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Abstract: Hepatitis C is an infectious disease which is caused by the Hepatitis C virus (HCV) and the
virus primarily affects the liver. Based on the publicly available dataset used in this paper the idea is
to develop a mathematical equation that could be used to detect HCV patients with high accuracy
based on the enzymes, proteins, and biomarker values contained in a patient’s blood sample using
genetic programming symbolic classification (GPSC) algorithm. Not only that, but the idea was also to
obtain a mathematical equation that could detect the progress of the disease i.e., Hepatitis C, Fibrosis,
and Cirrhosis using the GPSC algorithm. Since the original dataset was imbalanced (a large number
of healthy patients versus a small number of Hepatitis C/Fibrosis/Cirrhosis patients) the dataset
was balanced using random oversampling, SMOTE, ADSYN, and Borderline SMOTE methods.
The symbolic expressions (mathematical equations) were obtained using the GPSC algorithm using a
rigorous process of 5-fold cross-validation with a random hyperparameter search method which had
to be developed for this problem. To evaluate each symbolic expression generated with GPSC the
mean and standard deviation values of accuracy (ACC), the area under the receiver operating charac-
teristic curve (AUC), precision, recall, and F1-score were obtained. In a simple binary case (healthy
vs. Hepatitis C patients) the best case was achieved with a dataset balanced with the Borderline
SMOTE method. The results are ACC ± SD(ACC), AUC ± SD(AUC), Precision± SD(Precision),
Recall ± SD(Recall), and F1− score± SD(F1− score) equal to 0.99± 5.8× 10−3, 0.99± 5.4× 10−3,
0.998± 1.3× 10−3, 0.98± 1.19× 10−3, and 0.99± 5.39× 10−3, respectively. For the multiclass problem,
OneVsRestClassifer was used in combination with GPSC 5-fold cross-validation and random hyper-
parameter search, and the best case was achieved with a dataset balanced with the Borderline SMOTE
method. To evaluate symbolic expressions obtained in this case previous evaluation metric methods
were used however for AUC, Precision, Recall, and F1− score the macro values were computed since
this method calculates metrics for each label, and find their unweighted mean value. In multiclass
case the ACC ± SD(ACC), AUCmacro ± SD(AUC), Precisionmacro ± SD(Precision), Recallmacro ±
SD(Recall), and F1− scoremacro ± SD(F1− score) are equal to 0.934± 9× 10−3, 0.987± 1.8× 10−3,
0.942± 6.9× 10−3, 0.934± 7.84× 10−3 and 0.932± 8.4× 10−3, respectively. For the best binary and
multi-class cases, the symbolic expressions are shown and evaluated on the original dataset.

Keywords: ADASYN; borderline SMOTE; genetic programming-symbolic classifier; Hepatitis C;
fibrosis; cirrhosis; SMOTE

1. Introduction

According to [1], hepatitis C is the liver tissue inflammation that is caused by the hepati-
tis C virus (HCV). The symptoms of those infected with HCV may be yellow discoloration
of skin and eyes, poor appetite, vomiting, tiredness, abdominal pain, and diarrhea [2].
Generally, the main cause of hepatitis is hepatoviruses A, B, C, D, and E. There are other
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viruses that can cause hepatitis i.e., cytomegalovirus, Epstein-Barr virus, and yellow fever
virus. The other causes of hepatitis, besides viruses, include heavy alcohol use, medications,
toxins, autoimmune diseases, etc. The spread of hepatoviruses is different for different
types. Hepatitis A and E are spread by contaminated food and water. Hepatitis B is sexually
transmitted or passed during pregnancy or childbirth from mother to child. Hepatitis C is
spread through infected blood (needle sharing by intravenous drug users) while hepatitis
D can only infect people with hepatitis B.

HCV belongs to the genus of the Flaviviridae family called Hepacivirus. The virus
particle consists of a lipid membrane envelope that is 55–65 [nm] in diameter. The glyco-
proteins E1 and E2 which take part in viral attachment and cell intrusion are attached to
the envelope. Inside the envelope, the icosahedral core with a diameter of 33 to 40 [nm] is
located. Inside the core, the RNA material is located. According to [3,4], HCV can cause
not only hepatitis C but also liver cancer and lymphomas.

HCV can cause liver fibrosis and chirrosis. Liver fibrosis is the excessive accumulation
of extracellular matrix proteins that occurs in most types of chronic liver diseases. HCV is
the main cause of liver fibrosis however, alcohol abuse, and nonalcoholic steatohepatitis
(NASH) are also the main causes. Liver cirrhosis (end-stage liver disease) [5] is the impaired
liver function that is caused by the formation of scar tissue known as fibrosis due to damage
caused by liver disease. Hepatitis C is diagnosed using two blood tests i.e., the antibody
test and the PCR test. The antibody blood test is used to determine if a suspected patient
has been exposed to the hepatitis C virus which is achieved by testing for the presence of
antibodies to the virus. The antibodies are produced by the patient immune system and are
used to fight germs. Since it takes time for the patient’s immune system to produce these
antibodies this test will not show a positive reaction for some months after initial exposure
to the hepatitis C virus. If the antibody test is positive it indicates that the patient was
exposed to HCV at some stage and this does not mean that the patient is currently infected.
In order to detect if the patient is currently infected the PCR test has to be utilized. The PCR
test requires a blood sample and the test will check if the virus is still present by detecting
if the virus is reproducing inside the patient’s body. The positive PCR test indicates that
the patient’s body has not fought off the virus and that the patient is currently infected.

So after a positive PCR test, it can be concluded that the patient has an active hepatitis
C infection and additional blood and ultrasound test performed by specialists are required
to check if the patient’s liver has been damaged. The additional tests are blood tests and
ultrasound scans. The blood test is used to detect liver damage or inflammation. On the
other hand, ultrasound scans are used to test the patient’s liver stiffness since stiffness
suggests that the liver is scarred.

Over the last decade, various artificial intelligence (AI) algorithms have been used
to detect Hepatitis C or Hepatitis C stage. The AI system was proposed in [6] that uses
Gaussian support vector machines learning algorithm to predict the hepatitis C staging.
The results of the conducted investigation with the Gaussian SVM learning algorithm
achieved an accuracy of 97.9%. The K-Nearest Neighbors (KNN) and random forest have
been used in [7] for the prediction of HCV in the Egyptian patient’s dataset. The highest
accuracy with KNN and random forest achieved are 51.05% and 54.56% in multi and
binary class labels respectively. The neural networks, naive Bayes, decision tree, SVM,
random forest, and Bayesian network have been used in [8] for early prediction of cirrhotic
patients based on the Egyptian dataset. Among all these ML algorithms the Bayesian
network algorithm achieved the highest performance (AUC = 74.8% and accuracy 68.9%).
The Intelligence Hepatitis C Stage System (IHSDS) with ANN was used to predict the stage
of hepatitis C in [9]. The model achieved 94.9% classification accuracy. The decision tree,
genetic algorithm (GA) particle swarm optimization, and multi-linear regression models
were developed and used in [10] for predictions of advanced fibrosis by combining the
serum biomarkers and clinical information to develop the classification models. The results
of the study showed that machine learning (ML) algorithms were able to predict advanced
fibrosis in patients with AUCROC in the range 0.73–0.76 and with an accuracy of 66.3–84.4%,
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respectively. The CatBoost, XGBoost, RFGini, LightGBM, Random forest (RF), and KNN
have been used in [11] to detect Hepatitis C patients The result showed that of all ML modes
highest accuracy (0.9593), recall (0.6667), precision (1), and F1-score (0.7867) was achieved
with XGBoost algorithm. In [12] the supervised learning (decision tree, logistic regression,
KNN, Extreme Gradient Boosting, Gradient Boosting Machine, Gaussian Naive Bayes, RF,
Gradient Boosting, SVM), and unsupervised learning (K-means, Hierarchical clustering,
DBMSCN, Gaussian Mixture, and K-means) models were used to detect the Hepatitis C
virus from a dataset containing laboratory data of Hepatitis C patients and blood donors.
The results showed that Logistic Regression and Gaussian Mixture models achieved the
best accuracy score which is equivalent to 0.943 and the mutual information score of 0.9771,
respectively. The Hepatitis C patient’s outcome was investigated in [13] using classification
techniques such as Logistic Regression, Decision Tree, SVM, and Naive Bayes. The results
of this investigation showed that the highest accuracy (87.17%) was achieved using SVM.
The ML models (Logistic Regression, Naive Bayes, Decision Tree, Random Forest, Extreme
Gradient Boosting, kNN, SVM, ANN, and Ensemble methods) were built in [14] to predict
the extent of fibrosis in patients with chronic Hepatitis C. Among all ML algorithms,
the XGB achieved the highest accuracy (0.84), specificity (0.95), and specificity (0.73).

There is some notable research in which AI and ML algorithms have been used in the
detection of liver cancer. In [15] the authors have used the support vector machines method
for identifying the liver cancer tumor for ultrasound images. The results showed that
using this method a classification accuracy of 96.72% was achieved. The ANN and logistic
regression have been used in [16] to develop a model for predicting the development of
liver cancer within 6 years of diagnosis with type II diabetes. The best results were achieved
with ANN in terms of sensitivity (75.7%), specificity (75.5%), and the area under the receiver
operating characteristic curve (87.3%). The ANN and classification of regression tree have
been used in [17] on a dataset collected from the cancer registration database in Northern
Taiwan medical center from 2004 to 2008 to predict the survival of patients with liver
cancer. The best results were achieved with ANN in terms of accuracy (87%), sensitivity
(88%), specificity (87%), and area under the receiver operating characteristic curve (91.5%).
The ensemble method has been developed and used in [18] to predict liver cancer in patients
based on DNA sequence. Initially, the Naive Bayes, (GLM), kNN, SVM and C5.0 Decision
Tree have been considered as elements of the ensemble method however, the best results
were achieved with the ensemble method consisting of C5.0 Decision Tree, kNN, and SVM.
With this ensemble method the achieved accuracy, sensitivity, and specificity in prediction
of the liver cancer are 88.4%, 88.4%, and 91.6%, respectively.
As seen from the previous literature overview various ML algorithms have been utilized
to detect hepatitis C patients with relatively high classification accuracy. The problem
that arises from the majority of utilized ML models is the inability to transform these
models into simple mathematical equations which could be easily used for the detection of
Hepatitis C patients with high classification accuracy. Generally, mathematical equations
require fewer computational resources when compared to the entire ML models.

The novelty of this research is to show how to apply the genetic programming-
symbolic classifier (GPSC) on a publicly available dataset [19] to obtain symbolic expres-
sions which could detect the Hepatitis C patients and/or to detect the stage of Hepatitis
C (hepatitis C/Fibrosis/cirrhosis) with high classification accuracy. Due to a large imbal-
ance between class samples in the original dataset (a large number of healthy patients
and a small number of Hepatitis C, Fibrosis), the novelty is to show how using dataset
balancing methods can balance the dataset and in the end influence the classification ac-
curacy of obtained symbolic expression. Since the original dataset is highly imbalanced
only balanced variations of the original dataset will be used in this research and the best
symbolic expressions will be evaluated on the original dataset. To summarize the novelty
of this paper is to show the procedure of how symbolic expressions can be obtained using
the GPSC algorithm and unbalanced dataset for the detection of Hepatitis C patients us-
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ing the parameters (enzymes, proteins, and biomarker values) of their blood samples as
input variables.

The GPSC is a variant of GP alongside symbolic regression and it is a method that
evolves the randomly generated initial population that is not fit for solving a particular
problem and making them fit with the application of crossover and mutation from gen-
eration to generation. Generally, GP is classified as an evolutionary algorithm, however,
the process of obtaining the symbolic expression is similar to the supervised learning
method i.e., the GP requires a dataset with defined input variables and targeted output
variable from which symbolic expression is obtained. From the previous literature overview
and the idea/novelty of this paper the following questions arise:

• is it possible to obtain symbolic expressions that can detect Hepatitis C and the progress
of the disease (Hepatitis C/fibrosis/cirrhosis) from the parameters (enzymes, proteins,
and biomarker values) of blood samples as input variables with high classification
accuracy using GPSC algorithm?

• due to the high imbalance between class samples in the original dataset is it possible
to apply different balancing methods (oversampling) to achieve a balance between
class samples and used these datasets to obtain symbolic expressions using the GPSC
algorithm with high classification accuracy?

This paper consists of the following sections Materials and Methods, Results, Discus-
sion, and Conclusion. In the Materials and Methods section, the research methodology is
described as well as the dataset, oversampling techniques, GPSC, random hyperparameter
search, one versus rest classifier, evaluation metrics and methodology and computational
resources used in this research. In the Results section, the results obtained in the case of
binary and multiclass classification are presented. Then the best symbolic expressions are
shown in both cases with classification accuracy shown when these symbolic expressions
are applied to the original dataset. In the Discussion section, the previously shown results
are discussed and finally, in the Conclusions section, the conclusions are given based on
the conducted investigation as an answer to hypotheses derived in this section.

2. Materials and Methods

In this section, the research methodology, dataset, oversampling techniques, GPSC,
random hyperaparamters search method with 5-fold cross-validation, evaluation metrics,
and methodology, and computation resources used in this research, are described.

2.1. Research Methodology

In this research, the oversampling methods have been applied due to the fact that the
original dataset has a large imbalance between healthy patients and patients with Hepatitis
C. The methods that were used to oversample the minority class/classes are:

• Random Oversampling,
• Synthetic Minority Oversampling Technique (SMOTE),
• Adaptive Synthetic (ADASYN), and
• Borderline Synthetic Minority Oversampling Techniques (BorderlineSMOTE).

Each dataset variation is then splitted on train and test dataset in 70/30% ratio where
train dataset is used in GPSC with random hyperparameters search and 5 fold cross
validation process. The entire schematic view of research methodology process is shown
in Figure 1.

As seen from Figure 1 there are two types of investigations conducted in this paper i.e.,
binary case and multiclass case. In the binary case, the hepatitis C, fibrosis, and cirrhosis
patients are labeled with class number 1 and healthy with class number 0. Due to the large
imbalance between class samples (a large number of class 0 samples vs. a small number
of class 1 samples), the balancing methods (random oversampling, ADASYN, SMOTE,
Borderline SMOTE) were applied which resulted in 4 balanced datasets. These datasets
were used in GPSC with random hyperparameter search and 5-fold cross-validation to
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obtain symbolic expressions and the best of them in terms of the highest mean and standard
deviation values of accuracy (ACC), the area under the receiver operating characteristic
curve (AUC), precision, recall, and F1-score are shown.

Figure 1. The schematic view of research methodology process.

In the multiclass classification problem shown in Figure 1, the class was labeled as
0-Healthy, 1—Hepatitis C, 2—Fibrosis, and 3—Cirrhosis. The aforementioned balancing
methods were used to increase the number of samples for classes 1, 2, and 3. The 4 balanced
datasets were used in GPSC with random hyperparameters search method and a 5-fold
cross-validation process to obtain symbolic expressions. However, since this is a multiclass
case the OneVsRestClassifer was utilized alongside GPSC. So the final output of the GPSC
with OneVsRestClassifier will be the system of 4 symbolic expressions where the first
symbolic expression is used to detect healthy patients, the second for Hepatitis C patients,
the third for patients with fibrosis, and the fourth equation for detection of cirrhosis patients.
To evaluate these symbolic expressions the mean and standard deviation values of ACC,
AUCmacro, Precisionmacro, and F1− scoremacro were used. The macro option was used since
it calculates metrics for each label and finds their unweighted mean which is ideal for
balanced datasets.

After the best symbolic expressions were obtained in each case the final evaluation
was performed on the original imbalanced dataset to see if these symbolic expressions can
detect Hepatitis C patients on real data.

2.2. Dataset Description

As already stated this investigation is based on a publicly available dataset which can
be downloaded from Kaggle [19]. The original dataset consists of 14 variables (columns)
and 615 samples (observations) of healthy patients (“blood donors”) and Hepatitis C
patients (categories: hepatitis C, fibrosis, cirrhosis). Each sample in the dataset has the
following features Unnamed-0, Category, Age, Sex, ALP, ALB, ALT, AST, CHE, BIL, CHOL,
CREA, GGT, and PROT. However, Unnamed-0 represents the patient ID./No. so it was
omitted from further investigation. In the original dataset for some samples, the features
were missing so these samples were omitted from the dataset. After cleaning the dataset
the total number of samples is 589. In the following paragraphs, a short description of each
parameter and transformation to numeric format will be given.

The age parameter represents the age of the patient whose blood sample is collected.
The sex variable has two values “m” for males and “f” for females which are converted to
0 for “m” and 1 for “f”. The conversion to numeric format was done so that the dataset
could be used in the GPSC algorithm. The statistical information about “age” and “sex”
parameters are given in Table 1.
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The alkaline phosphate enzyme (ALP) [20] is a liver enzyme that is primarily found
in the liver, although a smaller quantity can be found in bones. The level of ALP is
measured through the ALP test and the normal range is considered from 44 to 147 [IU/L]
(international units per liter), although some organizations recommend a range of 30 to 120
[IU/L] [21]. Very high values of ALP in the blood may indicate liver disease (cholestasis
of pregnancy, liver cirrhosis, hepatitis, biliary atresia/stricture/obstruction due to cancer,
mononucleosis) or bone disorders (bone metastasis, osteitis deformans, osteogenic sarcoma,
healing fractures, Hyperparathyrodisim, hyperthyroidism, and osteomalacia). In case the
ALP is way below the previously mentioned ranges it can indicate conditions such as
malnutrition, zinc deficiency, magnesium deficiency, hypothyroidism, and Wilson disease.

Albumin (ALB) is a protein that is developed in the liver and the quantity in the
patient’s blood is measured using an albumin blood test [22]. The normal ALB range in the
blood is considered from 3.4 to 5.3 [g/dL] (34 to 54 [g/L]) [23]. The low levels of ALB in the
blood may indicate infections, and inflamation due to sepsis, inflammatory bowel disease,
kidney disease, cirrhosis, fatty liver disease, liver cancer, or hepatitis (A/B/C). However,
higher values of ALB indicate dehydration and severe diarrhea.

The alanine transaminase (ALT) enzyme is an enzyme that can be found in the liver [24].
According to [25], the normal range of ALT is between 4 and 36 [U/L], although the normal
value range may vary slightly among different laboratories. The increased ALT value may
indicate a sign of liver disease i.e., scarring of the liver (cirrhosis) death of liver tissue,
swollen and inflamed liver (hepatitis), hemochromatosis, fatty liver, liver ischemia, liver
tumor or cancer, mononucleosis, and a swollen and inflamed pancreas.

Cholinesterase (CHE) is an enzyme that helps the proper functioning of the nervous
system [26]. Serum cholinesterase is a blood test that looks at the concentration of two
substances acetylcholinesterase and pseudocholinesterase. Acetylcholinesterase can be
found in nerve tissue and red blood cells while pseudocholinesterase is found in the liver.
The normal pseudocholinesterase values are in the range 8-18 [U/L] or 8-18 [kU/L] [27].
The decreased pseudocholinesterase levels may indicate chronic infection, malnutrition,
heart attack, liver damage, metastasis, and inflammation that accompanies some diseases.

Bilirubin (BIL) is a red/orange compound that occurs in the normal catabolic pathway
that breaks down heme in vertebrates. This process is necessary to clear the waste products
that arise from the destruction of aged or abnormal red blood cells [28]. The normal range of
bilirubin for adults is in the range of 1.2 [mg/dL] [29]. High bilirubin may indicate anemia,
cirrhosis, a reaction to a blood transfusion, Gilbert syndrome, viral hepatitis, reaction to
drugs, alcoholic liver disease, and gallstones.

The cholesterol (CHOL) level is one of the parameters measured in blood samples [30].
All the CHOL has been created in the liver that the patient’s body needs. However,
additional CHOL arrives from foods the patient consumes. The normal level of total CHOL
is less than 200 [mg/dL] (5.17 [mmol/L]). The borderline high level of total CHOL is in
the range of 200–230 [mg/dL] (5.17–6.18 [mmol/L]). All values higher than 240 [mg/dL]
(6.21 [mmol/L]) are considered high total CHOL values [31].

The creatinine (CREA) [32] number obtained from blood sample analysis indicates
how well the patients’ kidneys are working. The normal range of CREA is between 0.7 to
1.3 [mg/dL] for men and 0.6 to 1.1 [mg/dL] for women [33]. The values above predefined
ranges for men and women may indicate a blocked urinary tract, kidney problems (damage,
failure, infection, reduced blood flow), loss of body fluid, and muscle problems.

The gamma-glutamyltransferase (GGT) [34] is an enzyme that is mainly found in
a patient’s liver. By measuring the GGT concentration in a patient’s blood its activity is
being measured. The normal range of GGT in the blood is 5–40 [U/L], according to [35].
Since higher levels of GGT in a blood sample can indicate liver damage/disease the GGT is
used as a diagnostic marker for liver disease. The latent elevations of GGT can be recorded
in patients with chronic viral hepatitis infections which often take 12 months or more
to present.
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The total protein (PROT) [36] is the parameter that represents the total amount of
two classes of proteins found in blood and these are ALB and globulins. The globulins
are a group of proteins in the blood and are made in the liver by the patient’s immune
system. The normal range of PROT is 60 to 83 [g/L] [37]. The higher than normal levels
of PROT may indicate chronic inflammation or infection (HIV, hepatitis B/C), multiple
myeloma, and Waldenstrom disease. However, lower-than-normal levels of PRT may
indicate bleeding, burns, glomerulonephritis, liver disease, malabsorption, malnutrition,
nephrotic syndrome, and protein-losing enteropathy. The initial statistical analysis of the
dataset is shown in Table 1.

Table 1. Results of statistical analysis of the dataset with definition of input and output dataset variables.

Variable
Name

GPSC Variable
Representation

Count Mean Std Range

Age X0

589

47.41766 9.931334 23–77

Sex X1 0.616299 0.4867 0–1

ALB X2 41.62428 5.761794 14.9–82.2

ALP X3 68.12309 25.92107 11.3–416.6

ALT X4 26.57538 20.86312 0.9–325.3

AST X5 33.77284 32.86687 10.6–324

BIL X6 11.01817 17.40657 0.8–209

CHE X7 8.203633 2.191073 1.42–16.41

CHOL X8 5.391341 1.128954 1.43–9.67

CREA X9 81.6691 50.69699 8–1079.1

GGT X10 38.19847 54.30241 4.5–650.9

PROT X11 71.89015 5.348883 44.8–86.5

Category
Binary y 0.095 0.293 0–1

Category
Multivariate

0.196944 0.666439 0-3

The correlation analysis can be used as an initial indicator of how well are variable
correlated. If the variables do not have any correlation with each other it is hardly feasible
to assume that the ML model will be able to establish the correlation between investigated
variables. The correlation can be described as the connection between the input and output
variables. In this case, Pearson’s correlation analysis was used and the correlation value can
be in the range from −1.0 up to 1.0. If the correlation value is equal to −1.0 this means that
if the value of the input variable rises the value of the output variable would drop and vice
versa. In case Pearson’s correlation is equal to 1.0 this means that if the value of the input
variable increases the value of the output variable will also increase. The best correlation
ranges are from −1.0 to −0.5 and from 0.5 to 1.0. The worst correlation range is from −0.5
to 0.5. Possibly the worst correlation value is 0 which means that if the value of the input
variable increases/decreases it will absolutely not have any effect on the output variable
value. The result of Pearson’s correlation analysis performed on the original dataset is
shown in Figure 2.
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Figure 2. The Pearsons correlation heatmap of original dataset variables.

It can be seen from Figure 2 that the highest correlation is achieved between Category
(target variable) and the input variables AST (0.63) and BIL (0.55). However, in this
investigation, all input variables will be used in GPSC to develop symbolic expressions.

As already stated in this paper two different cases were investigated i.e., the binary
and the multi-class problem. Initially, the dataset contains four classes “0—Blood Test”
(renamed to healthy), “1—Hepatitis C”, “2—Fibrosis”, and “3—Cirrhosis”. The classes were
renamed with numbers 0, 1, 2, and 3, respectively. In the case of the binary problem classes,
2 and 3 are joined with class 1. The number of samples per class and for binary/multiclass
problems is shown in Figure 3.

As seen from both subfigures in Figure 3 both cases have under-sampled classes.
In the binary case, Hepatitis C is the under-sampled class while in the multiclass case the
Hepatitis C, Fibrosis, and Cirrhosis class are all undersampled. To show the distribution of
class samples the number of dimensions had to be reduced. The number of input variables
in this investigation is 12 (12-dimensional space) and to visualize all samples for each class
in 2-dimensional space the number of dimensions had to be reduced from 12 to 2-D.
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(a)

(b)

Figure 3. The number of samples per class in binary dataset and multiclass dataset. (a) Binary case;
(b) Multiclass case.

Kernel PCA

The Kernel Principal Component Analysis (Kernel PCA), according to [38] is the
nonlinear form of PCA that achieves non-linear dimensionality reduction through the
use of kernels. In this paper, the Kernel PCA was used to reduce the dataset which has
12 input variables (12-dimensional space), and using the kernel function reduces it to
2-dimensional space. The reason for using Kernel PCA was to graphically show all class
samples in 2-dimensional space and to visualize synthetically generated dataset samples
with the application of random oversampling, SMOTE, BorderlineSMOTE, and ADASYN
oversampling methods. Through trial and error, the best graphical representation was
achieved using the radial basis function (RBF) kernel function. The Kernel PCA method [38]
can be summarized in 4 steps i.e., construct the kernel matrix from the initial dataset,
compute Gram matrix, use the Gram matrix to calculate the vectors ai and using them



Appl. Sci. 2023, 13, 574 10 of 33

compute the kernel principal components. In Figure 4 the results of Kernel PCA applied
on the original binary and multiclass dataset are shown in form of scatter plots with two
kernel principal components (KPCA1, KPCA2).

(a)

(b)

Figure 4. The results of Kernel PCA application on original binary and multiclass datasets. (a) Binary
scatter plot; (b) Multiclass scatter plot.

As seen from Figure 4 the Hepatitis C, fibrosis, and cirrhosis patients overlap with
Healthy patients. One of the reasons why these classes overlap is that some of the blood
parameters of unhealthy patients are the same or in similar range to those of healthy patients.
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2.3. Oversampling Methods

The oversampling methods are used to balance the number of samples of dataset
classes. In the case of the imbalanced dataset with two classes, the class with a lower
number of samples is called the minority class, while the other is called the majority class.
So with the application of oversampling techniques, the idea is to oversample the number
of minority class samples to match the number of samples of the majority class. In the case
of multiple classes, the idea is to oversample the number of samples of minority classes to
match the sample number of the majority class. As already stated in this research Random
Oversampling, SMOTE, ADASYN, and Borderline SMOTE methods have been used to
balance the original dataset.

2.3.1. Random Oversampling

Random oversampling is a naive strategy to generate new samples when compared
to other used methods. In an imbalanced dataset with two classes, the majority class is
a class with a larger number of samples while the minority class is a class with a smaller
number of samples. In this method, the new samples of the minority class are generated by
random sampling with the replacement of the currently available samples. The random
oversampling technique was applied to both datasets i.e., binary and multiclass datasets.
The results of the application of random oversampling to both datasets are shown in
Figure 5. However, it should be noted that for better visualization the Kernel PCA method
was applied after random oversampling of the dataset.

As seen from Figure 5 visually the number of points did not increased. The graphs
are almost identical to the scatter plots shown in previous Figure 4. The main problem
with random oversampling method is that number of samples in undersampled classes
i.e., minority classes are oversampled by randomly choosing and copying the samples
from minority class. However, these are the same samples that already exist in the dataset.
So the number of samples of minority class is matched to majority class but the samples in
the minority class repeat.

(a)

Figure 5. Cont.
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(b)

Figure 5. The results of random oversampling technique application on binary and multiclass
dataset. (a) Binary scatter plot after random oversampling; (b) Multiclass scatter plot after
random oversampling.

2.3.2. SMOTE

The Synthetic Minority Oversampling Technique (SMOTE) is an algorithm which is
used to oversample the minority class or multiple classes by creating synthetic samples
based on real data. The algorithm execution starts by taking a difference between the
sample and its nearest neighbor. Then the difference is multiplied by a random number in
0 to 1 range and added to the sample under consideration. By doing so the random point is
created along the line segment between two specific features.

After application of the SMOTE algorithm the Kernel PCA was applied just for vi-
sualization purposes to get better perspective of synthetically generated samples using
SMOTE algorithm. The binary and multiclass datasets balanced with SMOTE are shown
in Figure 6.

(a)

Figure 6. Cont.



Appl. Sci. 2023, 13, 574 13 of 33

(b)

Figure 6. The results of SMOTE oversampling technique application on binary and multiclass dataset.
(a) SMOTE oversampled Binary Dataset; (b) SMOTE Oversampled Multiclass Dataset.

In Figure 6 the results of SMOTE over-sampling technique to both binary and multi-
class datasets are shown. As seen in the binary case the minority class (Hepatitis-C) is
oversampled. The region of this class is now much larger although both classes overlap.
In the case of the multiclass problem, three minority classes (Hepatitis C, fibrosis, and
cirrhosis) are oversampled. The number of samples is much larger than in binary case and
the overlapping occurs between all 4 classes.

2.3.3. ADASYN

The Adaptive Synthetic (ADASYN) algorithm can be described as an upgraded ver-
sion of SMOTE algorithm. The initial dataset consist of m samples that can generally be
written as:

{xi, yi}, i = 1, . . ., m, (1)

where xi and yi represent an instance in the n-dimensional feature space X and class identity
label associated with xi. The total number of dataset samples is grouped based on classes
where Ss represents the minority class samples and Sl represents the majority class samples.
The conditions for the definition of minority and majority class samples are

• the number of minority samples must be less or equal to the number of majority samples,
• the sum of the minority and majority number of samples must be equal to the total

number of samples.

The algorithm execution begins by inspecting the degree of class imbalance using
the expression:

d =
Ss

Sl
. (2)

The degree of class imbalance can be in the range of 0 to 1. The value of d is compared
with a preset threshold for the maximum tolerated degree of class imbalance ratio. If the
value is below the threshold the ADASYN algorithm will be applied. The next step is to
calculate the number of synthetic data samples that have to be generated in the case of the
minority class. To calculate the number of samples the following expression is utilized:

G = (Sl − Ss)× β, (3)
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In the previous equation, the β is the parameter used to define the balance level after
the generation of synthetic data. The value of this parameter can be in the range from 0 to 1
and if β = 1 this means that the dataset is fully balanced after the generalization process.

The K nearest neighbors are found for each dataset minority class sample based
on Euclidean distance in n-dimensional space and calculate the ratio between the num-
ber of examples δi in the K nearest neighbors of xi that are from majority class using
the expression:

ri =
∆i
K

, i = 1, . . ., Ss. (4)

The range of ri is between 0 and 1. After ri is obtained it has to be normalized so that
the density distribution is equal to 1. The normalization is done using the expression:

r̂i =
ri

∑Ss
i=1 ri

(5)

The next step is to calculate the number of synthetic data samples that have to be
generated for each minority sample:

gi = r̂i × G (6)

Finally, for each minority class data sample generate synthetic data samples in follow-
ing steps in range from 1 to gi.

• Randomly choose one data sample xzi from the K nearest neighbors for data xi
• Generate the synthetic data sample using the expression:

si = xi + (xzi − xi)× λ (7)

where (xzi − xi) is the difference vector in n dimensional space and λ a random number
between 0 and 1.

After the minority classes are oversampled in both cases using the ADASYN method
the kernel PCA was utilized for better dataset visualization. The results are shown
in Figure 7.

(a)

Figure 7. Cont.



Appl. Sci. 2023, 13, 574 15 of 33

(b)

Figure 7. The results of ADASYN oversampling technique application on binary and multiclass
dataset. (a) ADASYN oversampled Binary Dataset; (b) ADASYN Oversampled Multiclass Dataset.

In case of ADASYN (Figure 7) the minority classes in both cases are oversampled.
However, the areas of class samples overlap. This is especially evident in multiclass
case where samples of healthy patients overlap with samples of Hepatitis C and Fibrosis
patients. The samples of cirrhosis patients slightly overlap with healthy, hepatitis C and
fibrosis patients.

2.3.4. BorderlineSMOTE

The Borderline SMOTE is a variant of SMOTE algorithm in which borderline samples
between two classes are detected and used to generate new synthetic samples.

For every sample in the minority class, the m nearest neighbors are calculated to form
the whole training set.

After the minority classes in the binary and multiclass datasets are oversampled
using the Borderline SMOTE method the kernel PCA was used for better visualization
of obtained results. The Binary and Multiclass datasets oversampled with the Broderline
SMOTE method are shown in Figure 8.

(a)

Figure 8. Cont.
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(b)

Figure 8. The results of Borderline SMOTE oversampling technique application on binary and
multiclass dataset. (a) Borderline SMOTE oversampled Binary Dataset; (b) Borderline SMOTE
Oversampled Multiclass Dataset.

As seen from Figure 8 after balancing the dataset with the Borderline SMOTE method
the samples of each class are more condensed. Although the class samples overlap which
is evident in both cases (binary and multiclass).

2.4. Genetic Programming—Symbolic Classifier

The genetic programming symbolic classifier (GPSC) is a method that is used for
obtaining the symbolic expression that can classify the target variable with high accuracy.
The algorithm begins execution by randomly creating the initial population. In GP the
initial population is built using randomly selected elements from the primitive set that
contains variables, constants, and mathematical functions. The input variables are de-
fined based on the number of dataset input variables. The range of constant values is
defined using GP hyperparameter constant_range and types of mathematical functions
are defined with function_set hyperparameter. The mathematical functions used in this
investigation are addition, subtraction, multiplication, division, minimum, maximum, sine,
cosine, tangent, square root, cube root, natural logarithm, logarithm with base 2 and 10,
and absolute value. The method used to create the initial population is ramped half-and-
half which means that half of the initial population is created using full method [39] and
the other half is created using grow method [40]. The term ramped means that the depth of
initial population members is in a specific range. The depth range in GP is defined using
init_depth hyperparameter.

After the initial population is created the members have to be evaluated. Each pop-
ulation member goes through the Sigmoid decision function and the difference between
obtained output and targeted output for each sample is calculated using log_loss metric
a.k.a. fitness function. The evaluated members are then randomly selected and the number
of members that will compete to become the parents of the next generation is defined using
tournament_size hyperparameter. The members that compete in tournament selection are
randomly chosen and compared. The population member that has the lowest value of the
fitness function will become the parent on which genetic operations will be performed to
create offspring for the next generation.

In GPSC a total of four different genetic operations were used i.e., crossover, subtree
mutation, hoist mutation, and point mutation. The crossover requires two winners of
tournament selection and random subtrees on both winners are randomly selected. Then
the random subtree from the second tournament winner is used and it replaces the subtree
on the first tournament winner to form the offspring of the next generation. The subtree



Appl. Sci. 2023, 13, 574 17 of 33

mutation process takes only one winner of tournament selection and a random subtree on
that winner is selected which is replaced with a randomly generated subtree from elements
in the primitive set to form the offspring of the next generation. The hoist mutation takes the
winner of the tournament selection and a random subtree is selected. Inside the randomly
selected subtree, another tree is randomly selected which is then hoisted into the original
tree to form offspring of the next generation. The point mutation also takes the winner
of the tournament selection and randomly selects nodes on that winner. The randomly
selected variables and constant nodes are replaced with elements from the primitive set.
Functions are replaced with randomly selected functions however the arity of the original
function must match the arity of the newly selected function. The crossover and mutation
hyperparameters responsible for genetic operators are p_crossover, p_sutbree_mutation,
p_hoist_mutation, and p_point_mutation. The sum of all operators has to be equal to 1, if
not the population members will enter the next generation without any improvement.

The termination criteria are responsible for stopping the GPSC execution. Otherwise,
the execution will go indefinitely. There are two termination criteria used i.e., stopping
criteria and a maximum number of generations. The stopping criteria hyperparameter is the
predefined lowest value of the fitness function which if achieved by one of the population
member will terminate the execution of the algorithm. The other hyperparameter is the
maximum number of generations and when the GPSC reach this number of generation it
will terminate the execution.

The parsimony coefficient hyperparameter is responsible for preventing the occurrence
of the bloat phenomenon. Sometimes during the GP execution, the size of population
members can grow in size (depth and length) without any benefit to lowering the fitness
value. The parsimony coefficient is a very useful tool since it penalizes large population
members by multiplying the fitness value with the parsimony coefficient. The predefined
ranges of hyperparameters used in binary and multiclass cases are listed in Table 2.

Table 2. The list of predefined ranges of GPSC hyperparameters used in random hyperparameter
search method.

GPSC Hyperparameter
Name Lower Value Upper Value

Population size 100 500
Number of generations 100 250

Tournament Size 10 100
Crossover 0.001 1

Subtree mutation 0.001 1
Hoist Mutation 0.001 1
Point Mutation 0.001 1

Stopping Criteria 1× 10−6 1× 10−3

Maximum samples 0.6 1
Constant Range −10, 000 10,000

Parsimony Coefficient 1× 10−5 1× 10−4

2.5. Random Hyperpameter Grid Search with 5-Fold Cross-Validation

Every investigation conducted in this paper using GPSC was done using a random
hyperparameter search method with 5-fold cross-validation. The random hyper-parameter
search method was developed and values were randomly selected before each GPSC exe-
cution. The predefined ranges of each GPSC hyperparameter from which hyperparameters
were randomly selected in each execution of GPSC are given in Table 2.

The dataset was initially divided into train/test datasets in the ratio of 70:30.
The 70% dataset was used to train the symbolic classifier using 5-fold cross-validation.
After this process is done the evaluation metric values are computed and if the mean values
of ACC, AUC, Precision, Recall, and F1− score are larger than the predefined values the
final process using the classic train test will be performed using the same hyperparameters
as in the case of 5-fold cross-validation. In case the mean values of evaluation metrics of
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5-fold cross-validation are lower than the predefined values the process is repeated again
i.e., the random hyperparameters are again randomly selected. The schematic view of the
random hyperparameter search method with 5-fold cross-validation is shown in Figure 9.

Figure 9. The procedure of performing GPSC with random hyperparameter search with 5-fold
cross-validation.

2.6. One vs. Rest Classifier

In the case of a multi-class problem, the symbolic expression obtained with the GPSC
algorithm must correctly classify to one of the following outputs 0—Healthy, 1—Hepatitis,
2—Fibrosis, and 3—Cirrhosis. To do that the One vs. Rest Classifier was used. However,
when One vs. Rest Classifier was used with GPSC it did not produce the symbolic expres-
sion and there was not any way to access the estimator inside the OneVSRestClassifier
function. To overcome this problem the One vs. Rest Classifier had to be built from scratch
for GPSC to build the system. In the case of 4 different classes, the dataset had to be slightly
modified i.e., in the case of detecting healthy patients from the entire dataset the healthy
class is labeled as 1, and the remaining three (1—Hepatitis, 2—Fibrosis, and 3—Cirrhosis)
as 0. The following dataset modification including the previously described case are:

• 0—Healthy labeled as 1 vs. (1—Hepatitis, 2—Fibrosis, 3—Cirrhosis) labeled as 0,
• 1—Hepatitis labeled as 1 vs. (0-Healthy, 2—Fibrosis, 3—Cirrhosis) labeled as 0,
• 2—Fibrosis labeled as 1 vs. (0-Healthy, 1—Hepatitis, 3—Cirrhosis) labeled as 0, and
• 3—Cirrhosis labeled as 1 vs. (0-Healthy, 2—Fibrosis, 3—Cirrhosis) labeled as 0.

After the best symbolic symbolic expressions are obtained for each case the multi-
class detection system will consist of 4-different symbolic expressions. The result of each
symbolic expression goes through the Sigmoid decision function and the end result is
multiplied by the real class number. For example, the third symbolic expression detects
2—Fibrosis patients from the dataset. The output of the Sigmoid function can be 0 or 1. If it
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is 1 then the system has detected the patient from 2—Fibrosis and to obtain the real dataset
class then the output of the Sigmoid function is multiplied by 2.

2.7. Evaluation Metrics and Methodology

To evaluate each symbolic expression after it was obtained with the GPSC algorithm
is to calculate the output values with symbolic expression by providing the inputs of train
or test dataset. Then these output values go as inputs into the Sigmoid decision function
and the calculated output is compared with real dataset output value to calculate precision,
recall, F1-score, and of course Area under curve (AUC) value.

2.7.1. Evaluation Metrics

In a classification of a specific dataset four basic combinations of actual data categories
and assigned categories, are:

• true positives (TP)—correct positive assignments,
• true negatives (TN)—correct negatives,
• false positives (FP)—incorrect positive assignments,
• false negatives (FN)—incorrect negative assignments.

The accuracy score [41] can be described as a fraction of predictions that ML model
got right. In binary classification the accuracy is calculated using the expression:

ACC =
TP + TN

TP + TN + FP + FN
. (8)

The AUC score [42] computes the area under the receiver operating characteristic
(ROC) curve. By computing the area under the roc curve, the curve information is summa-
rized in one number.

According to [43], the precision is the ability of the classifier not to label as positive a
sample that is negative. The precision score is the ratio between TP and the sum of TP and
FP which can be written as:

Precision =
TP

TP + FP
(9)

Recall [43] is the ability of the classifier to find all the positive samples. The recall is
the ratio between TP and the sum of TP and FN and can be written as:

Recall =
TP

TP + FN
(10)

F1-score [44] is the harmonic mean of the precision and recall and can be written as:

F1− Score =
2 · precision · recall
precision + recall

=
2TP

2TP + FP + FN
(11)

The majority of classification metrics are by default defined for the binary case prob-
lems. To expand these metrics to multiclass problems (Datasets), a few additional tech-
niques have to be introduced. The multiclass problems can be broken down into a sequence
of binary problems using One-vs-One (OVO) or One-vs-Rest (OVR). In this paper, the OVR
was used to obtain a system of symbolic expressions for the detection of patients with HCV
and their stage of the disease. Using OVR the multiclass problem is broken down into a
series of binary tasks for each class in the target variable. In this case, we have 4 classes
(healthy, hepatitis C, fibrosis, and cirrhosis) that are binarized to four tasks using OVR:

• task 1: healthy versus (hepatitis C, fibrosis, cirrhosis),
• task 2: hepatitis C versus (healthy, fibrosis, cirrhosis),
• task 3: fibrosis versus (healthy, hepatitis C, cirrhosis), and
• task 4: cirrhosis versus (healthy, hepatitis C, fibrosis).

To evaluate the obtained symbolic expressions in multiclass case (OneVsRestClassifier)
the same evaluation metrics were used as in previous case however, the macro averaging
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method was used. The macromethod calculates metrics for each label, and find their
unweighted mean.

2.7.2. Evaluation Methodology

The process of evaluating symbolic expressions is the same in the binary case and
in the multiclass case. The process starts by randomly selecting hyperparameter values
of the GPSC algorithm. Then the 5-fold cross-validation is performed on the train part
of the dataset (70% of the dataset). After each fold, the obtained symbolic expressions
were evaluated i.e., the ACC, AUC, precision, recall, and F1-score are determined. After
the process of 5-fold cross-validation is completed the mean values of the aforementioned
metrics are determined. The next step is to apply “termination criteria” which is basically
the condition that states if all evaluation metric values are higher than 0.9 then the final
training/testing process can occur. If one of the metric values is below 0.9 the process is
repeated with the random selection of new hyperparameters.

In the final stage after the obtained evaluation metric values passed the termination
criteria test i.e., all mean values are greater than 0.99 the training and testing are performed
with GPSC. The training process is performed using GPSC on 70% of the dataset with
the same hyperparameters used in the 5-fold cross-validation process. After the training
process is complete the evaluation metric values were obtained on the train and test dataset
and mean values and standard deviation values were obtained.

2.8. Computational Resources

All investigations conducted in this paper were done using a laptop with a 6-core
(12 threads) AMD Ryzen 5 Mobile 5500U processor with 16 GB of DDR4-2666 MHz memory.
The codes that were executed on this hardware configuration were developed in Python
programming language (Python version 3.9).

For balancing the original dataset using oversampling methods (random oversampling,
ADASYN, SMOTE, and Borderline SMOTE) the imblearn library [45] (version 0.9) was
used. To obtain symbolic expressions using GPSC the gplearn library [46] (version 0.4)
was used. However, the random hyperparameter search method as well as the 5-fold
cross-validation for the GPSC algorithm were developed from scratch. The evaluation
metrics from scikit-learn [47] (version 1.13) were integrated into GPSC scripts with random
hyperparameter search with 5-fold cross-validation and used each time the symbolic
expression was obtained.

In multiclass case, the random hyperparameter search method for GPSC with 5-fold
cross-validation was combined with OneVsRest Classifier (scikit-learn library function) to
obtain symbolic expressions which could detect healthily, hepatitis C, fibrosis, and cirrhosis
patients, respectively.

3. Results

In this section results of the conducted investigations are presented. Two types of
investigations were considered i.e., the investigation of using GPSC to obtain the symbolic
expression for detection of Hepatitis C patients and using GPSC to obtain the symbolic ex-
pression for detection of Hepatitis C disease progress (Hepatitis C, Fibrosis, and Cirrhosis).
In the last subsection, the best symbolic expressions of each case are shown and the final
evaluation of these expressions is performed on the original dataset.

3.1. The Symbolic Expression for Detection of Hepatitis C Patients

The Table 3 the list of randomly chosen hyperparameters with which highest values of
classification metrics were achieved on each dataset variation are shown.
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Table 3. The randomly chosen hyperparameters with which the symbolic expressions with highest
classification accuracy were obtained.

Dataset Type

GPSC Hyperparameters (Population_Size,
Number_of_Generations, Tournament_Size, Initial_Depth,

Crossover, Subtree_Muation, Hoist_Mutation, Point_Mutation,
Stopping_Criteria, Max_Samples, Constant_Range,

Parsimony_Coefficient)

Random oversampling
463, 114, 34, (6, 12),

0.16, 0.13, 0.63, 0.069, 1× 10−5,
0.64, (−8792.5, 4309.56), 3.78× 10−5

ADASYN
493, 121, 46, (7, 12),

0.057, 0.39, 0.013, 0.53, 1× 10−5,
0.67, (−4979.57, 4518.54), 5.02× 10−5

SMOTE
428, 183, 25,

(7, 12), 0.2, 0.41, 0.35, 0.029, 0.00084,
0.64, (−7790.44, 1461.71), 9.19× 10−6

Borderline SMOTE
384, 170, 34, (4, 11),

0.1, 0.26, 0.32, 0.31, 4× 10−6,
0.67, (−4520.81, 8562.5), 8.9× 10−5

As seen from Table 3 the population size in all four cases is near the upper bound
i.e., near 500 while the number_of_generations and the tournament_size are near the
lower bound. In all four cases, the hoist and point mutations (values in the range of
0.31–0.69) were dominating over crossover and subtree mutations (values in the range of
0.057–0.26). The stopping criteria values were very small in all cases (range 10−5–10−6)
however, the majority of GPSC executions were stopped due to the maximum number
of generations value was reached not because fitness value dropped below the stopping
criteria value. The max_samples was near the lower bound i.e., 0.6 (Table 2). Although the
parsimony coefficient value was very low in all four cases (range 10−5–10−6) the size of the
population members did grow however this growth contributed to lowering the fitness
measure value so no bloating phenomenon occurred. The graphical representation of the
mean values of accuracy, precision, recall, AUC, and F1-score with standard deviation is
shown in Figure 10.

Due to a small difference between mean and standard deviation values of evaluation
metrics shown in Figure 10 all the results including the required average CPU time required
to obtain these symbolic expressions are listed in Table 4.

From the obtained results shown in Figure 10, it can be seen that all the symbolic
expressions have very high classification accuracy since mean ACC, AUC, Precision, Re-
call and F1-score values are all above 0.98. The highest evaluation metric values were
achieved in the case of SMOTE, followed by ADASYN, BorderlineSMOTE, and Random
Oversampling. To select the best symbolic expression for the binary classification problem
the symbolic expression length was also measured. This length is measured by counting
the number of elements (mathematical functions, and variables) inside the symbolic ex-
pressions. Based on that measure the longest symbolic expression was obtained in the
ADASYN case followed by the Random Oversampling, SMOTE, and BorderlineSMOTE
case. Since the symbolic expression obtained in the case of the BorderlineSMOTE dataset
has slightly lower evaluation metric values than in the SMOTE case the best symbolic
expression in the binary classification problem was chosen to be the symbolic expression
obtained in the case of BorderlineSMOTE due to the small size.
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Figure 10. The mean and standard deviation (error bars) values of ACC, AUC, Precision, Recall for
binary case.
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Table 4. The numerical values of mean ACC, AUC, Precision, Recall, and F1-Score with standard
deviation.
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Random
Oversampling

0.985
±2.46× 10−3

0.9847
±2.16× 10−3

0.978
±2.15× 10−3

0.991
±8.19× 10−3

0.985
±2.95× 10−3 120 91

ADASYN
0.991

±3.58× 10−3
0.99

±3.75× 10−3
0.982

6.58× 10−3 1.0± 0
0.991

±3.3× 10−3 120 112

SMOTE
0.994

±4× 10−3
0.994

±4.11× 10−3
0.989

±7.68× 10−3 1.0± 0
0.994

±3.88× 10−3 120 423

Borderline
SMOTE

0.99
±5.8× 10−3

0.99
±5.4× 10−3

0.998
±1.3× 10−3

0.98
±1.19× 10−3

0.99
±5.39× 10−3 120 60

The CPU time required for one GPSC execution with randomly selected hyperparam-
eters and 5-fold cross-validation can be easily calculated. The process starts with 5-fold
cross-validation on the training part of the dataset with randomly selected hyperparameters.
The average CPU time for training and validation on each split in 5-fold cross-validation is
20 min. Since there are 5 splits in 5-fold cross-validation the total average CPU time is 100
min, If the 5-fold cross-validation passes the termination criteria i.e., the average values
of evaluation metrics are higher than 0.97 then the final training/testing was performed.
The training end of the final evaluation average CPU time is equal to 20 min. So the total
average CPU execution time is equal to 120 min in all cases.

Generally, the major influence on the execution has the dataset size and the combi-
nation of used GPSC hyperparameters. Since the datasets in these investigations are very
small (small number of samples) the combination of hyperparameters had a huge influence
on GPSC execution time. The major problems regarding hyperparameters’ influence on
GPSC execution time can be the combination of large population size with a large num-
ber of generations, and the parsimony coefficient value. A large number of population
members generally takes more time to process in each generation and if a large number of
generations is set more time will be required to execute the GPSC algorithm. The parsimony
coefficient value has a great influence on the evolution process and execution time of the
GPSC algorithm. If the value is extremely small the size of the population members could
grow rapidly which could cause extremely long execution times or execution failure. In this
case, the values of the parsimony coefficient are very low which caused longer execution
times even though the maximum number of generations was small.

3.2. The Symbolic Expressions for Detection of Hepatitis C Stage

The hyperparameters that were used to obtain the symbolic expression for each dataset
variation with the highest classification accuracy are given in Table 5.



Appl. Sci. 2023, 13, 574 24 of 33

Table 5. The list of randomly chosen hyperparameters used to obtain best symbolic expressions for
each dataset variation with high classification accuracy.

Dataset Type

GPSC Hyperparameters (Population_size,
Number_of_Generations, Tournament_Size, Initial_Depth,

Crossover, Subtree_Muation, Hoist_Mutation, Point_Mutation,
Stopping_Criteria, Max_Samples, Constant_Range,

Parsimony_Coefficient)

Random oversampling
297, 95, 85, (6, 8),

0.53, 0.024, 0.186, 0.256, 8× 10−5,
0.99, (−7110.15, 9285.3), 1.63× 10−6

ADASYN
397, 148, 122, (5, 8),

0.53, 0.26, 0.113, 0.085, 5× 10−5,
0.61, (−2905.8, 464.71), 1.17× 10−5

SMOTE
422, 102, 21, (7, 12),

0.45, 0.13, 0.25, 0.16, 8× 10−5,
0.67, (−5675.45, 5426.23), 6.76× 10−6

Borderline SMOTE
541, 119, 14, (7, 8),

0.5, 0.13, 0.19, 0.16, 8× 10−5

0.63, (−3670.2, 4287.4), 6.76× 10−6

As seen form Table 5 the crossover coefficient is the dominating genetic operation
when compared to other three genetic operations. The maximum number of samples used
from training dataset was set to 0.99 in case of random oversampled dataset and set to
around 0.6 for remaining three cases. The parsimony coefficient was pretty low in all
cases however, bloat phenomenon did not occur. Each GPSC execution was terminated
after maximum number of generations was reached which means that in none of GPSC
executions non of the population members reached the predefined lowest value of the
fitness function.

The mean values of ACC, AUC, Precision, Recall, and F1-score with standard devia-
tion is shown in Figure 11 while numerical results are listed in Table 6.

From Figure 11 and Table 6 it can be seen that the best classification accuracy was
achieved in the case of the dataset balanced with random oversampling method followed
by the dataset balanced with Borderline SMOTE, ADASYN, and SMOTE method. In terms
of symbolic expressions length, the largest symbolic expressions were obtained in the case
of random oversampling dataset followed by ADASYN, SMOTE, and BorderlineSMOTE.
Based on the evaluation metric values and the length of symbolic expressions the best
symbolic expressions were obtained in the case of BorderlineSMOTE since the size of these
symbolic expressions is the smallest and evaluation metric values are near those obtained
with the random oversampling dataset. All four symbolic expressions are shown in the
following subsection.

The average CPU execution time in all four cases is the same i.e., 480 min. The longer
execution time can be attributed to utilization of OneVsRestClassifier in combination with
5-fold cross-validation. This means that for each class 5-fold cross-valdiation is performed
i.e., the total number of GPSC executions is 20. Each GP execution on average lasts for
20 min so that is total of 400 min. When this process is complete the evaluation metrics are
averaged and if the termination criteria is passed final train/test is performed with same
hyperparameters and OneVsRestClassifier. So final training has to be executed 4 times due
to 4 different cases and each GPSC execution lasts for 20 min so the final training lasts for
additional 80 min. In total average GPSC execution time is 480 min.
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Figure 11. The graphical representation of mean values of ACC, AUC, precision, recall, F1-Score with
standard deviation.
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Table 6. The numerical values of mean ACC, AUC, Precision, Recall, and F1-Score with standard
deviation.
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±2.5× 10−3

0.954
±6× 10−3
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±4.9× 10−3 480 294/1961/998/2882

ADASYN
0.918

±1.74× 10−2
0.986

±4.25× 10−3
0.916

±1.93× 10−2
0.917

±2× 10−2
0.916
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SMOTE
0.81
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±7.84× 10−3

0.932
±8.4× 10−3 480 417/148/471/118

3.3. Best Symbolic Expressions and Final Evaluation

Based on the conducted investigation and obtained results it can be concluded that the
best symbolic expression in binary and multiclass problem are those symbolic expressions
that were obtained on datasets balanced with BorderlineSMOTE method. The symbolic
expression for binary problem (binary classification) can be written in the following form:

y1 = |2098.97|
(

X9(min(
X5 + X6

min(
√

X11X5, X3)
, X9)−min((X4 (12)

− X9(min(
X5 + tan(X6)

min(
√

X11X5, X3)
, X0)−min((X4 − log2(X3))− X1, X3

X4
X6

X10
)))

− X1, X3

X4
X6

X10
))

)
.

As seen from Equation (12) the best symbolic expression obtained in case of dataset
balanced with BorderlineSMOTE method the input variables that end up in the symbolic
expressions are X0, X1, X3, X4, X5, X6, X9, X10, and X11. From Table 1 it can be seen that
these variables are age, sex, ALP, ALT, AST, BIL, CREA, GGT, and PROT.

In case of multiclass problem the best case in terms of symbolic expression accu-
racy was achieved in case of Random Oversampling, and BorderlineSMOTE. However,
the random oversampling dataset contains the same points as the original dataset and they
are oversampled while the Borderline SMOTE contains samples around the original points
so symbolic expression obtained for this dataset are better in terms of generalization and
robustness although classification performance is lower than in random oversampling case.
The equations obtained in case of Borderline SMOTE method consist of 4 equations and
these are:

• the equation for detection of healthy patients (y21),
• the equation for detection of Hepatitis C patients (y22),
• the equation for detection of Fibrosis patients (y23), and
• the equation for detection of Cirrhosis patients (y24).

The equations can be written as
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In the previous set of symbolic expressions all input variables (X1, . . ., X11) are in-
cluded. The final evaluation of the previous system of symbolic expressions on original
dataset is shown in the following subsection.
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Final Evaluation

Since the original dataset was not used in previous investigations it will be used here to
perform final evaluation of the best previously presented symbolic expressions. However,
in the binary case the dataset samples labeled with classes 1, 2, 3 are all put together under
one class 1. So the entire dataset in binary classification has two class 0—Healthy and
1—Hepatitis C. The procedure of evaluating the symbolic expressions are as follows:

• use input values of the original dataset in symbolic expressions to compute the output,
• use the calculated output as input in Sigmoid function as decision function to obtain

the class output (0 or 1),
• compare the output from decision function with the real output to compute ACC, AUC,

Precision, Recall, and F1-Score.

The evaluation metric values obtained with symbolic expression generated using
dataset balanced with Borderline SMOTE method applied on the original dataset are listed
in Table 7.

Table 7. The results of evaluation metric values obtained with application of the best symbolic
expression (y1) in binary problem on the original dataset.

Evaluation Metric Values

ACC 0.9932
AUC 0.9722

Precision 0.98148
Recall 0.9464

F1− Score 0.9636

As seen from Table 7 the results of the best symbolic expression applied on the original
dataset are slightly lower than the results obtained on dataset balanced with Borderline
SMOTE method i.e., the dataset used to obtain the best symbolic expression in binary
problem. The macro averaging evaluation metric values in multi class case is shown
in Table 8.

Table 8. The results of evaluation metric values obtained with application of the best symbolic
expressions (y21, y22, y23, and y24) in multiclass on the original dataset.

Evaluation Metrics Values

ACC 0.983
AUC 0.85

Precision 0.74
Recall 0.72

F1− Score 0.721

The results for a multiclass problem showed that the obtained evaluation metric values
are lower than those obtained in case of BorderlineSMOTE dataset (on which symbolic
expressions were obtained). This can be attributed to high imbalance of the original dataset
and very small number of fibrosis and cirrhosis class samples.

4. Discussion

The conducted investigation showed the procedure of how highly imbalanced datasets
can be balanced and used to obtain the symbolic expression for the detection of hepatitis C
patients from blood samples. The kernel PCA method provided a better insight into the
distribution of class samples in the kernel PCA plane. The random oversampling method
generated enlarged the number of samples however those are the same samples as the
originals. Among the remaining three balancing methods the distribution of class samples
in the kernel PCA plane showed that class samples overlap which could be a problem for
the ML algorithm to distinguish between the overlapping classes. The ADASN and SMOTE
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method enlarged the area of class samples and overlapping between class samples is the
most evident in those two cases. However, in the case of the Borderline SMOTE balancing
method the distribution of class samples is more condensed i.e., the synthetic samples are
generated around the original class samples.

In binary problem, the best symbolic expression was obtained in the case of the dataset
balanced with the BorderlineSMOTE method as seen from Figure 10 and Table 4. How-
ever, the symbolic expression obtained in the case of the dataset balanced with SMOTE
method showed similar classification accuracy but the size of the symbolic expression, in
this case, is much larger than the symbolic expression obtained in the Borderline SMOTE
case. Based on size and evaluation metric values the best symbolic expression in binary
problem was the symbolic expression obtained on dataset balanced with BorderlineS-
MOTE method. The symbolic expression in the final evaluation on the original dataset
showed similar classification accuracy (Table 7) as in the case of the Borderline SMOTE
method. Regarding the GPSC hyperparameters in binary problems, the hoist and point
mutation were dominating genetic operations. Due to the low parsimony coefficient value
(9.19 ×10−6) in the SMOTE case the large symbolic expression was obtained however the
bloat phenomenon did not occur because the GPSC execution time was similar to other
cases and classification accuracy is similar to one obtained in BorderlineSMOTE case.

In multi-class problems, the best symbolic expressions were obtained in the case
of dataset oversampled with random oversampling and the Borderline SMOTE method.
However, in the case of SMOTE and ADAYN datasets, the obtained symbolic expressions
performed poorly i.e., the results of evaluation metrics are in the range from 0.8–0.99.
The symbolic expressions obtained in the case of the BorderlineSMOTE method are smaller
when compared to those symbolic expressions obtained in the case of the random over-
sampling method. The classification accuracy of the symbolic expressions obtained in the
case of Borderline SMOTE is slightly lower than of those symbolic expressions obtained
with random oversampling. Regarding the size the smallest size of symbolic expression
was obtained in the BorderlineSMOTE case while the largest was in the case of Random
Oversampling. Due to the smallest symbolic expressions and the pretty high evaluation
metric values, the symbolic expressions in the multiclass problem were those expressions
obtained with a dataset balanced with the BorderlineSMOTE method.

The final evaluation performed on the original dataset showed the poor performance
of obtained symbolic expressions when compared to the results achieved on the dataset
balanced with Borderline SMOTE Method. In the multiclass problem, the crossover was
the dominating genetic operation i.e., its value in all four cases was above 0.45 (Table 5).
The parsimony coefficient is the lowest in the case of the random oversampling method
so this could be a reason why the symbolic expressions are so large and the classification
accuracy is insignificantly better than the symbolic expressions obtained in the case of
dataset balanced BorderlineSMOTE method. The final evaluation of the best symbolic
expressions applied on the original dataset showed poor performance of these symbolic
expressions (Table 8). The low performance of these symbolic expressions can be attributed
to a high imbalance of the original dataset (the high number of healthy patients versus the
small number of Hepatitis C patients and patients with fibrosis and cirrhosis).

5. Conclusions

In this paper, the GPSC was used with a random hyperparameter search method
and 5-fold cross-validation to obtain symbolic expressions for the detection of hepatitis C
patients as well as determining the hepatitis C stage (Hepatitis C, Fibrosis, and Cirrhosis)
using a dataset containing blood samples. However, the original dataset was highly
imbalanced so before using GPSC the dataset balancing techniques had to be applied
such as random oversampling, SMOTE, ADASYN, and BorderlineSMOTE. Unfortunately
due to a large class imbalance in both binary and especially the multiclass case of the
original dataset was not used for generating symbolic expressions using the GPSC method.
The original dataset was used to perform final tests on the best symbolic expressions
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obtained on datasets balanced with other methods. Based on the conducted investigations,
the following conclusions are:

• using GPSC with random hyperparameters search and 5-fold cross-validation the
symbolic expression can be obtained which can detect the Hepatitis-C patients with
high classification accuracy,

• using GPSC with One Versus Rest Classifier, random hyper-parameter search method
and 5-fold cross-validation it is possible to obtain the symbolic expressions that can
detect the hepatitis C patients and their disease progression (Hepatitis-C, Fibrosis and
Cirrhosis). However, required average CPU execution time is quite long but this is
relative since the execution times mostly depends on the used computational resources,

• the application of different balancing methods can synthetically balanced the class sam-
ples which in the end can improve the classification accuracy of obtained
symbolic expressions.

This investigation showed how imbalanced dataset can be balanced using over-
sampling methods and used in GPSC algorithm with which symbolic expression can
be obtained. To achieve higher classification accurracies in terms of hepatitis C detec-
tion and the stage of the disease the random hyperparameter search method for GPSC
with 5-fold cross-validation was employed. The used method also addresses the issue of
the so-called black-box models, by providing a possibility of interpreting the generated
classification models.

In future investigations, the original dataset will be enlarged if possible. The idea is to
achieve an equal number of samples through all the dataset classes. The enlarged dataset
could be a good starting point to develop a system of symbolic expressions for detecting
Hepatitis C patients and the possible disease progression. Further investigation and tuning
of GPSC hyperparameters are required to obtain very small symbolic expressions that
have high classification accuracy. One of the limitations of this approach is the parsimony
coefficient which has a large impact on the performance of GPSC. The influence of this
hyperparameter will be reduced by ensuring that the dataset used is balanced and that
correlation between variables is reasonably high.
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