy was 81.5% (CI 0.76, 0.85).

The data were modelled using backward selection via the logistic regression technique.
This enabled evaluation of the multiple regression equation to determine the best predictors
in the model. In Figure 8, both AIC and R2 McFadden of the logistic regression were given
for a range of increased complexity. As the number of parameters increased, AIC started
to decrease, and R2 McFadden started to increase. This showed that the model with all
variables was a good fit for the data. T2WI was the first variable used in this model;
then, DWI was added to it, followed by ktrans, and then kep, which are DCE parameters.
Subsequently, the radiomics parameters were added to the model, which provided further
improvements in the goodness-of-fit.

3.4. Correlation Analysis

In the correlation analysis, the minimum, median, mode and mean were significantly
correlated with the Gleason score with p-value = 0.01, although other radiomic parameters
did not significantly correlate with the Gleason score. The DCE parameters were not
significantly correlated with the histopathology report: ktrans and kep were p = 0.9 and
p = 0.9, respectively. After the prostates were divided into different zones, neither ktrans
nor kep were significantly correlated with the histopathology report in PZ (p = 0.86 and
p = 0.93, respectively); in TZ, ktrans was significantly correlated with the histopathology
report (p = 0.02), whereas kep was not significantly correlated (p 0.5). In the PZ, four
radiomic parameters (mean, median, mode and maximum) were significantly correlated
with Gleason at p < 0.05, while in TZ, five radiomic parameters (mean, median, mode,
maximum and SD) were significantly correlated with Gleason at p < 0.05. In the preclinical
test, all radiomic parameters were significantly correlated with the gold standard (phantom
tissue-mimicking material) with a p-value < 0.01.
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Table S2 shows the outcomes of the logistic regression analysis and predictive variables
of clinically significant cancer. On univariate analyses, mean, median, mode, SD, and SV
were all significantly associated with clinically significant cancer (p < 0.05). The other
radiomic features did not show any significance (p > 0.05), and were thus excluded from
further analyses. In the multivariate analyses, modes were statistically significant and
independently predictive of clinically significant cancer (p = 0.04).

There were 15% of significant cancers missed by the mpMRI which were reported by
radiomics, and 8% of lesions missed by radiomics which were reported by mpMRI.
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4. Discussion

There is a clinical challenge in the reproducibility of PIRADS amongst radiologists
and between different centres [21]. The quantification of features from images could be
used as a marker of disease diagnosis, prognosis, and long-term outcomes. The texture
analysis values in the detection of prostate cancer showed promising results [22]. The
phantoms used in this study were a validation cohort to assess the combination between
the radiomic features, providing an illustration of how the combination between the
parameters differentiates between cancerous and non-cancerous images in clinical and
pre-clinical practice. Combining multiparametric MRI findings with radiomics could
potentially improve our understanding of disease and provided the necessary information
needed for decision-making. There are reports that combining DCE features and T2WI
increase AUC from 0.773 to 0.756 [23]. Excellent inter-rater reliability was shown with a
correlation coefficient of 0.98 in a single measure (p < 0.001) in five radiomic parameters
which were mean, median, mode minimum, and maximum and the same finding was
found in other study as they have 0.9 correlation coefficients in the phantom [24]. A higher
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reproducibility was suggested in a systematic review analysing the reproducibility of the
radiomic parameters in different modalities (MRI, PET, and CT) and the analysis was
performed in 481 studies supporting our findings [25]. We have shown that the combined
approach improves the diagnostic accuracy of MRI and validates our findings through
ex vivo phantom image analysis. The PCA showed a higher separation between non-
cancerous and cancerous-mimicking materials in our pre-clinical validation study. This
was confirmed in the clinical cohort where the combined approach performed well, albeit
at lower rates. The homogenous phantom model in the preclinical setting presented higher
diagnostic separation in contrast to clinical patient data as the signal intensity changed
in the different prostate zones. Our results complement the findings of a previous study
reporting a higher separation between the healthy and cancerous tissue. That study had a
limited number of patients (n = 25) and only peripheral zones were analysed, in contrast to
our study where the prostate glands were analysed for all 12 regions.

The combined approach of DCE and texture analysis with standard MRI (T2WI + DWI)
improved the diagnostic accuracy; the AUC increased from 0.79 to 0.82. The discriminate
analysis shows a high percentage of model accuracy in the separation group ex vivo and
in vivo (100% and 81%, respectively), which is considered an acceptable proportion of
separation of the healthy and cancerous tissue. Previously, reports have suggested that
combining DCE and radiomics with standard MRI improves the detection rate of cancers
in peripheral zones [26]; however, our model combining DCE, radiomics, and standard
MRI increased the prediction of cancers in all zones.

This study showed that some radiomic features were significantly correlated with the
histopathology, using the maximum, minimum, range, and mean; the same findings have
been reported in previous studies [27], which support the addition of radiomic features
into prediction models of prostate cancer. The DCE MRI appears to be controversial,
because some studies suggest and highlight the importance of this parameter, whereas
other studies have demonstrated limitations of this technique, especially in the temporal
resolution of the sequence. The findings in this study were not significantly correlated
with the histopathology reports [23]. Radiomic features are less invasive than DCE, and
have a higher contribution in the prediction model of prostate cancer detection; therefore,
they might replace the current methods of mpMRI which involve combinations between
standard MRI (T2WI + DWI) and DCE; DCE contains a contrast agent administrated
to the patients.

There were several limitations to this study. First, the study had a small number of
patients. Second, the reference standard for comparison was systemic biopsies, which
might have missed some lesions. Third, a mismatch may have occurred between the biopsy
and region of interest seen in the mpMRI; however, we minimised this issue by applying
the same protocol of the biopsy. Twelve regions were extracted from each MRI image.

5. Conclusions

This study showed that the first-order statistics extracted from radiomics, DCE and
standard MRI (T2WI-DWI), could predict PCA results; pre-clinical experiments with tissue-
mimicking phantoms validated the study findings. The contribution of radiomic features
showed better results compared with DCE; therefore, it could replace it in the future and
avoid the need for DCE being performed for the patient. This study showed that 15% of
significant cancers which were missed by mpMRI were reported by radiomics, and 8%
of lesions missed by radiomics were reported by mpMRI, indicating the importance of
the combination of radiomics and mpMRI methods. The radiomic parameters showed an
excellent inter-rater reliability, with a correlation coefficient of 0.98 in a single measure (p <
0.001) in five radiomic parameters. In this study, four radiomic features were significantly
correlated with the histopathology.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13010576/s1, Figure S1: Extraction of the Radiomic feature
by Olea software and this example shows 4 regions were extracted for the mid of the prostate and
the drawing match with the TRUS protocol to compare the findings; Figure S2: Phantom which
cancerous tissue simulation appeared with low signal intensity inside the red circle, and it is the
similar appearance of cancer in the PZ in the T2WI of the prostate as it leads to reduce the signal
intensity; Figure S3: The extracted DCE values from different areas inside the prostate of one patient
using Tissue 4d software Table S1: MRI acquisition parameters; Figure S4: The ROC curve for
the radiomic feature and the combined parameters between the 11 features has the highest AUC.
4 parameters reported a higher sensitivity and specificity compared with other parameters and
these parameters were mean, median, mode, and minimum as their AUC were higher than 0.96;
Figure S5: DAPC and how it separates both groups with high accuracy 100 % and no overlap between
the cancerous and healthy which validates the use of the radiomic features in the clinical data; Figure
S6: The correlation matrix between variables and the higher correlated variable can be excluded to
give higher separation in PCA. The positive correlation between the variable was coloured with blue,
while the negative correlation was coloured with red; Table S1: Shows the radiomic parameters used
in this study; Table S2: Univariate and multivariate logistic regression analysis.
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