
Citation: Dai, X.; Cheng, G.; Yu, Z.;

Zhu, R.; Yuan, Y. MSLCFinder: An

Algorithm in Limited Resources

Environment for Finding Top-k

Elephant Flows. Appl. Sci. 2023, 13,

575. https://doi.org/10.3390/

app13010575

Academic Editor: Rubén

Usamentiaga

Received: 30 November 2022

Revised: 24 December 2022

Accepted: 27 December 2022

Published: 31 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

MSLCFinder: An Algorithm in Limited Resources Environment
for Finding Top-k Elephant Flows
Xianlong Dai 1,2,3 , Guang Cheng 1,2,3,* , Ziyang Yu 1,2,3, Ruixing Zhu 1,2,3 and Yali Yuan 1,2,3

1 School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China
2 Jiangsu Province Engineering Research Center of Security for Ubiquitous Network, Nanjing 211189, China
3 Purple Mountain Laboratories, Nanjing 211189, China
* Correspondence: chengguang@seu.edu.cn

Featured Application: The results of this paper can be used in the fields related to network mea-
surement, especially in the fields of network traffic sampling, network traffic measurement, and
finding top-k elephant flows.

Abstract: Encrypted traffic accounts for 95% of the total traffic in the backbone network environment
with Tbps bandwidth. As network traffic becomes more and more encrypted and link rates increase
in modern networks, the measurement of encrypted traffic relies more on collecting and analyzing
massive network traffic data that can be separated from the support of high-speed network traffic
measurement technology. Finding top-k elephant flows is a critical task with many applications in
congestion control, anomaly detection, and traffic engineering. Owing to this, designing accurate
and fast algorithms for online identification of elephant flows becomes more and more challenging.
Existing methods either use large-size counters, i.e., 20 bit, to prevent overflows when recording
flow sizes or require significant space overhead to measure the sizes of all flows. Thus, we adopt
a novel strategy, called count-with-uth-level-sampling,in this paper, to find top-k elephant flows in
limited resource environments. Moreover, the proposed algorithm, called MSLCFinder, incurs
lightweight counter and uth-level multi-sampling with small, constant processing for millions of
flows. Experimental results show that MSLCFinder can achieve more than 97% precision with an
extremely limited hardware resource. Compared to the state-of-the-art, our method realizes the
statistics and filtering of millions of data streams with less memory.

Keywords: network measurement; top-k finding; elephant flow; MSLCFinder; data flow; traffic
sampling; network security; massive traffic

1. Introduction

Since the late 1960s, following the ARPANET’s birth and the development of network
technologies over five decades, the Internet has achieved great success. According to the
report [1], Internet users increased by 3.5 percent from October 2022, reaching 5.07 billion
as we enter the year’s final quarter. One hundred and seventy-one million new users over
the past 12 months have taken global Internet penetration to 63.5%. Global mobile users
have reached 5.48 billion, with smartphones accounting for almost four in five of the mobile
handsets in use today, with 68.6% of all the people on Earth now using some form of mobile
phone. The scale of global Internet users is unprecedented, the existing network traffic is
characterized by encryption, and the network link has entered the era of high speed. The
line rate in modern high-speed networks has reached hundreds of Gbps or multiple Tbps.
Encrypted traffic accounts for 95% of the total traffic in the backbone network environment
with Tbps bandwidth [2]. The different types of networks have mushroomed in our life
based on preeminent network infrastructure, such as IoT, Internet of Vehicles, 5G, cloud
computing, blockchain, satellite networks, etc. However, the network forms are diversified

Appl. Sci. 2023, 13, 575. https://doi.org/10.3390/app13010575 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010575
https://doi.org/10.3390/app13010575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4895-102X
https://orcid.org/0000-0001-8642-4362
https://orcid.org/0000-0002-9258-9929
https://doi.org/10.3390/app13010575
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010575?type=check_update&version=3

Appl. Sci. 2023, 13, 575 2 of 29

and heterogeneous. The nodes at different levels in the end-edge-cloud architecture on the
Internet are heterogeneous regarding function, performance, and data coverage. Thus, the
security of cyberspace depends more on the traffic measurement of high-speed networks
and encrypted traffic analysis and classification.

At this stage, the analysis, classification, and measurement of encrypted traffic rely
more on the collection and analysis of massive network traffic data, and establishing more
extensive and comprehensive encrypted traffic sample datasets is one of the long-term and
primary goals of such work. The collection and analysis of massive network traffic data
cannot happen without the support of high-speed network traffic measurement technology.
Generally, the network traffic on the high-speed link is viewed as a set of flows. For
traffic measurement, complete packet processing must occur in a few nanoseconds. For
example, in a 100 Gbp Ethernet link, to process packets with an average size of 64 bytes and
continuous arrival, the average processing time is about 4.768 ns. Thus, the measurement
of network traffic has more technical challenges, such as using extremely high computing
resources and storage resources, because of the continuous improvement of network link
rate and the sharp increase of network data flows.

The flow is composed of the packets carrying the same FlowIDs such as source IP,
destination IP, or others. We can define the size of flow as the number of packets in each
flow. The network traffic conforms to the heavy-tailed distribution model in the real world:
80% of the network traffic consists of 20% of the flow, and the remaining 80% of the flow
only constitutes 20% of the network traffic. In other words, compared with mouse flows
(e.g., the number of packets less than 200), the elephant flows (e.g., the number of packets
more than 10,000) can signify the real characteristics of the network. To provide high-quality
operation services (such as QoS management and QoE improvement [3]), detect anomalies
in the network, control network congestion, or detect DDoS attacks, the different statistics
and measurements of flows should be collected and analyzed based on high-speed network
traffic measurement technology by the Internet service providers (ISPs) or the department
of cyberspace security supervisions.

Thus, finding top-k elephant flows and aggregating information about flow distri-
butions can help us to achieve the above requirements. The significance of finding top-k
flows is shown in Figure 1. In addition, the data flow has the characteristics of real time,
continuity, and boundedness, which requires that the algorithm for processing the data
flow can only perform calculations on the network flow once and can only use limited
computing resources and memory resources. It also needs to ensure accuracy and timely
awareness of large-scale data flows. Thus, finding top-k flows is challenging, especially
with limited resources.

High-speed network traffic measurement technology can mainly solve this problem, a
challenging research field. For traffic measurement in the high-speed network environment,
there are generally three solutions [4]: (1) based on high-performance dedicated hardware
(such as TCAM, ASIC), but high-performance hardware equipment is costly; (2) based on
sampling technology; (3) based on data flow technology and method. The advantages and
disadvantages of different solutions are shown in Figure 2.

The top-k elephant flow identification method based on sampling extracts some rep-
resentative packets and then uses the probability theory to calculate the characteristics of
the overall network traffic. The most typical method is the Sampled NetFlow [5] proposed
and used by Cisco. In high-speed network links, the processing speed of hardware cannot
match the enormous data flow, so the 1/N sampling method is used to relieve the pressure
of elephant flow identification caused by high-speed network links. In the router, the flow
memory will create a new flow record based on the five-tuples of each arriving packet.
Whenever a new flow is drawn into the router, a new flow record will be created in the
flow memory, and a quintuple will be extracted as the unique identification of the flow.
Different from NetFlow, the sample and hold [6] method first queries whether the currently
arrived packet exists in the flow memory and, if so, updates the flow record; otherwise, the
data packet is sampled with probability p, and a piece of new flow information is created

Appl. Sci. 2023, 13, 575 3 of 29

in the flow memory after being sampled. However, the accuracy of these two elephant flow
recognition methods is coarse granularity, depending on the flow memory size. They are
unsuitable for elephant flow recognition in high-speed networks.

......
......

......

......
......

......
......

......
......

......
......

......
......

......
......

......
......

......

......

...

......

......

Internet of Vehicles
Mobile Internet

Basic Flow Statistics

Massive Network Traffic

......

ISPs

Internet Content

Providers

......

Cyberspace Security

Supervision Department

Top-k Elephant Flows

Measurement

Anomaly Detection

Traffic Scheduling

Traffic Congestion Control

DDoS Detection

Traffic Information Statistics

Service Optimization

...

Top-k Elephant Flows

......

......

......

......

......

......

Internet

Internet of Things Cloud Services

connectivity
connectivity

connectivityconnectivity

Internet

Figure 1. The significance of top-k flows measurement in networks.

Extremely Expensive

Link Speed

Moderate

Link Speed

too Fast 0 1 0 0 1 0 0 1 0 1 0 0 1 0

1x 2x

元素插入：将集合S中的每个元素xi插入A中，A[Hj(xi)] = 1

Top-k Elephant Flows

Need

More Memory

Get More Accurate top-k

Need

High Performance

Equipment

High-Performance

Dedicated Hardware
Network Sampling

Technology
Data Flow Technology

......
......

......
......

......
......

......
......

...

Massive Network Traffic

Figure 2. Advantages and disadvantages of different solutions in finding top-k elephant flows.

Appl. Sci. 2023, 13, 575 4 of 29

Based on data flow technology, the top-k elephant flow identification method has
two basic strategies: count-all and admit-all-count-some [7]. The similarity between the two
strategies is that they handle all traffic in the network rather than sampling. Therefore,
the error of these two methods is smaller than the sampling technique; however, the two
strategies are different in the process of handling traffic. The admit-all-count-some strategy
handles all traffic but does not store all traffic. The main idea is to recognize all new
flows and, at the same time, remove the smallest flow from the cache. Examples are
frequent [8], efficient counting [9], lossy counting [10], space-saving [11], and CSS [12].
They can effectively eliminate the flow by introducing some constraint rules and controlling
the error of top-k flow measurement within a certain range. The count-all strategy is based
on sketches such as count–min sketch [13] and count sketch [14] to measure the size of all
flows. It stores and counts all traffic. It is necessary to use sketches to summarize and count
data flows to reduce the demand for memory space and resources on the premise of storing
all traffic.

Furthermore, the admit-all-count-some strategy assumes that every new incoming flow
is an elephant flow and expels the smallest one, in summary, to make room for the new
one. Nevertheless, most flows are mouse flows. Such an assumption causes a significant
error, especially under tight memory. The count-all strategy needs a large sketch to count
all flows. These solutions could not be more memory-efficient. Additionally, it needs more
memory to scan the entire counter and sort elements to answer the top-k query. On the
other hand, because the flow sizes are unknown a priori, almost existing methods set a
large length (such as direct use of the integers in C++ or a 20-bit counter).

However, if the hardware development resources and costs are limited, for example,
they use only 1 Mbit to complete the top-k measurement task of millions of flows. Using
a large counter such as existing methods will not only lead to the waste of counter space
caused by counting most flows whose sizes are under 200 (the mouse flows) but also cause
fewer counters, affecting measurement accuracy. Therefore, existing top-k finding solutions
all share the same limitation: most counters will only record a mouse flow and waste
significant on-chip memory, especially with resource constraints.

On the whole, we aim to conquer six challenges of finding top-k in a resource-
constrained environment: (1) the scheme should be completed within limited on-chip
resources as far as possible; (2) the algorithm that needs to process data flows can only
perform calculations on network flows once; (3) the calculation logic is simple and the
storage space is small; (4) to achieve measurement of millions or more flows; (5) to restore
valid top-k elephant flows information; (6) measuring top-k elephant flow on the fixed and
short-length counter, with satisfactory accuracy.

In this paper, we adopt a novel strategy called count-with-uth-level-sampling. Moreover,
we propose a novel core component named Multi-Sampled Lightweight Counting Finder
(MSLCFinder) to achieve a measurement scheme for finding top-k flows based on hard-
ware resource-constrained environments. The MSLCFinder has three primary modules: a
lightweight counting module, a multi-sampling module, and a flow label recording mod-
ule. The lightweight counting module can work under extreme storage requirements and
requests a few bits for counting. The multi-sampling module can sample flows by using
multi-sampling probabilities generated by itself and the lightweight counting module. They
complement and constrain each other to maximize the optimization of the MSLCFinder
in the measurement task. The flow label recording module can promptly update and
record top-k elephant flows information. Finally, with the MSLCFinder we propose, we
can effectively find top-k elephant flows with less memory overhead and counters under
resource constraints.

Our main contributions can be summarized as follows:

• We propose a novel method for finding top-k elephant flows with little memory, reduc-
ing the waste of memory space of mouse flows. It is different from the two strategies
in the previous study. It compresses the count by sampling and can accurately obtain
the top-k elephant flows measurement results.

Appl. Sci. 2023, 13, 575 5 of 29

• We design a uth-level sampling algorithm. It can generate multiple different sampling
probabilities by initial sampling threshold θ, size of MSLCFinder counter, and the
sampling level u. It is used to ensure that the counters of MSLCFinder can measure
elephant flows more optimally before the end of the measurement task and reduce the
space occupied by mouse flows.

• We verify the effectiveness of the method in this paper on CAIDA public datasets and
the effectiveness of the method in real network traffic.

• We propose a flow recording algorithm for MSLCFinder to make up for the defect that
existing top-k finding solutions generally cannot restore stream ID and other information.

The rest of the paper is structured as follows. Section 2 describes the background
of this research and reviews the related work. Section 3 focuses on the measurement
method we proposed, including the design of MSLCFinder and the algorithm of its core
components. In Section 4, the MSLCFinder is evaluated through experiments in many
aspects. Finally, we summarize our research and point out future work.

2. Background and Related Work

Finding top-k elephant flows is quite challenging and complicated. Extremely high
line rates of modern networks make it practically impossible to track all flow information
accurately. The basis of finding top-k elephant flows depends on high-speed network
traffic measurement technology and principle, and the core difficulties are based on hash
function choice, data flow structure design, high-speed flow sampling technology, and
flow information recording technology. Therefore, we first summarize and analyze the
background methods in high-speed network traffic measurement. In this section, we also
summarize the existing research progress of finding top-k elephant flows.

2.1. Related Backgrounds
2.1.1. Hash Algorithm

In order to solve the problems with computing resources and high-speed network
traffic, it is necessary to deal with the network traffic by some measuring technologies, such
as sampling measurement and load balance, etc., while the hash algorithm is one of the
key measuring technologies [15]. Hash algorithms are mainly used for sampling stream
records and checking the existence of network data flow. Commonly used hashes include
MD5, CRC32 [16], IPSX [15], BobHash [16], XOR_SHIFT [17], and 2-universal hash [18].
Unlike the security considerations in the encryption field, the key to high-speed network
measurement is the randomness of the hash value rather than the security. Therefore, the
hash algorithm similar to the MD5 algorithm does not apply to this problem.

It can be divided into two types of methods. One is to directly use the identification
field in the message [19]. This method is efficient, but it is difficult to ensure sufficient
randomness of the hash value; the other is to use hash functions to calculate hash values [20].
The selection of hash functions is a crucial factor in ensuring the randomness of hash values
and the efficiency of algorithms. G.C. et al. [15] proposed a random measure to evaluate
the performance of the hash algorithm and theoretically proved that the exclusive OR
operation and displacement operation between bits can improve the random characteristics
of the hash value. Finally, they proposed the principles of the hash algorithm between bit
streams, designed the characteristics of the 4-tuple (source I.P., destination I.P., source port,
and destination port) based on I.P. packets, and proposed the IPSX algorithm. Through
a large number of experiments, XOR has a high hash performance. The bit stream hash
algorithm based on XOR and shift principle has good performance in terms of execution
efficiency and uniformity of hash value, which can meet the requirements of high-speed
network traffic measurement.

2.1.2. Network Traffic Sampling Methods

With the improvement of link rate and the diversification of applications, the vast
network traffic has brought tremendous pressure to traffic collection, transmission, storage,

Appl. Sci. 2023, 13, 575 6 of 29

and analysis. In order to solve the problem of passive measurement in high-speed networks,
sampling technology is applied to high-speed network traffic measurement, which can
reduce the amount of data used for measurement, storage, and processing under the
condition of meeting the statistical accuracy of the problem. The main idea of traffic
sampling technology is to select a representative packet subset from the original traffic
data and then infer the characteristics of the original traffic data through the packet subset.
In high-speed network traffic measurement, the implementation of sampling methods is
limited by technology and resources, and it is often necessary to compromise between
sampling rate and estimation accuracy. The sampling collection dramatically reduces the
processing load of the system and has good scalability. It can also reflect the original flow
characteristic parameters from the sample characteristic parameters and has a specific
measurement accuracy. For the traffic on the Internet, from the level of packets and flows,
the sampling methods are mainly divided into packet sampling and flow sampling.

• Packet Sampling

Packet sampling refers to sampling the packets that make up the network traffic. Each
packet is independent and does not consider the correlation between the packets. Standard
packet sampling methods include systematic, simple, and stratified random sampling.

Systematic sampling refers to extracting objects at fixed intervals. After selecting the
first object, select the next for every N object, as shown in Figure 3a. Systematic sampling is
a widely used sampling method, but systematic sampling has a certain periodicity.

Simple random sampling refers to sampling objects with a certain probability, as
shown in Figure 3b. The sampling probability of each object can be the same or different,
and this probability generally follows a certain probability distribution function. In flow
measurement, simple random sampling and random incremental sampling are commonly
used in random sampling methods. These two random incremental sampling methods can
avoid the synchronization problem of systematic sampling.

Stratified random sampling refers to dividing the population into several levels or type
groups and then sampling from each level according to a certain proportion. This layering
can be divided according to the arrangement order of elements, as shown in Figure 3c,
or it can be layered according to some characteristics of elements (such as packet length,
protocol type), and then sampled separately. The commonly used stratified sampling in
network traffic measurement is uniform stratified random sampling. This method can
ensure that the sampling is unbiased relative to the element’s attribute, reduce the error of
grouping statistics, and make the estimation result closer to the original data.

(a) systematic sampling

(b) simple random sampling

(c) stratified random sampling

Figure 3. Three packet sampling methods. (a) Description of what is systematic sampling. (b) De-
scription of what is simple random sampling. (c) Description of what is stratified random sampling.

Appl. Sci. 2023, 13, 575 7 of 29

Due to the self-similarity of network traffic, He et al. [21] proposed an improved
systematic sampling BSS (systematic biased sampling). Compared with systematic static
and simple random sampling, it improves the estimation accuracy of the mean value
and reduces the sampling cost. However, most packet sampling methods uniformly
select packets without considering the size of the packets, which makes the network
measurement obtain some uncertainties. Raspall [22] proposed EBS (efficient byte sampling)
to improve measurement quality, make measurement accuracy less dependent on the traffic
characteristics, and reduce measurement overhead.

• Flow Sampling

Flow sampling refers to the sampling of network flows within the measurement time.
The packets that constitute network flows are not isolated. They are generated to complete
specific applications. There is a certain correlation between them. Flow is a way to reflect
this correlation. There are two main sampling methods for flow sampling: (1) sampling the
packets first and then merging the packets into the flows; (2) the packets are merged into
flows first, and then the sample the flows.

The statistical characteristics of flow and packet are entirely different, and the require-
ments of flow sampling and packet sampling are also different. Because the transmission
technology limits the size of the packet, its maximum length will not exceed the maximum
value the network can support, but the size of the flow is not affected. For network traffic
measurement, which measurement and sampling method to use is determined by the
purpose of the network measurement.

Sampling is one of the most widely used methods to reduce memory consumption and
packet processing time. There are some problems in the static selection of sampling rate
because the worst-case resource use is multiple orders of magnitude of average resource use.
Sampled NetFlow [5] needs to configure a fixed sampling rate. This method’s main problem
is selecting safe parameters to ensure that the network device can continue operating under
adverse traffic conditions. Therefore, the sampling rate is set in the worst case. Many
researchers have solved the problem of dynamic sampling rate selection and overcome the
defect of setting static sampling rate through an adaptive network environment, such as
Adaptive NetFlow(ANF) [5]. However, adaptive sampling methods often consume many
CPU resources and rely on complex data structures and algorithms, which hinder their
implementation in network hardware.

Yang Du et al. [23] presented a framework to sample each flow with a probability
adapted to flow size/spread to achieve self-adaptive sampling. They proposed two algo-
rithms, SAS-LC and SAS-LOG, geared towards per-flow spread estimation and per-flow
size estimation using different compression functions. Sanjuàs-Cuxart et al. [24] proposed
a measurement method based on adaptive flow sampling, named Cuckoo sampling. The
algorithm is based on a simple and random data structure, which requires tiny packet
overhead and is easy to parameterize. Compared with previous methods, this algorithm
is based on simpler algorithms and requires fewer hardware resources, so it is suitable
for hardware implementation. In order to reduce the estimation error of mouse flows,
probability counter update algorithms are proposed, such as ANLS [25]. These algorithms
use the function p(c) of counter value c to replace the static sampling rate p, so the sampling
rate varies according to the number of packets sampled. However, because the measure-
ment accuracy is affected not only by the sampling function but also by the flow length
distribution, it is not enough to choose an independent static sampling function. Therefore,
Ma et al. [26] proposed the Smart Selection Sampling (S3) method. By using the flow length
distribution information to select an appropriate sampling function, the sampling function
can be adjusted to obtain higher measurement accuracy.

2.1.3. Network Data Flow Methods

With the rapid development of hardware, it is possible to measure the real-time
performance of high-speed networks. The data flow methods are real-time measurement
methods that use limited computing and memory resources to perform a calculation on the

Appl. Sci. 2023, 13, 575 8 of 29

network flow. Sampling technology is widely used in network traffic measurement and
analysis. Although the sampling method produces a representative subset of the original
data, the statistical information of network traffic inferred from the sampling data has
some errors and cannot accurately reflect the characteristics of the original traffic. The data
stream method has the characteristics of single-pass scanning, limited computing, and
memory resources. It is a powerful method for high-speed network traffic measurement.

A practical and available data structure is a crucial prerequisite of the data flow method
in network traffic measurement. The optimized data structure helps to improve the execu-
tion efficiency and estimation accuracy of the algorithm and reduces the computational
and storage costs. The most representative and universal data structures are bitmap [27],
bloom filter [28], and sketch [13].

Bitmap [27] is a simple data structure. Its essence is a bit group. It maps a field to a bit
group to count the number of duplicate elements. The direct bitmap is a stream number
estimation algorithm that uses the hash function to map the stream ID to a bit in the bitmap.
The bitmap is initialized to 0. When a packet arrives, its ID will be mapped a bit in bitmap,
and the bit will be set to 1. All packets belonging to the same class are mapped to the exact
location in bitmap. Therefore, no matter how many packets are sent in each stream, each
stream corresponds to at most one bit in bitmap.

Bloom filter [28] can be seen as an extension of bitmap. It is a simple, efficient,
probability-based random data structure, and its primary data structure is a bit vector.
Bloom filter can allow for processing more data under inevitable error and then judging
whether the mapping is repeated. Bloom filter can generally judge whether an element
is in the collection. It is characterized by fast operation and small memory consumption,
but it can only tell us whether an element is “definitely not in the collection” or “probably
in the collection”. Bloom filter is a widely used tool based on multi-hash. It combines
multiple hash functions to perform the hash process and verification and uses multiple
hash functions to replace a single hash function to improve the accuracy of hash verification.
Various network systems have used bloom filter algorithms, such as Web proxy and cache,
database servers, and routers.

Sketch [13] is a type of sublinear space and probabilistic data structure widely used
in network measurement. Sketch algorithms often use probabilistic methods such as
hash functions to map elements to continuous memory space and achieve small space
consumption and swift constant-level processing time by sacrificing sure accuracy. Among
them, the count–min sketch [13] is a classic sketch algorithm. Count–min sketch allows
basic queries in the data flow summary, such as point queries, range queries, and inner
product queries. It can also be used to solve significant problems in the data flow, such
as finding quantiles and identifying elephant flows. The essence of sketch is also a data
structure based on multiple hashes. It maintains an independent hash storage space for
each hash function and finds data meeting special requirements through a series of complex
and unique mapping rules and several additional rules. The most significant difference
from bloom filter is that sketch is based on the time series model, and the counters in the
hash space can be reduced.

2.2. Review of Related Research
2.2.1. Network Measurement Technology Based on Sketch

Count–min sketch (CM sketch) [13] has the advantages of simple, efficient operation
and small memory usage with a high accuracy guarantee. CM sketch has linear space–time
complexity and can perform frequency statistics of data streams, frequent item mining, and
other tasks. It can overestimate but only requires one memory access per counter. Currently,
CM sketch is one of the most popular sketch-based algorithms for network measurement.

Although many sketch structures have high accuracy, they can only perform specific
detection tasks. For example, FMSketch [29] can perform the measurement task of cardinal-
ity estimation. OpenSketch [30] is a universal and efficient measurement framework that
can measure a variety of tasks in real-time elephant flow detection, DDoS/SuperSpreader

Appl. Sci. 2023, 13, 575 9 of 29

network anomaly detection, flow size statistics, etc. It is also deployed in SDN. SketchVi-
sor [31] uses fast path technology and compressive sensing technology to reduce the
number of packets to be processed, improve the processing speed of packets, and realize
the statistics of multiple traffic characteristics. To solve the problem of complex resource
configuration in the measurement process, SketchLearn[32] designed a multi-level sketch
structure. According to the feature that small data streams obey the Gaussian distribution
in multi-level sketches, the algorithm automatically infers and extracts large data streams
by using the statistical characteristics of data streams, effectively reducing system overhead.
NitroSketch [33] uses adaptive sampling to update only the values of some counters, reduc-
ing the number of data packets to be processed, fundamentally improving the robustness of
the measurement framework, and significantly speeding up the processing of data packets.

Relevant research [34] shows that the combination of sketch structure and machine
learning algorithm can dynamically adapt to changes in the network environment, au-
tomatically extract network features, and achieve high-precision network measurement.
In Jiang et al. [34], measurement accuracy was dramatically improved. Zhou et al. [35]
combined the skeleton structure with reinforcement learning and proposed the RL sketch
method to detect abnormal data streams in the network. RL sketch uses DQN (Deep
Q-Network) to predict the size of data streams, filter out mouse flows, and only count
elephant flows in the skeleton. High-accuracy network measurement is achieved with
small memory. Fu et al. [36] used the K-means algorithm to map similar data streams to
the same bucket for clustering, replacing individual values with average category values,
and used random mappers to correct statistical values, which improved processing speed
while ensuring accuracy.

In a word, the research of the sketch method can be roughly divided into two directions:
(1) the transformation from poor scalability of the single task to strong versatility of multi-
task; (2) it combines machine learning and artificial intelligence algorithms to adapt to the
diversity of a network environment.

2.2.2. Top-k Flows Finding Technology

Although the probability of top-k comes from the discovery of frequent items in
massive data in the database research field, the top-k lookup in the network environment
differs from the task in the database. The top-k elephant flow identification method has
two basic strategies: count-all and admit-all-count-some [7], but the core problem is still
elephant flow detection, including heavy hitter [37] detection and heavy change [37,38]
detection. Table 1 summarizes the research on top-k elephant flow identification methods
in related work.

Due to memory limitation, hash conflicts will inevitably occur in processing massive
data, making the measured value more extensive than the actual value. Research has found
that the statistical error in the sketch can be effectively reduced by separating the elephant
and mouse flows.

Cold Filter [39] has designed a two-layer sketch structure. When data packets arrive, it
first uses the first layer of the sketch to filter out most of the mouse flows, and then sends the
filtered elephant flows to the second layer of the sketch for storage. This classified statistical
method reduces the super error between elephant flows and mouse flows and also reduces
the false positives in the statistical results. HeavyKeeper [7] uses the attenuation formula to
make the elephant flows decay slowly, and the mouse flows violently decay to screen out
the elephant flows. HeavyGuardian [40] divides each bucket in the hash table into a heavy
part and a light part. The heavy part stores key-value pairs of multiple elephant flows, and
the light part only stores the count values of mouse flows. High measurement accuracy is
achieved with limited memory. The ActiveKeeper [41] uses a two-mode active counter to
record flow sizes, reducing memory usage while ensuring high accuracy. ActiveKeeper
also avoids the waste of mouse flow on the counter. The FastKeeper [42] can identify
large real-time flows with a primary goal of simultaneously achieving low overhead, high
performance, and high accuracy. FastKeeper employs a sliding-window-based algorithm

Appl. Sci. 2023, 13, 575 10 of 29

for accurate measurement of real-time flow rates and a bitmap-voting algorithm for the
timely replacement of flows that have become small in the measurement data structure.
Xiao et al. [43] presented a universal online lightweight sketch named ActiveCM + for
tracking heavy hitters, which ensures that per-packet overhead is a small constant (four
hash and four memory accesses) in the worst case, making it much more suitable for online
operations, especially for pipeline implementation.

Table 1. Research on top-k elephant flow identification methods.

Research Category Strategy References Method

Based on Data Flow

count-all CM sketch [13] sketch & min-heap
Count sketch [14] sketch & min-heap

admit-all-count-some

Frequent [8] constraint rules
Efficient counting [9] constraint rules
Lossy counting [10] error variable

SpaceSaving [11] stream-summary
CSS [12] compact space-saving & sliding window

separate elephant/mouse flows

HeavyKeeper [7] count-with-exponential-decay
Cold Filter [39] two-layer sketch structure

HeavyGuardian [40] heavy and light part
ActiveKeeper [41] two-mode active counter

FastKeeper [42] sliding window & bitmap voting
ActiveCM + [43] ActiveCM + & LUS

Based on Sampling Sampled NetFlow [5] sampling⇒recording
Sample and hold [6] query⇒sampling⇒recording

In summary, those researchers mainly studied the method of separating elephant and
mouse flows to optimize the counters counting or reduce the collision probability of the
hash function.

3. Top-k Measurement Scheme Based on MSLCFinder

In this section, we make a systematic expound measurement algorithm based on
MSLCFinder, a novel and efficient scheme for finding top-k flows in a limited resource
environment. The measurement scheme overview is, understandably, described first. Then,
we focus on three core module elements: lightweight counting module, uth-level multi-sampling
module, and flow label recording module. They are the three core components of MSLCFinder,
and they interact and restrict each other to complete the measurement task together.

3.1. Problem Definition

Finding the top-k elephant flows task is finding the k flows with the largest size
with some measures of the measurement task. Typically, the network traffic is a set of
N flows F = { f1, f2, ..., fN}, where each flow fi(i = 1, 2, ..., N) is composed of a set of
packets {Pac1, Pac2, ..., Pacn} with the sameFlowID such as network quintuple. With
this measure, the number of packets, i.e., n_pac of each flow, can be defined as the flow
size. We let the n_paci be the real size of the flow fi and the n̂_paci is the estimated
size of fi. Thus, finding top-k elephant flows can be described as outputtinga set of
Top− k = {(f̂1, n̂_pac1), (f̂2, n̂_pac2), ..., (f̂1, n̂_pack)}. The set Top-k with k elements can
track the top-k flows with their estimated sizes.

3.2. Measurement Scheme Overview

The overall design of the measurement scheme is shown in Figure 4. The scheme
parses each message arriving by the traffic to be measured packet by packet, calculates
the hash value corresponding to the data flow ID through the hash function, and is used

Appl. Sci. 2023, 13, 575 11 of 29

to query, judge, and update the information of the MSLCFinder and flow sampling. The
sampling probability is calculated by the given threshold and updated by the size of the
counter in MSLCFinder.

Hash

MSLCFinder

Sampling

Update

Recording

Information

Packet Analysis

top-K flows

Information

Threshold

generation

Push threshold of

top-k definition

Information

Reporting

Packets

forwarding

Sampled Packets

Information List
FlowID

Recording

Packets

Departure

Packets

Arrival

Data plane

Query

Non-Sampled

Packets

Discrimination

Information

FlowID of fi

Control plane

Figure 4. The scheme overview of top-k flows measurement task in networks based on MSLCFinder.

At the beginning of the measurement, the hash value is calculated for the parsed
FlowID, and the sampling process will use the initial sampling probability. If the FlowID is
sampled, the counter at the corresponding location of the FlowID in MSLCFinder will be
updated. Otherwise, the counter is not updated to reduce the probability of counting small
flows in the MSLCFinder structure and reduce the pressure on on-chip resource storage.

Here, the size of the counter in the MSLCFinder is a fixed n bit. It uses a uth-level
multi-sampling module to sample the flow. When the value of the MSLCFinder counter
exceeds u thresholds, the sampling probability is recalculated, respectively, and a new
sampling probability resamples the arriving flow. If the sampling is successful, the counter
is incremented by 1; otherwise, it will be forwarded directly. When the count exceeds the
last-level threshold, the flow corresponding to the location flow ID in the MSLCFinder is
the top-k flow. The flow information is stored in the information storage table through
the flow label recording algorithm. At the end of the measurement cycle, the entire
information storage table is reported to the control end to obtain the specific information of
the top-k flow.

3.3. Multi-Sampling Lightweight Counting Finder
3.3.1. Rationale

Our goal is to find top-k elephant flow with resource-constrained environments. It
requires us to use less memory to complete the measurement task of more than one million
flows. We aim to use a small hash table to find it, and it does not require highly accurate
estimates. We are committed to using smaller length counters to be competent for the
challenging task; for example, the counter length is less than 8 bits, or even smaller. Thus,
before the counter increases the count, it is necessary to perform flow sampling by some
regulars for the arriving traffic to determine whether the current packet can increase the
counter’s value at the corresponding location in the hash table. In order to solve minimizing
the error of flow sizes, we use multiple hash tables with different hash functions. The
MSLCFinder has three primary modules: a lightweight counting module, a multi-sampling
module, and a flow label recording module. We designed the MSLCFinder lightweight
counting module based on the basic principle of sketches and smaller counter lengths.

Appl. Sci. 2023, 13, 575 12 of 29

The design of the multi-sampling module will use the counts in counters and the initial
sampling threshold. Based on the min-heap, we designed the flow label recording module.

3.3.2. The Lightweight Counting Module

As shown in Figure 5, the lightweight counting module has d hash functions, and
each function space comprises w counters. The counter of MSLCFinder is only n bits
long. The hash functions can calculate the hash value of the incoming packet as the
FlowID for MSLCFinder counting. It can also help the multi-sampling module to achieve
flow sampling.

Multi-Sampling: Multi-sampling is a core component module in MSLCFinder, which
is responsible for sampling the arrived packets, thus telling MSLCFinder whether to add the
current packet to the counter at the corresponding location. Unlike the count–min sketch,
the count–min sketch uses a more extended counter to record the information of all streams
and count each stream. Because our method needs to complete the top-k measurement task
under resource constraints, sampling and judging the traffic before updating the counter
can significantly reduce the counting pressure of the counter.

Insertion: At the beginning of the measurement task, all counters are zero. For each
coming packet Pacϑ belonging to flow fϕ, MSLCFinder calculates the d hash functions.
After mapping fϕ to the counter node, it should be sampled by sampling probability and
the hash value. The hash value of Pacϑ will be the FlowID of flow fϕ. If Pacϑ is sampled,
the counter will addone. Otherwise, the counter will not be processed.

.........

.........

.........

......

......

......

......

...

...

...

...

...

...

P7

+1

+1

+1

w counters

d
 h

a
s

h
 fu

n
c

tio
n

s

h2(f14)

Multi-Sampling

Multi-Sampling

Multi-Sampling

Multi-Sampling

P7

n-bit counter

Belong to flow f14

Multi-Sampling Module

...

Figure 5. The structure of the lightweight counting module in MSLCFinder.

Query: To query the counts of a flow fϕ, MSLCFinder reports the minimum value of
d counter nodes that fϕ mapped.

Analysis: The minimum error tolerated for the measurement task is δ. The flow
fϕ true size is n_pacϕ, and its estimated size is n̂_paci. We want to set an error range
(n_pacϕ ≤ n̂_paci ≤ n_pacϕ + εN), in which N is the total number of packets counted by
the module. In the optimal case, w = de/εe, d = dln(1/δ)e (where e is the base of the
natural logarithm, i.e., 2.71828..., a constant chosen to optimize the space for fixed accuracy
requirements). When ε is smaller (i.e., w is larger), the error of element estimation is smaller;
when δ is smaller (i.e., d is smaller), the probability of error in element estimation is smaller.

For the insertion procedure, because computing each hash function takes O(1) (con-
stant) time, the total time to perform an update is O(d), independent of w. Since d is
typically small in practice (often less than 10), updates can be processed at high speed. The
space complexity is O(wd). For the query procedure, the time complexity is O(ln(1/δ)),
and the space complexity is O((1/δ2) log(1/δ)).

Appl. Sci. 2023, 13, 575 13 of 29

3.3.3. The Multi-Sampling Module

Multi-sampling is a core component module in MSLCFinder, which is responsible for
sampling the arrived packets, thus telling MSLCFinder whether to add the current packet
to the counter at the corresponding location. Unlike the count–min sketch, the count–min
sketch uses a more extended counter to record the information of all streams and count
each stream. Because our method needs to complete the top-k measurement task under
resource constraints, sampling and judging the traffic before updating the counter can
significantly reduce the counting pressure of the counter.

The multi-sampling module has two functions: (1) to conduct flow-based sampling
for consecutive arriving packets to guide MSLCFinder on whether to count this packet;
(2) to calculate the flow sampling probability corresponding to the FlowID based on the
current number of packets in the MSLCFinder.

The multi-sampling module can calculate the sampling probability p according to the
current value in the counter and guide the MSLCFinder on whether to process or directly
forward the currently arrived packets. The sampling probability p needs to obtain the
count in counter and the initial threshold θ. Let a be the counts of the single counter. We
choose uth-level sampling. The calculation method of sampling probability p is as follows:

• Initial sampling probability:

q1 = θ − [(2n−u+1 − 1)− 1] = θ − [2n−u+1 − 2] (1)

p1 = 1/q1 (2)

• When a exceedsthe 2n−u+1 − 1, calculate 1st-level sampling probability:

q2 = [(2n−u+2 − 2)− (2n−u+1 − 2)] + q1 = q1 + 2n−u+1 (3)

p2 = 1/q2 (4)

• When a exceedsthe 2n−u+i − 1(i = 0 ∼ u− 1), calculate i + 1-level sampling probability:

qi+1 = [(2n−u+i+1 − 2)− (2n−u+i − 2)] + qi = qi + 2n−u+i (5)

pi+1 = 1/qi+1 (6)

The uth-level (u < n− 1) sampling method can generate u probabilities for sampling.
When the measurement task is over, the computational function Esti(a, q1, q2, ..., qu) with
count a of counter can obtain estimates.

• When 1 ≤ a < 2n−u+1:

Esti(a, q1, q2, ..., qu) = (a− 1) · q1 (7)

• When 2n−u+1 ≤ a < 2n−u+2:

Esti(a, q1, q2, ..., qu) = (2n−u+1 − 1) · q1 + (a− 2n−u+1) · q2 (8)

• When 2n−u+i ≤ a < 2n−u+i+1 (2 ≤ i ≤ u− 1):

Esti(a, q1, q2, ..., qu) = (2n−u+1 − 1) · q1 +
i−1

∑
j=1

(qj+1 · 2n−u+j) + (a− 2n−u+i) · qi+1 (9)

• We can use the a to calculate the i by using the following method:

i = blog2 ac+ u− n (10)

For example, when we use the 3rd-level sampling method to count the array named B,
which has 2 million elements, let the threshold θ be 10,000, and the counter Co has 8-bit

Appl. Sci. 2023, 13, 575 14 of 29

length. According to the above formula, u = 3, q1 = 9938, q2 = 10, 002, and q3 = 10, 130.
When the subscript of the element in array B is sampled, the value of counter Co is plus 1.
When the array traversal is over and the Co = 200, the actual estimated value is 1,995,582
according to the 3rd-level sampling method, which proves that our sampling plan is
highly deterministic.

When the measurement task starts, the probability p1 is directly used to sample each
flow. If it is selected, it will be mapped to the corresponding position of the ID in the
lightweight counting module, and its count will be increased by 1; if the packet is not
sampled, it will be forwarded directly, and MSLCFinder will not process it. Here, we take
the flow fϕ as an example. When the packet’s counts in fϕ exceed the threshold value
of the second level, we start to calculate the sampling probability p2 of the second level
and continue to process the arrived packets according to p2, and so on until the threshold
value of the u-level is exceeded. When, and only when, the count of fϕ reaches 2n − 1, the
packets corresponding to the FlowID will not be processed anymore, and the FlowID will
be regarded as a top-k elephant flow.

3.3.4. The Flow Label Recording Module

Figure 6 shows that the flow label recording module is designed to record and find top-
k elephant flows. The MSLCFinder achieves this goal based on a min-heap data structure.

Query in
Recording Module

Finder has updated

the FlowID counts

FlowID and

 its new_count
Number of elements

 in Module < k?

new_count >
minimal count

in Module?

N

N

Update FlowID

new_count

in Module

Insert New FlowID

in Module

Update its new_count

Eliminate

 minimal count and

its FlowID

Y Y

FlowID Existed

in Module

Bypassed

Y

Figure 6. The structure of the flow label recording module in MSLCFinder.

Algorithm 1 shows the flow label recording algorithm. For each packet Pacτ belonging
to flow fϑ, which is counted by MSLCFinder, the module first inserts it into itself. Suppose
that MSLCFinder reports the size of fϑ as n̂_pacϑ. If fϑ is already in the module, it will
update the estimated flow size with max(n̂_pacϑ, min_heap[fϑ]), where min_heap[fϑ] is
the record of the size of fϑ in the module. Alternatively, determine whether the module’s
number of elements is fewer than k of the top-k. If the number of elements is fewer than k
of the top-k, insert it into the module. Otherwise, judge whether the new count of the flow
is greater than the current minimum in the module. If so, eliminate the minimum in the
module, and insert the ID information of the new flow and its estimated count. To query
top-k flows, we simply report the k̂ IDs of the k flows in the module. If the measurement
task wants to obtain the estimated flow size of these k flows, we let the module record and
output this information; otherwise, it is not necessary to know. The FlowID of top-k flows
is the top target of MSLCFinder.

Analysis: (1) The time complexity: when a new element comes, it needs O(log k)
time to query or update the min-heap in the flow label recording module of MSLCFinder.
Therefore, the total time complexity is O(n log k). (2) The space complexity: the flow label
recording module requires O(k) space.

Appl. Sci. 2023, 13, 575 15 of 29

Algorithm 1: Flow label recording algorithm.

1 Function Record(Flow.ID, new_cnt):
2 if Flow.ID ∈ Module then
3 Flow.ID.cnt← new_cnt;
4 else if module.elements.number < k then
5 Insert Flow.ID;
6 Flow.ID.cnt← new_cnt;
7 end
8 else
9 if new_cnt > Modsule.min_cnt then

10 Delete Module.min_cnt;
11 Delete Module.min_cnt.FlowID;
12 Insert Flow.ID;
13 Flow.ID.cnt← new_cnt;
14 end
15 end

3.4. Description of Top-k Measurement Algorithm Based on MSLCFinder

Figure 7 shows the overall algorithm process, divided into two stages: measurement
and FlowID recording. Low-proportion sampling reduces the probability of mouse flows
being counted by MSLCFinder. It reduces operations, saves the MSLCFinder space, and
reduces the probability of hash collisions. The overall algorithm can only access the memory
in four cases: no access, one read zero write, one read one write, and two read one write,
which meets the requirement of this problem that one read one write is the average.

Hash

Query in

Finder

Sampling
Update

Finder

Packet

Departure

Packet Arrival

Calculate next

sampling probability

N Y

Update sampling

probability

FlowID

Recording Module

top-k List

Exceed counter
threshold?

ID Non-exist

FlowID

Be Sampled

N
o
n

-S
a
m

p
le

d

ID Exist

Figure 7. The structure of the flow label recording module in MSLCFinder.

Initialization: Let MSLCFinder be MF[m, n], where m is the total number of counters
in the MSLCFinder structure, and n is the number of bits in each counter. In addition, set
the count in each counter in MSLCFinder as C, and the initial value of C is 0. Let the initial
threshold of the top-k flow measurement task be θ. Choose a uth-level sampling method
for flow sampling.

The minimum error that can be tolerated for the measurement task is δ. Calculate the
number d of hash functions in MSLCFinder according to Formula (11).

d = dln(1/δ)e (11)

Then, calculate the initial sampling probability p1 with Formulas (1) and (2).

Appl. Sci. 2023, 13, 575 16 of 29

To more simply describe the process of this algorithm, we choose the 3rd-level sam-
pling methods. That is, u = 3. For each incoming packet Pacϑ belonging to flow fϕ, these
are the following two steps for each insertion:

Step 1: The fϕ will be inserted in the MSLCFinder, shown in lines 3–24 in Algorithm 2.
Hash the identity of the stream corresponding to each arriving packet Pacϑ, and the FlowID
of fϕ is the hash results h1(fϕ), h2(fϕ), ..., hd(fϕ). If the count C is already equal to 2n, do
not insert anything into the counter and forward the packet. Otherwise, determine the
size of C and the three thresholds, and use the sampling probability corresponding to the
threshold interval to perform the flow sampling. If the Pacϑ has been sampled, the counter
will be plus one, and the flag is true, which means that the count of fϕ is updated.

Step 2: We use the MSLCFinder flow label recording module to record the FlowID of
fϕ, which is shown in lines 25–27 in Algorithm 2. We use the minimal MF[hashd(fϕ)].C to
record into the module. The record in the module is timely updated by the function Record.

Algorithm 2: Top-k measurement algorithm based on MSLCFinder.
Input: A packet Pacϑ belong to flow fϕ, Sampling threshold θ, Counter length n

1 new_cnt← 0;
2 u← 3;
3 p1 ← 1

θ−[2n−2−2] ;

4 for j ∈ 1→ d do
5 C ← MF[hashj(fi)].C;
6 Flow.ID ← MF[hashj(fi)].ID;
7 if C == 2n then
8 pass;
9 end

10 if C < 2n−2 then
11 Flow Sampling as p1;
12 end
13 if 2n−2 ≤ C < 2n−1 then
14 Flow Sampling as p2;
15 end
16 if 2n−1 ≤ C < 2n then
17 Flow Sampling as p3;
18 end
19 if Pacϑ Be Sampled then
20 MF[hashj(fi)].C ++;
21 Flag← True;
22 else
23 pass;
24 end
25 end
26 if Flag == True then
27 new_cnt← min(MF[hash1(fi)].C, MF[hash2(fi)].C, ..., MF[hashd(fϕ)].C);
28 cnt← Record(Flow.ID, new_cnt);
29 end

Query top-k flows: After the measurement task, the MSLCFinder will report the infor-
mation of k flows recorded in the flow label recording module, such as network quintuple.

Analysis: Our method’s time complexity and space complexity are as follows: (1) The
time complexity is O(n log k). When a new element comes, it needs O(1) time to query in
the lightweight counting module of MSLCFinder. Then, it needs O(log k) time to query or
update the min-heap in the flow label recording module of MSLCFinder. Therefore, the
total time complexity is O(n log k). (2) The space complexity: the lightweight counting
module needs a w× d two-dimensional array, and the flow label recording module requires

Appl. Sci. 2023, 13, 575 17 of 29

O(k) space, but k is usually tiny, and the space can be negligible. Thus, the total space
complexity is O(wd).

4. Evaluation

In this section, we display the experimental settings, including platform, datasets,
and development environment. In addition, the experimental procedure and results are
demonstrated after them. The depth analysis of experimental results is also displayed.

4.1. Experimental Settings and Datasets

Platform: We use a laptop with 4-core CPUs (8 threads, Intel Core i7-4940MX @3.10 GHz)
and 32 GB total system memory to complete the development and implementation of the
algorithmin this paper. We also use it to complete our experiments.

Dataset: We use three datasets to perform the experiment. All information of datasets
is shown in Table 2.

(1) CAIDA-2018 [44]: The first dataset is a CAIDA Anonymized Internet Trace
from 2018, made of anonymized IP packets. It has 27,121,713 packets belonging to
1,000,551 flows.

(2) CERNET-30 and CERNET-60 [45]: The second and third datasets comprise IP
packets captured from the CERNET Backbone Node of East China and North China at
different dates. For ethical reasons, we anonymized the IP information to a certain extent.
The collection time of CERNET-30 is 30 minutes in the peak period, and the data size is
about 35 GB, including 17,596,416 packets, about 11,941,109 flows in total. The collection
time of CERNET-60 is one hour in the off-peak period, and the data size is about 46 GB,
including 32,674,187 packets, with a total of about 16,082,037 flows.

Table 2. Information about the experimental datasets.

Name Number of Packets Number of Flows

CAIDA-2018 27,121,713 1,000,551
CERNET-30 17,596,416 11,941,109
CERNET-60 32,674,187 16,082,037

As shown in Table 3, we roughly compared the flow size distribution of the three
datasets, selected the samples with the first 100 flow lengths, and analyzed the maximum,
minimum, variance, and standard deviation of the flow size distribution. Our work aims
to illustrate the influence of flow size distribution on our proposed method.

Table 3. The flow size distribution information about the experimental datasets.

Name Maximum Minimum Variance Standard
Deviation

CAIDA-2018 460,200 15,982 ≈3.99× 109 ≈6.29× 104

CERNET-30 1,334,369 6568 ≈1.77× 1010 ≈1.32× 105

CERNET-60 537,966 12,808 ≈1.16× 1010 ≈1.07× 105

Implementation: The implementation of MSLCFinder is performed in C++. For the
hash function, we use the improved IPSX [15] algorithm to support different measurement
task requirements. To achieve at least 95% precision, we can calculate d = 3 by Formula (11).
The total space cost is fixed as 220bit = 1 Mbit = 128 KB, and the counter size is fixed
as n = 8 bit. There are two selected measurement tasks. One is to output the source IP
and destination IP of top-k flows, and the other is to output the quintuple information of
top-k flows.

The total number of counters is determined by the total memory space (1 Mbit), the
k-value of the top-k task, and the size of the measure required for the final maintenance

Appl. Sci. 2023, 13, 575 18 of 29

of the top-k flow information table. To improve the versatility in different measurement
tasks, we can also use half of the total memory to support the measurement function of
MSLCFinder, and the other half of the memory to record and maintain the top-k flow
information required in measurement tasks. However, if the available memory is abundant,
it is unnecessary to provide half of the memory resources for recording and maintaining
the top-k flow information.

4.2. Evaluation Metrics

Precision: Precision is defined as k′
k . k′ means that the k′ flows are real top-k flows.

Average relative error (ARE): ARE is defined as 1
|Φ| ∑ fi∈Φ

|n̂i−ni |
ni

, where Φ is estimated
set of top-k flows, n̂i is the estimated size of flow fi, and ni is the real size of flow fi. ARE
evaluates the error rate of the estimated flow size reported by the algorithm.

4.3. Experiments on Precision

The application scenario of our method is resource-constrained, so we use fixed-size
memory and fixed-length counter in each experiment. In order to ensure the fairness of the
comparative experiment, we choose to change only one specific factor rather than other
factors in the experiment. We conduct the experiments for varying k and fixed θ or varying
θ and fixed k on the CAIDA-2018, CERNET-30, and CERNET-60 datasets. We carry out
two groups of experiments, using different measures as the measurement standard. One
uses the five-tuple information as the flow ID, and the other uses the source/destination IP
address (SrcIP/DstIP) pair as the flow ID.

In each group of experiments, we aim to carry out the measurement tasks of top-
50, top-100, top-200, top-500, and top-1000 for three datasets, respectively, to verify the
effect of this experimental scheme. The threshold θ is 74, 84, 94, 104, 114, 124, 174, and
200, respectively.

4.3.1. Result of Precision vs. Quintuple of Flows

In this subsection, we use the quintuple information to identify the flow fi. We
summarize the experimental results and show them in Figure 8.

CAIDA-2018 with quintuple of flows: The result of the CAIDA-2018 dataset is shown
in Figure 8a,b. In the experiment, with the gradual increase of the initial sampling thresh-
old θ, the precision rate will increase and then decrease because the number of packets
contained in the stream in the dataset is uneven. Secondly, with the increase of θ, the
sampling probability will gradually decrease, and the randomness will increase, which
will bring some errors to the measurement. In the experimental results, when θ = 84∼104,
the precision rate of 94%∼97% can be obtained, which shows that our method can achieve
top-k measurement tasks with certain requirements under resource constraints and can
ensure high precision.

CERNET-30 with quintuple of flows: The result of the CERNET-30 dataset is shown in
Figure 8c,d. In the experiment, with the gradual increase of the initial sampling threshold
θ, the precision rate is kept at about 95% on average. Secondly, with the increase of θ, the
sampling probability will gradually decrease, and the randomness will increase, which
will bring some errors to the measurement. In the experimental results, the measurement
precision of top-50/100/200 is as expected, and when θ = 84∼114, the precision rate can
be 96%∼98.5%, which shows that our method can achieve the top-k measurement task
with certain requirements under the condition of limited resources, and can ensure high
precision. However, due to the limitation of the experimental dataset, the performance of
the top-500 task was average, and the overall precision rate was 91.8%, which was related
to the actual situation that the dataset was in line with the measurement threshold θ.

CERNET-60 with quintuple of flows: The result of the CERNET-60 dataset is shown in
Figure 8e,f. In the experiment, with the gradual increase of the initial sampling threshold
θ, the precision rate is kept at about 95% on average. Secondly, with the increase of θ, the
sampling probability will gradually decrease, and the randomness will increase, which

Appl. Sci. 2023, 13, 575 19 of 29

will bring some errors to the measurement. In the experimental results, the measurement
precision of top-50/100/200/500 is excellent, and the precision rate of 95%∼98% can
be obtained when θ = 84∼104, which shows that our method can achieve the top-k
measurement task with certain requirements under the condition of limited resources, and
can ensure high precision.

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 74 θ = 84 θ = 94 θ = 104

P
re

c
is

io
n

CAIDA-2018 Measured by quintuple of flow

top-50 top-100 top-200 top-500 top-1000

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 114 θ = 124 θ = 174 θ = 200

P
re

c
is

io
n

CAIDA-2018 Measured by quintuple of flow

top-50 top-100 top-200 top-500 top-1000

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 74 θ = 84 θ = 94 θ = 104

P
re

c
is

io
n

CERNET-60 Measured by quintuple of flow

top-50 top-100 top-200 top-500 top-1000

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 114 θ = 124 θ = 174 θ = 200

P
re

c
is

io
n

CERNET-60 Measured by quintuple of flow

top-50 top-100 top-200 top-500 top-1000

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 74 θ = 84 θ = 94 θ = 104

P
re

c
is

io
n

CERNET-30 Measured by quintuple of flow

top-50 top-100 top-200 top-500 top-1000

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 114 θ = 124 θ = 174 θ = 200

P
re

c
is

io
n

CERNET-30 Measured by quintuple of flow

top-50 top-100 top-200 top-500 top-1000

(a) Precision in CAIDA-2018
θ= 74/84/94/104

(c) Precision in CERNET-30
θ= 74/84/94/104

(e) Precision in CERNET-60
θ= 74/84/94/104

(b) Precision in CAIDA-2018
θ= 114/124/174/200

(d) Precision in CERNET-30
θ= 114/124/174/200

(f) Precision in CERNET-60
θ= 114/124/174/200

Figure 8. Experiments on precision vs. quintuple of flows. (a) Precision in CAIDA-2018. (b) Precision
in CAIDA-2018. (c) Precision in CERNET-30. (d) Precision in CERNET-30. (e) Precision in CERNET-60.
(f) Precision in CERNET-60.

4.3.2. The Precision vs. SrcIP/DstIP

In this subsection, we use the SrcIP/DstIP information to identify the flow fi. We
summarize the experimental results and show them in Figure 9.

CAIDA-2018 with SrcIP/DstIP: The result of the CAIDA-2018 dataset is shown in
Figure 9a,b. The experimental effect is equivalent to that of the previous five-tuple FlowID,
and the precision of top-100 and top-200 is still about 95%. In the experiment of top-500,
its precision is better than the former. When θ = 84∼104, the precision rate of 92%∼97%

Appl. Sci. 2023, 13, 575 20 of 29

can be obtained, which shows that our method can achieve top-k measurement tasks with
certain requirements under resource constraints and can ensure high precision.

CERNET-30 with SrcIP/DstIP: The result of the CERNET-30 dataset is shown in
Figure 9c,d. Due to different measures, the effect of this group of experiments is better
than that of the previous group of experiments, especially in the top-500 experiment; its
precision is 93%. When θ = 94∼124, the precision rate can be 97%∼98%, especially in
the top-50/100/200 task. However, due to the limitation of the experimental dataset, the
performance of the top-500 task was average, and the overall precision rate was 91.8%,
which was related to the actual situation that the dataset was in line with the measurement
threshold θ.

(a) Precision in CAIDA-2018
θ= 74/84/94/104

(c) Precision in CERNET-30
θ= 74/84/94/104

(e) Precision in CERNET-60
θ= 74/84/94/104

(b) Precision in CAIDA-2018
θ= 114/124/174/200

(d) Precision in CERNET-30
θ= 114/124/174/200

(f) Precision in CERNET-60
θ= 114/124/174/200

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 74 θ = 84 θ = 94 θ = 104

P
re

c
is

io
n

CAIDA-2018 Measured by SrcIP+DstIP

top-50 top-100 top-200 top-500 top-1000

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 114 θ = 124 θ = 174 θ = 200

P
re

c
is

io
n

CAIDA-2018 Measured by SrcIP+DstIP

top-50 top-100 top-200 top-500 top-1000

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 74 θ = 84 θ = 94 θ = 104

P
re

c
is

io
n

CERNET-60 Measured by SrcIP+DstIP

top-50 top-100 top-200 top-500 top-1000

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 114 θ = 124 θ = 174 θ = 200

P
re

c
is

io
n

CERNET-60 Measured by SrcIP+DstIP

top-50 top-100 top-200 top-500 top-1000

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 74 θ = 84 θ = 94 θ = 104

P
re

c
is

io
n

CERNET-30 Measured by SrcIP+DstIP

top-50 top-100 top-200 top-500 top-1000

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

θ = 114 θ = 124 θ = 174 θ = 200

P
re

c
is

io
n

CERNET-30 Measured by SrcIP+DstIP

top-50 top-100 top-200 top-500 top-1000

Figure 9. Experiments on precision vs. SrcIP/DstIP. (a) Precision in CAIDA-2018. (b) Precision in
CAIDA-2018. (c) Precision in CERNET-30. (d) Precision in CERNET-30. (e) Precision in CERNET-60.
(f) Precision in CERNET-60.

CERNET-60 with SrcIP/DstIP: The result of the CERNET-60 dataset is shown in
Figure 9e,f. The measurement precision of top-50/100/200/500 is excellent, and the preci-
sion rate of 97%∼99% can be obtained when θ = 74∼174, which shows that our method
can achieve the top-k measurement task with certain requirements under the condition of
limited resources, and can ensure high precision.

Appl. Sci. 2023, 13, 575 21 of 29

4.3.3. The ARE Results

In order to make the results in the figure more intuitive, we performed an exponential
operation (lg ARE) on the ordinate axis. All the results are shown in Figure 10. The average
relative error is an important index to evaluate the simulation effect of the model. Because
the method in this paper is based on the sampling strategy, which is different from the
count-all strategy, there must be errors in sampling. Through this indicator, we can evaluate
the reliability of our method.

(d) CAIDA-2018 (e) CERNET-30 (f) CERNET-60

(a) CAIDA-2018 (b) CERNET-30 (c) CERNET-60

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
θ = 74 θ = 84 θ = 94 θ = 104 θ = 114 θ = 124 θ = 174 θ = 200

lo
g

1
0
A

R
E

CAIDA-2018 Measured by quintuple of flow
log10ARE

top-50 top-100 top-200 top-500 -1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
θ = 74 θ = 84 θ = 94 θ = 104 θ = 114 θ = 124 θ = 174 θ = 200

lo
g

1
0
A

R
E

CERNET-30 Measured by quintuple of flow
log10ARE

top-50 top-100 top-200 top-500 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4
θ = 74 θ = 84 θ = 94 θ = 104 θ = 114 θ = 124 θ = 174 θ = 200

lo
g

1
0
A

R
E

CERNET-60 Measured by quintuple of flow
log10ARE

top-50 top-100 top-200 top-500

-1.5

-1

-0.5

0

0.5

1

1.5

2
θ = 74 θ = 84 θ = 94 θ = 104 θ = 114 θ = 124 θ = 174 θ = 200

lo
g

1
0
A

R
E

CAIDA-2018 Measured by SrcIP+DstIP
log10ARE

top-50 top-100 top-200 top-500 -1.5

-1

-0.5

0

0.5

1

1.5

2
θ = 74 θ = 84 θ = 94 θ = 104 θ = 114 θ = 124 θ = 174 θ = 200

lo
g

1
0
A

R
E

CERNET-30 Measured by SrcIP+DstIP
log10ARE

top-50 top-100 top-200 top-500 -1

-0.5

0

0.5

1

1.5

2
θ = 74 θ = 84 θ = 94 θ = 104 θ = 114 θ = 124 θ = 174 θ = 200

lo
g

1
0
A

R
E

CERNET-60 Measured by SrcIP+DstIP
log10ARE

top-50 top-100 top-200 top-500

Figure 10. The ARE results of the evaluation. (a) The ARE results in CAIDA 2018 by quintuple of
flows. (b) The ARE results in CERNET-30 by quintuple of flows. (c) tThe ARE results in CERNET-60
by quintuple of flows. (d) The ARE results in CAIDA 2018 by IP pairs. (e) The ARE results in
CERNET-30 by IP pairs. (f) The ARE results in CERNET-60 by IP pairs.

Result of ARE vs. Quintuple of Flows: As shown in Figure 10a,b,c, for the CAIDA-
2018 dataset in the measurement of quintuple of flow, we find that the ARE of MSLCFinder
is less than 1. It shows that the difference between the predicted results obtained by our
method and the precision results is slight. Although the task of top-500 made it challenging
for this method to approach the limit under the condition of limited hardware resources,
its ARE can still be less than 1. By the way, the performance of the CERNET-30 and
CERNET-60 datasets is similar. There is a difference in the case of top-500. Due to the
limited computing resources, the ARE is higher than 1. Nevertheless, the indicator of ARE
is not very high. It still shows that the measurement results obtained by our method in this
group of experiments are reliable.

Result of ARE vs. SrcIP/DstIP: As shown in Figure 10d,e,f, for all datasets, the ARE is
acceptable. Since this measure is composed of IP address pairs, from the actual proportion,
the proper top-k size is much larger than the flow size in the case of the quintuple, and the
distribution is no longer extremely skewed. Therefore, although ARE is less than 1, it is not
as good as the quintuple experiment. The reason for this problem is that the counter size is
fixed. If the counter is complete, but the measurement task is not finished, although the
flow is recorded as top-k, there will be a large gap between the estimated value and the
actual value. In future work, based on this research, we can balance the compression of
counting, i.e., to improve the precision of the estimation of the number of elephant flows.

Appl. Sci. 2023, 13, 575 22 of 29

4.4. Contribution of Key Technique

In order to verify the contribution of the key technique, which is the uth-level multi-
sampling module, we additionally develop a comparison version of MSLCFinder. In this
version, we remove the multi-sampling module and use only 8-bit counters to perform
top-k measurement tasks on three datasets; specifically in Figure 11, we can intuitively
see the gap and the importance of the uth-level multi-sampling module. Even in the case
of the top-100 and top-200 with excellent results in the previous experiment, the finder
that loses the sampling function will misjudge the mouse flows by a large margin. As the
counter size of MSLCFinder is only n bits, it will be unable to cope with the measurement
task of millions of flows without the multi-sampling module. If a bit counter with a long
length is used, it will violate the original intention of the method proposed in this paper:
to implement a top-k measurement task with a resource-limited environment. It will be
similar to existing methods.

(a) Precision in Top-100 (b) Precision in Top-200 (c) Precision in Top-1000

42.50%

94.50%

17.50%

98.50%

17.50%

98%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Non-Sampling With uth-level Sampling

P
re

c
is

io
n

top-200 in Three Datasets
CAIDA-2018 CERNET-30 CERNET-60

61.40%

94.70%

47.50%

79.50%

23.60%

88%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Non-Sampling With uth-level Sampling

P
re

c
is

io
n

top-1000 in Three Datasets

CAIDA-2018 CERNET-30 CERNET-60

42.00%

97.00%

11.00%

96.00%

16.00%

98%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Non-Sampling With uth-level Sampling

P
re

c
is

io
n

top-100 in Three Datasets

CAIDA-2018 CERNET-30 CERNET-60

Figure 11. Experiments verifying contribution of key technique. (a) Precision in top-100. (b) Precision
in top-200. (c) Precision in top-1000.

4.5. Comparison with Existing Research Methods

In this subsection, we deploy the five usual methods in the existing research for the
three datasets used in our previous evaluation to complete the comparative evaluations.
We verify the feasibility and effectiveness of the method proposed in this paper in the
previous evaluation. Notwithstanding, we prefer to verify the advantages of our proposed
method based on MSLCFinder in the top-k measurement task.

4.5.1. Implementation

We choose five related methods, including HeavyKeeper [7], lossy counting [10],
SpaceSaving [11], CSS [12], and count–min sketch [13]. We use C++ to complete the
implementation of these methods. We determine the number of buckets w SpaceSaving,
lossy counting, and CSS by the hardware resource (such as memory size) and the k of top-k.
For HeavyKeeper and count–min sketch, the number of hash functions is 3, the heap size
is k, and the width of each hash space is also determined by the hardware resource (such
as memory size). We also choose to use the improved IPSX [15] algorithm for the hash
function. The measure we choose is the quintuple information to identify the flow fi.

In addition, we directly refer to the design and related parameters mentioned in [7] for
HeavyKeeper implementation. The fingerprint field and the counter field of HeavyKeeper
are both 16 bits long. For count–min sketch in our implementation, the counter is 32 bits
long, equivalent to directly using the integer type in C++.

We set the memory size to be 1/4 Mbit, 1/2 Mbit, and 1 Mbit, and the varying k we set
to 50, 100, 200, 500, and 1000. As with the previous evaluation methods, based on the idea
of controlled experiments, we select an equal size of memory and use five related methods
and MSLCFinder for experiments to complete the top-k measurement tasks with different k
values. Additionally, in all the experimental results, the MSLCFinder experimental results
are based on the multiple selections of threshold θ and the optimal results obtained after
multiple experiments under the premise of keeping the memory size and k unchanged.

Appl. Sci. 2023, 13, 575 23 of 29

4.5.2. Precision vs. Three Datasets Using 1/4Mbit

Figure 12 shows the precision results of the top-k measurement experiments for three
datasets using six methods when the memory size is 1/4 Mbit.

(a) CERNET30 with 1/4Mbit (b) CERNET60 with 1/4Mbit (c) CAIDA2018 with 1/4Mbit

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

top-50 top-100 top-200 top-500 top-1000

P
re

c
is

io
n

CERNET-30 with 1/4Mbit

MSLCFinder HeavyKeeper

CM-Sketch LossyCounting

spacesaving CSS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

top-50 top-100 top-200 top-500 top-1000

P
re

c
is

io
n

CERNET-60 with 1/4Mbit

MSLCFinder HeavyKeeper

CM-Sketch LossyCounting

spacesaving CSS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

top-50 top-100 top-200 top-500 top-1000

P
re

c
is

io
n

CAIDA-2018 with 1/4Mbit

MSLCFinder HeavyKeeper

CM-Sketch LossyCounting

spacesaving CSS

Figure 12. Experiments on precision vs. six methods of three datasets with 1/4 Mbit. (a) CERNET-30
with 1/4 Mbit. (b) CERNET-60 with 1/4 Mbit. (c) CAIDA-2018 with 1/4 Mbit.

Due to the memory limitation of 1/4 Mbit, HeavyKeeper is not competent for this
experiment’s top-1000 measurement task of three datasets. This is mainly due to the lack of
counters that can participate in the measurement.

For the CERNET-30 dataset, our method performs well in five measurement tasks,
especially in evaluating top-50 to top-200, which can achieve a precision of about 90%.
Although our method is slightly less accurate than HeavyKeeper in the top-200 and top-
500 experiments, the overall effect is comparable to HeavyKeeper. On the other hand,
compared with the other four methods, our method has a very intuitive advantage in 1/4
Mbit memory space. For the other two datasets, our method has better advantages.

For the top-1000 measurement task, the information maintenance of 1000 stream IDs
requires at least 104,000 bits, equivalent to 39.7% of the total memory in this group of
experiments. Therefore, resources supporting various methods to complete the top-1000
measurement task are incredibly scarce. Nevertheless, our method can still achieve a
precision of about 20%; especially in the CAIDA-2018 dataset, our method reached 30.1%.
Moreover, they are better than the other four methods.

4.5.3. Precision vs. Three Datasets Using 1/2Mbit

Figure 13 shows the precision results of the top-k measurement experiments for three
datasets using six methods when the memory size is 1/2 Mbit.

Compared with the group of experiments in Section 4.5.2, the memory of this group
is doubled. Under the memory size of 1/2 Mbit, the six methods have corresponding
experimental results.

In the top-50/top-100/top-200 experiments, our method well matched experimental
results of HeavyKeeper for the CERNET-30 dataset. Although our method is slightly
inferior to HeavyKeeper in the top-200 experiment, the gap is tiny. It is superior to the other
four methods and has better results than HeavyKeeper in CERNET-60 and CAIDA-2018
datasets. Moreover, our method achieved more than 95% precision in the three datasets.
For the top-500 experiment, our method still has promising results on three datasets. It
shows that our method can be further competent for the top-k measurement task in the
case of a lack of resources.

Appl. Sci. 2023, 13, 575 24 of 29

(a) CERNET30 with 1/2Mbit (b) CERNET60 with 1/2Mbit (c) CAIDA2018 with 1/2Mbit

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

top-50 top-100 top-200 top-500 top-1000

P
re

c
is

io
n

CERNET-30 with 1/2Mbit

MSLCFinder HeavyKeeper

CM-Sketch LossyCounting

spacesaving CSS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

top-50 top-100 top-200 top-500 top-1000

P
re

c
is

io
n

CERNET-60 with 1/2Mbit

MSLCFinder HeavyKeeper

CM-Sketch LossyCounting

spacesaving CSS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

top-50 top-100 top-200 top-500 top-1000

P
re

c
is

io
n

CAIDA-2018 with 1/2Mbit

MSLCFinder HeavyKeeper

CM-Sketch LossyCounting

spacesaving CSS

Figure 13. Experiments on precision vs. six methods of three datasets with 1/2Mbit. (a) CERNET-30
with 1/2 Mbit. (b) CERNET-60 with 1/2 Mbit. (c) CAIDA-2018 with 1/2 Mbit.

Although the memory is doubled, the measurement task of the top-1000 is still chal-
lenging. HeavyKeeper can output the measurement results in this group of experiments,
but our method still has good advantages and is better than the other four methods. In
addition, compared with the results in Section 4.5.2, 1/4 Mbit of memory is added to our
method, which makes our method nearly four times more accurate in the measurement task
of top-1000. Other methods involved in the comparison did not have such a good increase.

4.5.4. Precision vs. Three Datasets Using 1Mbit

Figure 14 shows the precision results of the top-k measurement experiments for three
datasets using six methods when the memory size is 1Mbit.

(a) CERNET30 with 1Mbit (b) CERNET60 with 1Mbit (c) CAIDA2018 with 1Mbit

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

top-50 top-100 top-200 top-500 top-1000

P
re

c
is

io
n

CERNET-30 with 1Mbit

MSLCFinder HeavyKeeper

CM-Sketch LossyCounting

spacesaving CSS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

top-50 top-100 top-200 top-500 top-1000

P
re

c
is

io
n

CERNET-60 with 1Mbit

MSLCFinder HeavyKeeper

CM-Sketch LossyCounting

spacesaving CSS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

top-50 top-100 top-200 top-500 top-1000

P
re

c
is

io
n

CAIDA-2018 with 1Mbit

MSLCFinder HeavyKeeper

CM-Sketch LossyCounting

spacesaving CSS

Figure 14. Experiments on precision vs. six methods of three datasets with 1 Mbit. (a) CERNET-30
with 1 Mbit. (b) CERNET-60 with 1 Mbit. (c) CAIDA-2018 with 1 Mbit.

Compared with the first two groups of experiments, the 1Mbit memory is relatively
abundant for the six methods involved in the experiment, especially in the top-50/top-
100/top-200 measurement tasks. Although the six methods achieved similar precision,
our method is still similar to HeavyKeeper in the three datasets and better than the other
four methods.

For top-500 and top-1000, our method also has better results than the other four meth-
ods. Compared with HeavyKeeper, our method still outputs excellent measurement results.

4.6. Analysis and Discussion
4.6.1. Why is Finding Top-1000 Less Effective?

The results of top-1000 tasks are shown in Figures 8, 9, and 12–14, and the results of
top-1000 are not optimistic. We think there are several reasons for this:

(1) Due to the strict limitation of 1 Mbit space, when the top-1000 measurement task
is executed in this scheme, the size of the information storage table used to maintain the
flow information will also increase with the increase of k. As mentioned earlier, when we

Appl. Sci. 2023, 13, 575 25 of 29

use 1/4 Mbit memory, the information of the top-1000 will consume at least 40% of the
memory. It will reduce the number of finder counters used for measurement tasks and
affect the measurement results. Similarly, the five methods involved in the comparative
experiment will also make the number of counters involved in the measurement scarce. In
addition, for MSLCFinder, it is not ruled out that the number of elephant flows that meet
the measurement threshold θ in the dataset involved in the measurement is not 1000.

(2) The flow size distribution in the high-speed network is always highly skewed [46].
We summarized the flow size distribution based on a quintuple of three datasets in Table 3.
Although they are not standard heavy-tailed distributions, they are still highly skewed,
especially CERNET-30. Compared with the CERNET-30 dataset, the flow size distribution
of the CAIDA-2018 public dataset is relatively uniform, with small differences, and there
are relatively many streams with large flow sizes. In the experimental results, the top-1000
precision obtained from the CAIDA-2018 dataset is better than the other two. Although the
precision is somewhat low, this does not affect the effectiveness of our method. The effect
will be significantly improved if we increase the total memory size.

4.6.2. The Necessity of Using Different Measures to Complete the Experiment

We use different FlowID to show MSLCFinder’s universality in network traffic header
fields, i.e., MSLCFinder can be deployed on different header fields or other measures.
Furthermore, the experimental results show that the performances of MSLCFinder on
datasets with different header fields are similar.

In the same dataset, the distribution calculated by using a quintuple as the flow ID
will be different to that when using an IP address pair. It is easy to understand that the
communication between the same IP can be multiple ports and protocols.

When using an IP address pair as the flow ID, it is equivalent to using only the
characteristics of the IP layer and generalizing the specific information contained in the
transport layer. On the other hand, if the mouse flows between different ports of many
different protocols are generated by the same pair of IP addresses, the pair of IP addresses
is likely to become a member of the top-k flow when measured by the IP address pair.

Therefore, it is necessary to use different measures to verify the effectiveness of
our method in the same dataset. We designed the experiment to show MSLCFinder’s
universality in terms of network traffic header fields.

4.6.3. The Energy Cost and Complexity of MSLCFinder

The method based on MSLCFinder works in a resource-constrained environment,
including the CPU, memory, power, and storage. Our method benefits from the advantages
of the data flow algorithm; MSLCFinder requires small memory. Due to the real-time,
continuous, and unbounded characteristics of network flows in high-speed links, the
algorithms for processing data flows can only perform one calculation on the network
flows and can only use limited computing and memory resources.

Therefore, when designing the network data flow method, it is necessary to meet
the following requirements: (1) the space used by the algorithm must be small enough;
(2) processing and updating must be simple and rapid; (3) the query must be accurate. In
other words, our method is based on the development and design of the network data flow
method, which fundamentally limits energy consumption and time and space complexity.
In addition, the total time complexity of our method is O(n log k), and the total space
complexity is O(wd).

4.6.4. The Threshold θ

In the experiment, the selection of threshold θ has a guiding influence on the experi-
mental effect. Because the size of the flow is not known prior to measurement, the selected
threshold θ will have different effects on different flows; however, the selection of threshold
θ is also one of the critical parameters of the method proposed in this paper.

Appl. Sci. 2023, 13, 575 26 of 29

Unlike the static selection of security parameters of NetFlow [5], our goal is not to set
sampling probability in the worst case to ensure that the network equipment can operate
continuously under an adverse traffic environment. Our proposed scheme focuses on
whether or not to use limited memory resources and limited counter units to complete
the measurement of top-k elephant flow. We aim to not pursue a minor error between the
estimated value and the actual value. In addition, our method has a fixed initial threshold
θ to determine the sampling probability, but our sampling probability is recalculated with
several counting thresholds in the counter.

In the open world, the flow distribution of unit measurement time period is different;
only the mouse flow smaller than the decision condition likely exists in the entire measure-
ment cycle, resulting in a decline in the effect of the top-k elephant flows. Therefore, in
future work, we will improve the sampling threshold’s adaptive generation and increase
our scheme’s applicability in the complex and changeable real network environment.

5. Conclusions

Finding the top-k elephant flows is critical for network traffic measurement, especially
with resource constraints. As the network traffic overgrows, finding top-k flows with limited
resources is challenging. In order to overcome the mutual restriction of hardware resources,
massive data, and measurement precision, we adopt a novel strategy called count-with-
uth-level-sampling. Moreover, we propose a novel core component named Multi-Sampled
Lightweight Counting Finder (MSLCFinder) to achieve a measurement scheme for finding
top-k flows based on hardware resource-constrained environments. The MSLCFinder has
three primary modules: a lightweight counting module, a multi-sampling module, and
a flow label recording module. Three modules complement and constrain each other to
maximize the optimization of the MSLCFinder in the measurement task. The essential
technique of MSLCFinder is that it uses a uth-level multi-sampling module to relieve
the storage pressure of the MSLCFinder, and also reduces the possibility of the mouse
flows being recorded by the flow label recording module. Our evaluation confirms that
MSLCFinder can achieve more than 97% precision. With MSLCFinder that we proposed,
we can effectively find top-k elephant flows with less memory overhead and counters under
resource constraints.

Although the MSLCFinder can achieve good measurement results with small hardware
resources, experiments show that this overhead is still high, especially in the flow label
recording module. Therefore, in future research, we have the following issues that need to
be further studied and optimized: (1) We first need to improve the efficiency of MSLCFinder,
including updating the technology and methods at this stage, reconstructing core record
data structure instead of min-heap to achieve a faster, more efficient, and more concise
recording algorithm. (2) Our count-with-uth-level-sampling strategy can sample each flow
for many continuous arriving flows in the network before the finder counts. Compared
with the count-all strategy, it achieves a certain degree of filtering effect on mouse flows, but
the accuracy of the strategy in filtering mouse flows needs further research and discussion.
Therefore, we need to introduce effective filtering strategies in future work to improve
the utilization of memory resources and the accuracy of identifying top-k elephant flows.
(3) The initial sampling threshold θ has a decisive influence on the global measurement
results. Determining how to generate sampling threshold θ based on flow adaptation or
self-learning is the focus of our future research. (4) This paper only focuses on identifying
elephant flow in network measurement, ignoring the identification of mouse flow. In the
actual network environment, the traffic information of many attacks (such as DDoS attacks)
in the network is composed of mouse flows. Based on the distribution characteristics of
network traffic, it can be seen that many mouse flows in high-speed network links cannot
be accurately monitored in real time. Therefore, in future work, we will continue to study
how to identify mouse flow accurately. (5) In future research, we plan to design a machine
learning or integrated learning method to adaptively calculate the initial sampling threshold
for per-flow according to the traffic distribution in the current network environment to be

Appl. Sci. 2023, 13, 575 27 of 29

tested to replace the current single global threshold scheme. (6) We will continue developing
parallel hardware versions of MSLCFinder to achieve more efficient measurement results.

Author Contributions: Conceptualization, X.D. and G.C.; methodology, X.D. and R.Z.; software,
X.D. and Z.Y.; validation, X.D. and G.C.; formal analysis, X.D. and Z.Y.; investigation, X.D. and
R.Z.; resources, Z.Y. and R.Z.; data processing, Z.Y. and X.D.; writing—original draft preparation,
X.D.; writing—review and editing, X.D. and Y.Y.; visualization, X.D.; supervision, G.C.; project
administration, G.C.; funding acquisition, G.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Joint Key Program of the National Natural Science
Foundation of China under grant number U22B2025 and the General Program of the National
Natural Science Foundation of China under grant number 62172093.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Three anonymized datasets in this paper are published at: https:
//github.com/ccie44899/MSCLFinder.git (accessed on 28 November 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. We Are Social and Hootsuite. Digital 2022 October Global Statshot. Available online: https://datareportal.com/reports/digital-

2022-october-global-statshot (accessed on 25 November 2022).
2. Google. Encrypted Traffic in All Google Products and Services; Google AI China Center: Beijing, China, 2022.
3. Yuan, Y.; Wang, W.; Wang, Y.; Adhatarao, S.S.; Ren, B.; Zheng, K.; Fu, X. VSiM: Improving QoE Fairness for Video Streaming in

Mobile Environments. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communications, London,
UK, 2–5 May 2022; pp. 1309–1318.

4. Zhou, A.P.; Cheng, G.G.X. High-Speed network traffic measurement method. Ruan Jian Xue Bao/J. Softw. 2014, 25, 135–153.
(In Chinese)

5. Estan, C.; Keys, K.; Moore, D.; Varghese, G. Building a better NetFlow. ACM Sigcomm Comput. Commun. Rev. 2004, 34, 245–256.
[CrossRef]

6. Estan, C.; Varghese, G. New directions in traffic measurement and accounting. In Proceedings of the ACM SIGCOMM 2002
Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Pittsburgh, PA, USA,
19–23 August 2002; pp. 323–336.

7. Yang, T.; Zhang, H.; Li, J.; Gong, J.; Uhlig, S.; Chen, S.; Li, X. HeavyKeeper: An Accurate Algorithm for Finding Top-k Elephant
Flows. IEEE/ACM Trans. Netw. 2019, 27, 1845–1858. [CrossRef]

8. Demaine, E.D.; López-Ortiz, A.; Munro, J.I. Frequency estimation of internet packet streams with limited space. In Proceedings
of the European Symposium on Algorithms, Rome, Italy, 17–21 September 2002; pp. 348–360.

9. Wang, W.P.; Li, J.Z.; Zhang, D.D.; Guo, L.J. Efficient algorithm for mining approximate frequent item over data streams. Ruan Jian
Xue Bao (J. Softw.) 2007, 18, 884–892. [CrossRef]

10. Manku, G.S.; Motwani, R. Approximate frequency counts over data streams. Proc. VLDB Endow. 2012, 5, 1699. [CrossRef]
11. Metwally, A.; Agrawal, D.; Abbadi, A.E. Efficient computation of frequent and top-k elements in data streams. In Proceedings of

the International Conference on Database Theory, Edinburgh, UK, 5–7 January 2005; pp. 398–412.
12. Ran, B.B.; Einziger, G.; Friedman, R.; Kassner, Y. Heavy hitters in streams and sliding windows. In Proceedings of the IEEE

Infocom—The IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016.
13. Cormode, G.; Muthukrishnan, S. An improved data stream summary: The count-min sketch and its applications. J. Algorithms

2005, 55, 58–75. [CrossRef]
14. Charikar, M.; Chen, K.; Farach-Colton, M. Finding frequent items in data streams. In Proceedings of the International Colloquium

on Automata, Languages, and Programming, Malaga, Spain, 8–13 July 2002; pp. 693–703.
15. Guang, C.; Jian, G.; Wei, D.; Jialing, X.U. A Hash Algorithm for IP Flow Measurement. Ruan Jian Xue Bao/J. Softw. 2005,

16, 652–658. (In Chinese)
16. Zseby, T. Sampling and filtering techniques for IP packet selection. RFC5475 2009; pp. 1–46. Available online: https:

//www.rfc-editor.org/rfc/rfc5475 (accessed on 28 November 2022).

https://github.com/ccie44899/MSCLFinder.git
https://github.com/ccie44899/MSCLFinder.git
https://datareportal.com/reports/digital-2022-october-global-statshot
https://datareportal.com/reports/digital-2022-october-global-statshot
http://doi.org/10.1145/1030194.1015495
http://dx.doi.org/10.1109/TNET.2019.2933868
http://dx.doi.org/10.1360/jos180884
http://dx.doi.org/10.14778/2367502.2367508
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
https://www.rfc-editor.org/rfc/rfc5475
https://www.rfc-editor.org/rfc/rfc5475

Appl. Sci. 2023, 13, 575 28 of 29

17. Jain, R. A Comparison of Hashing Schemes for Address Lookup in Computer Networks. IEEE Trans. Commun. 2002, 40, 1570–1573.
[CrossRef]

18. Wegman, C. Universal classes of hash functions. J. Comput. Syst. Sci. 1979, 18, 143–154.
19. Cheng, G.; Gong, J.; Ding, W. Distributed sampling measurement model in a high speed network based on statistical analysis.

Chin. J. Comput.-Chin. Ed. 2003, 26, 1266–1273.
20. Duffield, N.G.; Grossglauser, M. Trajectory sampling for direct traffic observation. IEEE/ACM Trans. Netw. 2001, 9, 280–292.

[CrossRef]
21. He, G.; Hou, J.C. On sampling self-similar Internet traffic. Comput. Netw. 2006, 50, 2919–2936. [CrossRef]
22. Raspall, F. Efficient packet sampling for accurate traffic measurements. Comput. Netw. 2012, 56, 1667–1684. [CrossRef]
23. Du, Y.; Huang, H.; Sun, Y.E.; Chen, S.; Gao, G. Self-Adaptive Sampling for Network Traffic Measurement. In Proceedings of the

IEEE INFOCOM 2021—IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021.
24. Sanjuaas-Cuxart, J.; Barlet-Ros, P.; Duffield, N.; Kompella, R. Cuckoo sampling: Robust collection of flow aggregates under a

fixed memory budget. In Proceedings of the IEEE Infocom, Orlando, FL, USA, 25–30 March 2012; pp. 2751–2755.
25. Hu, C.; Liu, B.; Wang, S.; Tian, J.; Cheng, Y.; Chen, Y. ANLS: Adaptive Non-Linear Sampling Method for Accurate Flow Size

Measurement. IEEE Trans. Commun. 2012, 60, 789–798. [CrossRef]
26. Ma, X.; Hu, C.; Jiang, J.; Jing, W. S3: Smart selection of sampling function for passive network measurement. In Proceedings of

the Local Computer Networks, Bonn, Germany, 4–7 October 2011.
27. Estan, C.; Varghese, G.; Fisk, M. Bitmap Algorithms for Counting Active Flows on High-Speed Links. IEEE/ACM Trans. Netw.

2006, 14, 925–937. [CrossRef]
28. Tarkoma, S.; Rothenberg, C.E.; Lagerspetz, E. Theory and Practice of Bloom Filters for Distributed Systems. IEEE Commun. Surv.

Tutor. 2012, 14, 131–155. [CrossRef]
29. Wang, P.; Guan, X.; Zhao, J.; Tao, J.; Qin, T. A New Sketch Method for Measuring Host Connection Degree Distribution. Inf.

Forensics Secur. 2014, 9, 948–960. [CrossRef]
30. Gryaditskaya, Y.; Sypesteyn, M.; Hoftijzer, J.W.; Pont, S.C.; Durand, F.; Bousseau, A. OpenSketch: a richly-annotated dataset of

product design sketches. ACM Trans. Graph. 2019, 38, 232–241. [CrossRef]
31. Huang, Q.; Xin, J.; Lee, P.; Li, R.; Gong, Z. SketchVisor: Robust Network Measurement for Software Packet Processing. In

Proceedings of the Acm Sigcomm Conference, Los Angeles, CA, USA, 21–25 August 2017.
32. Huang, Q.; Lee, P.; Bao, Y. Sketchlearn: Relieving user burdens in approximate measurement with automated statistical inference.

In Proceedings of the the 2018 Conference of the ACM Special Interest Group, Budapest, Hungary, 20–25 August 2018.
33. Liu, Z.; Ran, B.B.; Einziger, G.; Kassner, Y.; Sekar, V. Nitrosketch: robust and general sketch-based monitoring in software switches.

In Proceedings of the the ACM Special Interest Group, Beijing, China, 19–23 August 2019.
34. Jiang, J.; Fu, F.; Yang, T.; Cui, B. SketchML: Accelerating distributed machine learning with data sketches. In Proceedings of the

2018 International Conference on Management of Data, Houston, TX, USA, 10–15 June 2018; pp. 1269–1284.
35. Zhou, Z.; Zhang, D.; Hong, X. RL-Sketch: Scaling Reinforcement Learning for Adaptive and Automate Anomaly Detection in

Network Data Streams. In Proceedings of the 2019 IEEE 44th Conference on Local Computer Networks (LCN), Osnabrueck,
Germany, 14–17 October 2019; pp. 340–347.

36. Fu, Y.; Li, D.; Shen, S.; Zhang, Y.; Chen, K. Locality-sensitive sketching for resilient network flow monitoring. arXiv 2019,
arXiv:1905.03113.

37. Cormode, G. Sketch techniques for approximate query processing. Foundations and Trends in Databases; NOW Publishers: Hanover,
MA, USA, 2011; p. 15.

38. Schweller, R.; Gupta, A.; Parsons, E.; Chen, Y. Reversible sketches for efficient and accurate change detection over network
data streams. In Proceedings of the 4th ACM SIGCOMM Internet Measurement Conference (IMC), Taormina Sicily, Italy, 25–27
October 2004; pp. 207–212.

39. Yang, Z.; Tong, Y.; Jie, J.; Cui, B.; Uhlig, S. Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing. In
Proceedings of the the 2018 International Conference, Houston, TX, USA, 10–15 June 2018; pp. 741–756.

40. Tong, Y.; Gong, J.; Zhang, H.; Lei, Z.; Li, X. HeavyGuardian: Separate and Guard Hot Items in Data Streams. In Proceedings of
the the 24th ACM SIGKDD International Conference, London, UK, 19–23 August 2018.

41. Wu, M.; Huang, H.; Sun, Y.E.; Du, Y.; Chen, S.; Gao, G. Activekeeper: An accurate and efficient algorithm for finding top-k
elephant flows. IEEE Commun. Lett. 2021, 25, 2545–2549. [CrossRef]

42. Wang, Y.; Li, D.; Wu, J. FastKeeper: A Fast Algorithm for Identifying Top-k Real-time Large Flows. In Proceedings of the 2021
IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–7.

43. Xiao, Q.; Tang, Z.; Chen, S. Universal online sketch for tracking heavy hitters and estimating moments of data streams. In
Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020;
pp. 974–983.

44. CAIDA. The CAIDA UCSD Anonymized Internet Traces. 2018. Available online: http://www.caida.org/data/overview/
(accessed on 25 November 2022).

http://dx.doi.org/10.1109/26.168785
http://dx.doi.org/10.1109/90.929851
http://dx.doi.org/10.1016/j.comnet.2005.11.009
http://dx.doi.org/10.1016/j.comnet.2011.11.017
http://dx.doi.org/10.1109/TCOMM.2011.112311.100622
http://dx.doi.org/10.1109/TNET.2006.882836
http://dx.doi.org/10.1109/SURV.2011.031611.00024
http://dx.doi.org/10.1109/TIFS.2014.2312544
http://dx.doi.org/10.1145/3355089.3356533
http://dx.doi.org/10.1109/LCOMM.2021.3077902
http://www.caida.org/data/overview/

Appl. Sci. 2023, 13, 575 29 of 29

45. CERNET. CERNET East China and North China Node Network Center. Available online: https://www.njnet6.edu.cn/ (accessed
on 28 November 2022).

46. Li, Z.; Xiao, F.; Wang, S.; Pei, T.; Li, J. Achievable rate maximization for cognitive hybrid satellite-terrestrial networks with
AF-relays. IEEE J. Sel. Areas Commun. 2018, 36, 304–313. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.njnet6.edu.cn/
http://dx.doi.org/10.1109/JSAC.2018.2804018

	Introduction
	Background and Related Work
	Related Backgrounds
	Hash Algorithm
	Network Traffic Sampling Methods
	Network Data Flow Methods

	Review of Related Research
	Network Measurement Technology Based on Sketch
	Top-k Flows Finding Technology

	Top-k Measurement Scheme Based on MSLCFinder
	Problem Definition
	Measurement Scheme Overview
	Multi-Sampling Lightweight Counting Finder
	Rationale
	The Lightweight Counting Module
	The Multi-Sampling Module
	The Flow Label Recording Module

	Description of Top-k Measurement Algorithm Based on MSLCFinder

	Evaluation
	Experimental Settings and Datasets
	Evaluation Metrics
	Experiments on Precision
	Result of Precision vs. Quintuple of Flows
	The Precision vs. SrcIP/DstIP
	The ARE Results

	Contribution of Key Technique
	Comparison with Existing Research Methods
	Implementation
	Precision vs. Three Datasets Using 1/4Mbit
	Precision vs. Three Datasets Using 1/2Mbit
	Precision vs. Three Datasets Using 1Mbit

	Analysis and Discussion
	Why is Finding Top-1000 Less Effective?
	The Necessity of Using Different Measures to Complete the Experiment
	The Energy Cost and Complexity of MSLCFinder
	The Threshold

	Conclusions
	References

