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Abstract: In recent years, discriminative correlation filters (DCF) based trackers have been widely
used in mobile robots due to their efficiency. However, underground coal mines are typically a low
illumination environment, and tracking in this environment is a challenging problem that has not
been adequately addressed in the literature. Thus, this paper proposes a Low-illumination Long-
term Correlation Tracker (LLCT) and designs a visual tracking system for coal mine drilling robots.
A low-illumination tracking framework combining image enhancement strategies and long-time
tracking is proposed. A long-term memory correlation filter tracker with an interval update strategy
is utilized. In addition, a local area illumination detection method is proposed to prevent the failure
of the enhancement algorithm due to local over-exposure. A convenient image enhancement method
is proposed to boost efficiency. Extensive experiments on popular object tracking benchmark datasets
demonstrate that the proposed tracker significantly outperforms the baseline trackers, achieving high
real-time performance. The tracker’s performance is verified on an underground drilling robot in
a coal mine. The results of the field experiment demonstrate that the performance of the novel
tracking framework is better than that of state-of-the-art trackers in low-illumination environments.

Keywords: visual object tracking; low illumination; image enhancement; computer vision; mobile
drilling robot; coal mine robot

1. Introduction

Visual object tracking (VOT) is a fundamental problem and a popular research area in
computer vision. Numerous studies have been conducted on this topic, producing multiple
performance evaluation datasets and benchmarks [1–5]. The goal of the tracker is to select
a model-free target from the first frame and track it in subsequent frames of a video stream
or image sequence. Recently, VOT has been used for real-time vision applications, such as
intelligent monitoring systems, automatic driving systems, and robotics [6–8].

Object tracking is an online task that needs to meet the requirements of practical
applications. An ideal tracker should be accurate and robust for a long period in real-time
vision systems. Moreover, due to the complexity of the working environment, including
image deformation, object occlusion, illumination changes, motion blur, and objects out of
view, the tracker is prone to drifting during long-term tracking, reducing its performance [9].
In recent years, DCF-based methods, including Minimum Output Sum of Squared Error
(MOSSE) [10], kernelized correlation filter (KCF) [11], background-aware correlation filter
(BACF) [12], discriminative correlation filter with channel and spatial reliability (CSR-
DCF) [13], and efficient convolution operators (ECO) [14], have significantly advanced the
state-of-the-art (SOTA) performance for short-term tracking. These methods have high
processing speeds and are convenient for feature extraction, resulting in a new research
direction in this field.
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Intelligent mobile robots have become a research hotspot in science and technology. Path
planning, positioning and navigation, obstacle avoidance, and other aspects of mobile
robots are inseparable from the assistance of vision technology [15]. Since mobile robots are
limited by their endurance, volume, and flexibility, their hardware configuration is usually
based on low power consumption. Thus, an algorithm with high computational complexity
can substantially reduce the real-time performance of the robot. In practical engineering
applications, intermittent light sources or uneven illumination will cause overexposure of
the camera, which can adversely affect the performance of VOT. This problem is particularly
pronounced in coal mines. The distribution form of a miner’s lamp cannot make the light fill
the whole tunnel uniformly (As shown in Figure 1). Most coal mines use infrared cameras to
deal with low illumination, but these images are single-channel images (grayscale images).
Infrared cameras are typically used to monitor fixed equipment, resulting in limitations
in dynamic object tracking, such as personnel monitoring and mining vehicle scheduling.
Relevant research shows that the performance of the vision algorithm is directly related
to the richness of image features [16]. The performance of current trackers is affected
by the number of characteristic channels. It is necessary to analyze the performance of
target trackers using a color camera in low-illumination environments. Therefore, an
algorithm to track dynamic targets in low-illumination environments with a color image is
required. Moreover, this algorithm can also need to be applied to mobile robots with power
consumption constraints.
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(LLCT). It is adapted to a low-illumination environment, outperforms SOTA trackers of 
the time, and provides real-time and high-precision performance in the field environment. 
The LLCT uses an image exposure compensation method for low-illumination environ-
ments, making it suitable for coal mine mobile robots. The flowchart of the proposed 
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The long-term real-time correlation filter (LRCF) for mobile robots proposed in [17] 
has been significantly improved and extended in this paper. The contributions of our pre-
vious study are summarized as follows: 

1. Principal component analysis (PCA) was used with the LRCF to reduce the dimen-
sionality in the translation and scale estimation phase to improve the algorithm speed. 

Figure 1. Typical environments in underground coal mine. (a) is a main roadway of a coal mine.
(b) is the shaft bottom of coal mine. (c) is general roadway in coal mine. (d) is a haulage roadway.

Hence, this work focuses on practical problems in engineering applications rather
than dataset evaluations. We propose the low-illumination long-term correlation tracker
(LLCT). It is adapted to a low-illumination environment, outperforms SOTA trackers of the
time, and provides real-time and high-precision performance in the field environment. The
LLCT uses an image exposure compensation method for low-illumination environments,
making it suitable for coal mine mobile robots. The flowchart of the proposed method is
illustrated in Figure 2.

The long-term real-time correlation filter (LRCF) for mobile robots proposed in [17] has
been significantly improved and extended in this paper. The contributions of our previous
study are summarized as follows:

1. Principal component analysis (PCA) was used with the LRCF to reduce the dimen-
sionality in the translation and scale estimation phase to improve the algorithm speed.

2. The memory templates were updated at regular intervals, and the existing and initial
templates were re-matched every few frames to maintain template accuracy.
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Figure 2. The flowchart of the proposed tracking method. The projection matrix P was applied to 
the LCT [18] architecture to reduce the computational complexity. The need for image enhancement 
is evaluated before sample training. Image enhancement is performed iteratively until the image 
reaches the brightness threshold. 
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In this section, we review the recent achievements related to our proposed approach. 

For a comprehensive overview of existing tracking methods, readers can refer to the cited 
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The tracking-by-detection method regards the target tracking in each frame as a de-
tection problem in a local search window. The method usually separates the target from 
its surrounding background by an incremental learning classifier [11,19–21]. In this kind 
of study, each frame in the image sequence is regarded as a single target detection process. 
This approach is currently the most commonly used method for visual target tracking. 

Figure 2. The flowchart of the proposed tracking method. The projection matrix P was applied to
the LCT [18] architecture to reduce the computational complexity. The need for image enhancement
is evaluated before sample training. Image enhancement is performed iteratively until the image
reaches the brightness threshold.

The contribution of this study and the improvements are as follows:

1. This work designs a target tracker framework in a low-illumination coal mine en-
vironment. The environmental illumination is detected before the DCF extracts the
training sample. An image enhancement module is incorporated.

2. A local illumination detection method is proposed. A pre-set padding area around
the target bounding box (BB) is cropped and used as the area of local illumination
detection. The illumination intensity in this area, instead of the global illumination,
determines whether image enhancement is performed.

3. A fast and efficient image enhancement method is proposed because most image
enhancement algorithms are computationally expensive and have low real-time per-
formance. Excellent image enhancement algorithms bring expensive computational
costs and perform poorly in real-time performance. This method is well-suited to
object tracking by robots.

4. A tracking system based on a robot operating system (ROS) is designed. The proposed
tracker installed in a drilling robot is evaluated in a field experiment conducted in an
underground coal mine.

The remainder of this paper is organized as follows. Section 2 discusses previous work
related to the proposed trackers. The proposed DCF tracking method and the principle of
the image enhancement module are introduced in Section 3. The experimental results are
analyzed and discussed in Section 4. Finally, the conclusion is presented in Section 5.

2. Related Works

In this section, we review the recent achievements related to our proposed approach.
For a comprehensive overview of existing tracking methods, readers can refer to the
cited articles.

The tracking-by-detection method regards the target tracking in each frame as a
detection problem in a local search window. The method usually separates the target from
its surrounding background by an incremental learning classifier [11,19–21]. In this kind of
study, each frame in the image sequence is regarded as a single target detection process.
This approach is currently the most commonly used method for visual target tracking.

In 2011, Bolme et al. proposed the MOSSE [10] filter for tracking, which exhibited an
impressive speed of more than 600 frames per second (FPS), demonstrating the potential
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of the correlation filter. DCF-based trackers use fast Fourier transform (FFT) and inverse
fast Fourier transform (IFFT) for learning and rapid detection in the frequency domain.
Thus, they have a low computing time by means of correlation operation on image features.
Many DCF-based trackers have been proposed for feature extraction with a learning filter
architecture [10–14,20,22]. However, most sacrifice the tracking speed to achieve accurate
and robust tracking performance.

In recent years, deep learning (DL) has been widely utilized in computer vision,
language processing, and intelligent robotics. As a representative architecture, convolu-
tional neural networks (CNNs) have achieved remarkable results in visual tracking due
to their powerful feature expression ability. Three types of CNNs have been used for
VOT: (a) CNNs based on pure convolutional features [23]; (b) Siamese network-based
trackers [21,24,25]; (c) DCF-based trackers based on the VGG-Net [26] and other network
training features [22,27,28]. These trackers provide high-precision results by utilizing the
graphics card. However, they require many training samples and high computational
power, limiting their application on mobile devices.

Long-term tracking differs from short-term tracking because of long-term occlusion
and field-of-view conditions. Zdenek et al. [29] first proposed this tracking framework
and decomposed the long-term tracking task into three parts: tracking, learning, and
detection (TLD). The long-term correlation tracker (LCT) [18] and LCT+ [30] were proposed
by Ma et al. in the framework of the convolution kernel correlation filter tracker. A re-
detector and a long-time filter were added to the general short-term tracker architecture.
Zhu et al. proposed a novel collaborative correlation tracker (CCT) [31] using multi-scale
kernelized correlation tracking (MKC) and an online CUR [32] filter for long-term tracking.
Yan et al. [33] proposed a Skimming-Perusal tracking framework, which is based on deep
networks and SiameseRPN [34] to achieve real-time and robust long-term tracking works.

Low illumination tracking task has been a key concern in coal mine application,
Shang et al. [35] prefer to use a Kinect camera for low illumination tracking task.

Li et al. [36] proposed a dual correlation filtering structure for tracking in dark light, which is
called an anti-dark tracker (ADTrack). Ye et al. [37] tended to use a CNNs-based framework
to realize reliable UAV tracking at night and proposed a spatial-channel transformer-based
low-light enhancer (SCT) [38].

3. The Proposed Method
3.1. Discriminative Correlation Filter

The fast DSST [39] is adopted as the baseline due to its outstanding performance. It
utilizes two optional correlation filters for estimating the translation (two-dimensional) and
scale (one-dimensional) of the target in the new frame. The goal for a two-dimensional
(M × N pixels) image is to learn a set of multichannel correlation filters fl

t ∈ RM×N×D

based on the sample {(xt, yt)}
l
t at the time t. Each training sample xt ∈ RM×N×D con-

tains D-dimensional features extracted from the interest region, and the features channel
l ∈ {1, . . . , D} of xt is denoted as xl

t. The correlation response label of the filter is expressed
by yt ∈ RM×N. This function minimizes the `2 error of the correlation response of the
desired correlation filter fl

t:

ε(f) =

∥∥∥∥∥ D

∑
l=1

xl
t ◦ fl

t − yt

∥∥∥∥∥
2

2

+ λ
D

∑
l=1

∥∥fl
t
∥∥2

, (1)

where ◦ denotes a circular convolution, and λ is a regularization weight. The response
label y is usually expressed by a Gaussian function [10].
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Because Equation (1) is a linear least squares problem, it can be computed efficiently
in the Fourier domain by Parseval’s formula. Hence, the filter that minimizes Equation (1)
is expressed as:

ε(F) =

∥∥∥∥∥ D

∑
l=1

Xl � Fl − Y

∥∥∥∥∥
2

2

+ λ
D

∑
l=1

∥∥Fl∥∥2
(2)

where the capital letters denote the discrete Fourier transform (DFT) of the corresponding
quantities, the bar • denotes a complex conjugation, and � denotes a Hadamard product.
Therefore, in the first frame, Equation (2) can be solved as:

Fl =
Y� Xl

∑D
k=1 Xk � Xk + λ

, l = 1, . . . D. (3)

The numerator Al
t and the denominator Bt are defined for the t-th frame. An optimal

update strategy for the filter Fl
t in the new sample xt is as follows:

Al
t = (1− η)Al

t−1 + ηY� Xl
t, (4)

Bt = (1− η)Bt−1 + η∑D
k=1 Xl

t � Xl
t, (5)

where the scalar η is a parameter of the learning rate. The correlation scores yt for a new
test sample zt can be computed in the Fourier domain to detect the change in the position
in the new frame t:

yt = F−1

{
∑D

l=1A
l
t−1 � Zl

Bt−1 + λ

}
, (6)

where Zl denotes the l-dimensional features extracted from the frame of pending detec-
tion. F−1 is the IFFT. Equation (6) can be used to find the maximum correlation score to
determine the position of the current target.

The image feature pyramid of the current sample is constructed in a rectangular area
behind the learned translation filter to estimate the scale. The scale of the filter is defined
as S =

{
αn|n =

⌊
−N−1

2

⌋
, . . . ,

⌊
N−1

2

⌋}
. The current target region with a size of W × H is

reconstructed to form a series of scale patches In of size αnW× αnH based on N scale levels.
The scale filter has a one-dimensional Gaussian score ys. The max value St(n) of the training
sample xt,scale for In is the current scale.

Because the computational cost of the fast DSST depends primarily on the FFT, we
use PCA for dimensionality reduction to improve the computing speed. To update the
target template µt = (1− η)µt−1 + ηxt, a projection matrix Pt ∈ Rd×D is constructed for
µt, where d is the dimension of the compression feature. The current test sample zt can be
obtained by Equation (7) via the compressed training sample Xt = F{Pt−1xt}:

yt = F−1

{
∑d

l=1A
l
t−1 �Z l

t
Bt−1 + λ

}
, (7)

where Zt = F{Pt−1zt} is the new compressed sample, and Al
t−1 and Bt−1 are the updated

numerator and denominator of the template after feature compression, respectively. Note
that the projection matrix Pt is not calculated explicitly but can be obtained quickly by
QR decomposition.

3.2. Long-Term Memory Module

In practical applications, trackers often operate for a long time. Objects outside the
field of view and occlusions are the main problems in long-term tracking because a target
typically does not reappear in the same position where it disappeared. Coal mines have
few and uneven light sources, resulting in low illumination. When the scene changes from
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a dark to a light environment, the camera is suddenly exposed to the light source, which
represents a crucial problem that has to be solved in long-term tracking. Therefore, the
tracker needs to detect the location of the target in the new scene and relate it to the sample
model in the previous scene to ensure consistent tracking.

The Long-Term Memory Module has two parts: the long-term filter fLong and the long-
time memory template xt,Long. Inspired by the LCT [18], we use a long-term filter fLong to
prevent a tracking failure caused by noise interference during long-term tracking. Unlike in
the LCT, we do not use the kernel trick [20] for fLong to calculate the response score. Instead,
we use a DSST-like approach to calculate the correlation response between the xt,Long and
fLong directly. Note that the xt,Long of the fLong can also use projection matrix Pt for feature
compression. The sample obtained from the translation filter is used as the detection
sample of the long-term filter. The confidence score of each tracked target Zt = F{Pt−1zt}
is computed as Ct,Long = max(fLong(Zt)). Moreover, the long term memory template
xt,Long is updated to the current detection sample when the confidence score is above the
predefined threshold.

3.3. Re-Detection Module

The re-detection module is a crucial component to improve the robustness and long-
term tracking ability of the tracker. It is used to find the target quickly after it has been
lost. Our method is based on the LCT+ [30] method, and an online support vector machine
(SVM) classifier is used as the detector. The difference is that another confidence parameter
(Section 3.4) is used as the criterion in conjunction with the predefined re-detection thresh-
old Tr. The re-detector only trains the translated samples to reduce the computational
burden. The feature representation of the sample is based on the multiple experts using the
entropy minimization (MEEM) method [40], namely the quantized color histogram. For
a training set {(vi, ci)i = 1, 2, . . . , N} with N samples in a frame, the objective function of
solving the SVM detector hyperplane h is:

min
h

λ
2 ‖h‖

2 + 1
N ∑i `(h; (vi, ci)),

where `(h; (vi, ci)) = max{0, 1− c〈h, v〉},
(8)

where vi represents the feature vector generated by the i-th sample, and ci ∈ {+1,−1}
represents the class label. The notation 〈h, v〉 represents the inner product of the vectors h
and v. A passive-aggressive algorithm is used to update the hyperplane parameters:

h← h− `(h; (v, c))∥∥∇h`(h; (v, c))
∥∥2

+ 1
2τ

∇h`(h; (v, c)), (9)

where the gradient of the loss function h is denoted by ∇h`(h; (v, c)), and τ ∈ (0,+∞) is a
hyper-parameter used to control the h update rate. Similar to the long-term filter fLong, we
use Equation (9) to update the classifier parameters only when Ct,Long ≥ Ta.

3.4. Confidence Function and Update Strategy

The tracking confidence parameter is an index for evaluating if the target has been lost.
Most DCF-based trackers use the maximum response Rmax to locate the target in the next
frame. However, in a complex scene, it is not ideal to rely only on this parameter. Wang et al.
proposed large margin object tracking method with circulant feature maps (LMCF) [41]
with average peak-to-correlation energy (APCE) (Equation (10)), which can effectively deal
with the target occlusion and loss. Zhang et al. proposed a motion-aware correlation filter
(MACF) [42] based on the confidence of squared response map (CSRM) (Equation (11)),
which compensated for the lack of APCE discrimination during long-term occlusion:

APCE =
|Rmax − Rmin|2

mean
(

∑w,h(Rw,h − Rmin)
2
) , (10)
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CSRM =

∣∣R2
max − R2

min

∣∣2
mean

(
∑w,h

(
R2

w,h − R2
min

)2
) , (11)

where Rmax, Rmin, and Rw,h, respectively, denote the maximum, minimum, and the w-th
row h-th column elements of the peak value of the response. A comparison was conducted
to determine whether the combination of multiple confidence parameters improved the
tracker’s performance. The results are presented in Section 4.

In the traditional DCF-based tracker [11–13], it is common to train a sample and the
filter in each frame and update the filter. Although an iterative search can be conducted
effectively, updating the filter in each frame increases the computational complexity because
the optimization of the filter is the core calculation step in the algorithm. We adopt the
ECO [14] method to reduce computational complexity by updating the filter template in
every NS-th frame. This strategy improves the running speed of the filter and prevents
overfitting. However, the target sample is updated in each frame.

3.5. Dealing with Low-Illumination Environments
3.5.1. Low-Light Image Enhancement

Image enhancement algorithms have been presented by several researchers [43–45].
This study uses the low illumination image enhancement (LIME) method presented by
Guo et al. [43]. The model of low illumination image has the following forms:

1− L = (1−R)� T̃ + δ(1− T̃), (12)

where L is the captured image (low illumination), R is the desired recovery, T represents
the illumination map, and δ is the global atmospheric light (global illumination). This
model (Equation (12)) [46] is based on inverted low-light images 1− L, which look like
hazy images. LIME first estimates an initial illumination map and then refines it in the
second step. In the first step, the following preliminary initial estimates of the non-uniform
lighting for each individual pixel p are used:

T̂(p)← max
c∈{R,G,B}

Lc(p), (13)

The goal is to ensure that the obtained T̂(p) recovery is not saturated; c is the maximum
value of the three color channels; a small constant ε is defined to avoid a zero denominator:

R(p) =
L(p)(

max
c

Lc(p) + ε
) (14)

Subsequently, the atmospheric light δ is substituted into the 1−L model Equation (12):

T̃(p)← 1− δ−1 + max
c

Lc(p) · δ−1, (15)

R(p) =
L(p)− 1 + δ(

1− δ−1 + max
c

Lc(p) · δ−1 + ε
) + (1− δ), (16)

The initial illumination map T̂(p) is obtained by Equation (13) due to its conciseness, and
the refined illumination map T(p) is obtained using the following optimization function:

min
T(p)

∥∥∥T̂(p)− T(p)
∥∥∥2

F
+ β‖W�∇T(p)‖1, (17)

where β is a regularization weight, ‖•‖F and ‖•‖1 designate the Frobenius and `1 norms,
respectively. W is a weight matrix, and ∇ is the first-order derivative filter consisting of
∇hT(p) (horizontal) and ∇vT(p) (vertical). The relative total variation (RTV) [47] and
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the two-throughout Gaussian kernel Equation (18) were used as the standard deviation
σ to select the weight matrix W. For each location, the weight Wo(p) is determined in the
following manner; the subscript o represents the orientation of the element (h or v):

Gσ(p, q) ∝ exp
(
−dist(p, q)

2σ2

)
, (18)

Wo(p)← ∑
q∈Ω(p)

Gσ(p, q)∣∣∣∑q∈Ω(p) Gσ(p, q)∇oT̂(q)
∣∣∣+ ε

, (19)

where Ω(p) is a region centered at pixel p, q is the location index within the region, and |•| is the
absolute value operator. Equation (17) can be approximately calculated by the following:

min
T

∥∥∥T̂(p)− T(p)
∥∥∥2

F
+ β∑

p

Wh(p)(∇hT(p))2∣∣∇hT̂(p)
∣∣+ ε

+
Wv(p)(∇vT(p))2∣∣∇vT̂(p)

∣∣+ ε
, (20)

Hence, Equation (13) can be employed to initially estimate the illumination map T̂(p).
After the refined illumination map T(p) is obtained by Equation (17), R can be recovered
by Equation (14).

3.5.2. Accelerated Versions for Mobile Drilling Robot

The LIME method is employed for enhancing a single image, but the method does not
consider the real-time performance using video data. Although LIME can preserve image
features well and has high tracking accuracy (Section 4.4), its slow running speed makes it
unsuitable for mobile robot applications. Therefore, a fast image enhancement method is
proposed to ensure that the LLCT can be used on mobile robots. The brightness value is
extracted from the three image channels (RGB):

Light =
1
2

(
max

c∈{R,G,B}
Lc(p) + min

c∈{R,G,B}
Lc(p)

)
, (21)

The average values of the RGB channels are calculated, and the maximum and mini-
mum mean values are used as the brightness values. An effective nonlinear superposition
algorithm is iterated to improve the image brightness:

Rc(p) = Lc(p) + kLc(p)�
(

255− Lc(p)
256

)
c ∈ {R, G, B}, (22)

where L(•) denotes the captured image, R(•) denotes the desired image, and k ∈ [0, 1] is
a parameter for controlling the exposure. Equation (22) is iterated until the brightness
reaches the threshold value. The target feature is then extracted for filter training.

Because the global brightness does not reflect whether the target is in a low-illumination
environment (Figure 3), we propose a target area illumination detection method. We only
consider the illuminance of BB and its surrounding padding area. When the brightness is
below the predetermined threshold TL, the exposure of the current frame is adjusted. This
step is skipped when the illumination is sufficient.

3.6. Visual Tracking System Framework for Drilling Robot

The hardware and software framework of the visual tracking system for the coal mine
drilling robot is shown in Figure 4. In this system, the sensor layer consists of monocular
color cameras, 3D Lidar, and other sensors. We used only the camera for the acquisition
of raw images in this work. The captured images can be manually framed for target
selection via the operator interface or automatically framed for target selection using the
target recognition algorithm. After confirming the target to be tracked, the LLCT module
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performs the target tracking and feeds the position back to the on-board computer and
controller. This is used for subsequent robot formation tracking and other functions.

Appl. Sci. 2023, 13, 568 9 of 21 
 

Because the global brightness does not reflect whether the target is in a low-illumi-
nation environment (Figure 3), we propose a target area illumination detection method. 
We only consider the illuminance of BB and its surrounding padding area. When the 
brightness is below the predetermined threshold TL, the exposure of the current frame is 
adjusted. This step is skipped when the illumination is sufficient. 

#850 The brightest point
(788,329)

[244 255 249]

The darkest  point
(518,361)

[0 0 0]

Bounding Box

Padding

The darkest  point
(518,361)

[0 0 0]

The brightest point
(523,380)
[33 33 33]

 
Figure 3. Selection of the low-illumination detection area. In the full view (1280 × 720), the darkest 
pixel (green circle) is close to the target, but the brightest (red circle) is not. The maximum RGB 
values close to the target are [33 33 33]. The global brightness of the image is 128, but the brightness 
close to the target is only 16.5. 

3.6. Visual Tracking System Framework for Drilling Robot 
The hardware and software framework of the visual tracking system for the coal 

mine drilling robot is shown in Figure 4. In this system, the sensor layer consists of mo-
nocular color cameras, 3D Lidar, and other sensors. We used only the camera for the ac-
quisition of raw images in this work. The captured images can be manually framed for 
target selection via the operator interface or automatically framed for target selection us-
ing the target recognition algorithm. After confirming the target to be tracked, the LLCT 
module performs the target tracking and feeds the position back to the on-board computer 
and controller. This is used for subsequent robot formation tracking and other functions. 

UWB IMU Lidar Encoder
Sensor 
layer

Camera

Tracking module

Image enhancement

Target tracking

Initialization

Manual box 
selection

Automatic 
recognition 

Input images

Target block

Target centre 
coordinates

Driver Motor

Drive control layer

On board 
computer

 
Figure 4. Hardware and software framework of vision tracking system for coal mine drilling robot. 

The software system uses ROS [48] for interaction, i.e., a communication node ap-
proach. The sensor drive module, the target tracking module, the SLAM module, and the 

Figure 3. Selection of the low-illumination detection area. In the full view (1280 × 720), the darkest
pixel (green circle) is close to the target, but the brightest (red circle) is not. The maximum RGB values
close to the target are [33 33 33]. The global brightness of the image is 128, but the brightness close to
the target is only 16.5.

Appl. Sci. 2023, 13, 568 9 of 21 
 

Because the global brightness does not reflect whether the target is in a low-illumi-
nation environment (Figure 3), we propose a target area illumination detection method. 
We only consider the illuminance of BB and its surrounding padding area. When the 
brightness is below the predetermined threshold TL, the exposure of the current frame is 
adjusted. This step is skipped when the illumination is sufficient. 

#850 The brightest point
(788,329)

[244 255 249]

The darkest  point
(518,361)

[0 0 0]

Bounding Box

Padding

The darkest  point
(518,361)

[0 0 0]

The brightest point
(523,380)
[33 33 33]

 
Figure 3. Selection of the low-illumination detection area. In the full view (1280 × 720), the darkest 
pixel (green circle) is close to the target, but the brightest (red circle) is not. The maximum RGB 
values close to the target are [33 33 33]. The global brightness of the image is 128, but the brightness 
close to the target is only 16.5. 

3.6. Visual Tracking System Framework for Drilling Robot 
The hardware and software framework of the visual tracking system for the coal 

mine drilling robot is shown in Figure 4. In this system, the sensor layer consists of mo-
nocular color cameras, 3D Lidar, and other sensors. We used only the camera for the ac-
quisition of raw images in this work. The captured images can be manually framed for 
target selection via the operator interface or automatically framed for target selection us-
ing the target recognition algorithm. After confirming the target to be tracked, the LLCT 
module performs the target tracking and feeds the position back to the on-board computer 
and controller. This is used for subsequent robot formation tracking and other functions. 

UWB IMU Lidar Encoder
Sensor 
layer

Camera

Tracking module

Image enhancement

Target tracking

Initialization

Manual box 
selection

Automatic 
recognition 

Input images

Target block

Target centre 
coordinates

Driver Motor

Drive control layer

On board 
computer

 
Figure 4. Hardware and software framework of vision tracking system for coal mine drilling robot. 

The software system uses ROS [48] for interaction, i.e., a communication node ap-
proach. The sensor drive module, the target tracking module, the SLAM module, and the 

Figure 4. Hardware and software framework of vision tracking system for coal mine drilling robot.

The software system uses ROS [48] for interaction, i.e., a communication node ap-
proach. The sensor drive module, the target tracking module, the SLAM module, and the
path planning modules operate independently in the lower computer system. The host
system runs the visualization interface and the remote control command-sending module.
Each system and module interacts by subscribing to the appropriate topic or requesting the
appropriate service. The target tracking nodes can, therefore, be switched on independently
when there is a demand for them.

4. Experimental
4.1. Implementation Details

The dataset to evaluate the LLCT was the Online Tracking Benchmark (OTB) [1], an
authoritative dataset that has been used to compare the performance of other trackers
(Section 4.3.1). It contains 50 sequences and has many challenging attributes. Moreover, we
also evaluated the LLCT performance on the classic evaluation datasets and benchmarks
UAV123 [4] (Section 4.3.2). The proposed tracker was implemented in MATLAB 2016b
on an industrial computer with Intel i7-8700 3.70 GHz CPU and Nvidia GeForce GTX
1080 GPU. The CNN feature was not used to improve the real-time performance of the
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operation, and only manually selected features (histogram of oriented gradients (HOG)
and color names) were used. Therefore, the separate graphics card was disabled to reduce
power consumption.

The regularization parameter λ was 0.01, and the learning rate η was 0.025. The
standard deviation of the Gaussian function output y was 1/16 of the translation target
size. The padding of the filter was twice the size of the initial target. The scale filters were
interpolated from N = 17 scales to N* = 33 scales by interpolation, and the scale factor
a = 1.02 was used. The re-detection threshold Tr was 0.2 for the activation detection module
and Ta = 0.4 for the detection result. Note that the threshold setting here is only a fraction of
the long-term filter fLong. The confidence parameters of the LCT response were 0.9 times the
maximum response and 0.75 times the APCE (or CSRM) response. The long-term memory
template was updated when both its parameters exceeded the set threshold. The purpose
of this was to test the effect of multi-confidence settings on the trackers’ performance. The
exposure control parameter k of the LLCT was 1. The lighting intensity threshold TL = 48.
The number of iterations for the image enhancement was 1 (Section 4.4).

The OTB-2013 dataset [1] results were evaluated by the overlap precision (OP), distance
precision (DP), and tracking speed (FPS). The success plots show the DP rate [0, 1] in
20 pixels and the area-under-the-curve (AUC) of the OP rate.

4.2. Update Strategy Comparison

The image enhancement module and the tracking module are relatively indepen-
dent. Therefore, the calculation time for the image enhancement module is calculated
independently of the demand, so we tested the interval update strategy without the image
enhancement module enabled. The update gap was NS = 1, 3, 5, and the performance
(AUC) was compared using the running speed. The experimental results are presented
in Table 1 and Figure 5. It was found that the best update performance was obtained for
NS = 3, but the running speed was significantly higher for NS = 5. Therefore, the filter was
updated every three frames in the subsequent application. The filter does not perform
interval updates from the first frame. Experience has shown updating after 10–20 frames
substantially improve the tracker’s robustness due to less noise interference [14].

Table 1. Update strategy comparison.

NS AUC FPS

1 (per frame) 58.6% 29.5
3 61.3% 32.8
5 60.6% 37.5

f-DSST 60.0% 173Appl. Sci. 2023, 13, 568 11 of 21 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
u

cc
e

ss
 ra

te

Success plots of OPE

LRCF-3 [0.613]
LRCF-5 [0.606]
fDSST [0.600]
LRCF [0.586]

 
Figure 5. The OTB-2013 benchmark test for the interval update strategy. The effect was obviously 
improved after adding long-term memory filter. In an occlusion environment, the performance 
when NS = 3 was not as good as when NS = 5, presumably because of the occlusion time, and the 
occlusion object is trained as a sample. 

Table 1. Update strategy comparison. 

NS AUC FPS 
1 (per frame) 58.6% 29.5 

3 61.3% 32.8 
5 60.6% 37.5 

f-DSST 60.0% 173 

4.3. Overall Performance on Benchmark Dataset 
4.3.1. Performance on OTB-2013 

The proposed method was compared with the trackers presented by Wang et al. [1] 
and the baseline trackers TLD [29], LCT [18], and fast DSST [39]. Figure 6 presents the 
comparison of our method with the baseline trackers. The proposed method provides su-
perior real-time performance, which an average running speed of 30 FPS. Figure 7 demon-
strates the superiority of the proposed method in difficult tracking scenarios, such as low 
resolution, fast motion, scale variation, and occlusion. Compared with the fast DSST, the 
proposed method shows improvements in the DP of 13.1%, 3.0%, 2.1%, and 6.6%, respec-
tively. It was found that using multiple confidence parameters in the filter updates de-
graded the performance. 

Figure 5. The OTB-2013 benchmark test for the interval update strategy. The effect was obviously
improved after adding long-term memory filter. In an occlusion environment, the performance when
NS = 3 was not as good as when NS = 5, presumably because of the occlusion time, and the occlusion
object is trained as a sample.
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4.3. Overall Performance on Benchmark Dataset
4.3.1. Performance on OTB-2013

The proposed method was compared with the trackers presented by Wang et al. [1]
and the baseline trackers TLD [29], LCT [18], and fast DSST [39]. Figure 6 presents the
comparison of our method with the baseline trackers. The proposed method provides
superior real-time performance, which an average running speed of 30 FPS. Figure 7
demonstrates the superiority of the proposed method in difficult tracking scenarios, such
as low resolution, fast motion, scale variation, and occlusion. Compared with the fast
DSST, the proposed method shows improvements in the DP of 13.1%, 3.0%, 2.1%, and 6.6%,
respectively. It was found that using multiple confidence parameters in the filter updates
degraded the performance.
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Figure 6. Distance precision and overlap success plots of the average overall performance on the
OTB dataset. Temporal robustness evaluation (TRE), spatial robustness evaluation (SRE), and one
pass evaluation (OPE) are presented in this figure. For more details, please refer to [1].
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4.3.2. Performance on UAV123

The proposed tracker was also evaluated on the UAV123 [4] benchmark dataset, which
contains 123 short, challenging videos and 20 long, challenging videos. UAV123 contains
twelve challenging attributes, namely (i) Scale Variation, (ii) Aspect Ratio Change, (iii) Low
Resolution, (iv) Fast Motion, (v) Full Occlusion, (vi) Partial Occlusion, (vii) Out-of-View,
(viii) Background Clutter, (ix) Illumination Variation, (x) Viewpoint Change, (xi) Camera
Motion and (xii) Similar Object.

Figure 8 shows the overlap success rate of the proposed method and the baseline
trackers. Our proposed tracker achieved the second-highest mean overlap success rate of
0.418 and a mean OP of 0.626. The BACF [12] provides the best performance with a slightly
higher success rate, whereas the remaining three trackers, i.e., LRCF [17], fast DSST [39],
and LCT [18], have to mean overlap success rates of 0.382, 0.375, and 0.334, respectively.
The proposed tracker shows considerable performance on UAV123 (Table 2). The LLCT
exceeds the performance of the benchmark trackers (fast DSST and LCT) regarding all
challenging attributes, and its performance is almost the same as that of the SOTA tracker
in the same period.
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Table 2. The average precision on UAV123.

Attribute LLCT LRCF BACF f-DSST LCT

SV 0.555 0.524 0.598 0.517 0.479
ARC 0.510 0.475 0.548 0.477 0.442
LR 0.527 0.488 0.520 0.464 0.420
FM 0.373 0.354 0.493 0.343 0.276

FOC 0.387 0.378 0.425 0.383 0.382
POC 0.530 0.473 0.555 0.466 0.462
OV 0.420 0.407 0.511 0.415 0.398
BC 0.491 0.453 0.513 0.444 0.478
IV 0.495 0.482 0.510 0.482 0.439
VC 0.506 0.486 0.571 0.493 0.444
CM 0.551 0.497 0.618 0.494 0.491
SOB 0.654 0.624 0.668 0.601 0.581

4.4. Experiments in Low-Illumination Environments

We acquired an image sequence in an underground garage to determine the per-
formance of the proposed algorithm under low-illumination conditions. The video was
34 s long and contained 1044 frames. The target was subjected to light changes, out-of-
plane rotation, a similar background, and an almost completely dark area starting in the
800th frame.

The effect of illumination discrimination on image enhancement is shown in Figure 9.
A bright spot occurs in the lower-left corner of the image in the 83rd frame, resulting in a
global brightness value of 120, although the brightness around the target is only 21. The
BB discrimination performs well for image enhancement; the global illumination is 120 in
the 83rd frame. The standard David sequence is calibrated starting in the 300th frame, but
the target is already visible in the 150th frame (Light = 30). This sequence indicates that
the threshold TL does not need to be very high. However, the disadvantage is observed in
the Garage sequence (Figure 3). In Figure 6, which depicts the Garage sequence after the
800th frame, the global illuminance is at the maximum, but the BB illuminance is less than
20. The target cannot be distinguished from the surrounding environment. The exposure
control parameter k was set to 1, and the lighting intensity threshold TL was conservatively
set to 48.
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ferent levels from the original size (3144 × 3078). The results show that the four solvers are 
sufficiently efficient when the image size is smaller than 400. However, the histogram in-
dicates that the LIME solvers (the exact solver and the speed solver) require several sec-
onds to calculate a frame when the image size is small. In contrast, the proposed method 
requires only milliseconds to perform an iterative calculation. For a 720P resolution image, 
the accelerated version is 20 times faster than the accelerated LIME version, and it can run 
at around 60 FPS. Our method is slightly faster than the MATLAB function. When the 
image size exceeds 1000, there is a sharp difference in the time cost between the four en-
hancement methods. The frame rate of our method remains on the order of milliseconds, 
whereas LIME requires seconds. Thus, the accelerated version of the image enhancement 
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Figure 10 presents the comparison of the two modes of LIME, the MATLAB function
imadjust, and the accelerated version, in terms of the time cost. The first graph in Figure 10
presents the comparison curves of the four solvers (accelerated version, imadjust, LIME-
exact, and LIME-speed solvers) in terms of time cost. The sample image is scaled to
different levels from the original size (3144 × 3078). The results show that the four solvers
are sufficiently efficient when the image size is smaller than 400. However, the histogram
indicates that the LIME solvers (the exact solver and the speed solver) require several
seconds to calculate a frame when the image size is small. In contrast, the proposed method
requires only milliseconds to perform an iterative calculation. For a 720P resolution image,
the accelerated version is 20 times faster than the accelerated LIME version, and it can
run at around 60 FPS. Our method is slightly faster than the MATLAB function. When
the image size exceeds 1000, there is a sharp difference in the time cost between the four
enhancement methods. The frame rate of our method remains on the order of milliseconds,
whereas LIME requires seconds. Thus, the accelerated version of the image enhancement
algorithm has a low computational cost, meeting the real-time requirements of mobile
robots equipped with 720P resolution cameras.
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Figure 11 presents the comparison of our tracker (yellow) with the benchmark trackers,
e.g., LRCF [17] (blue), fast DSST [39] (green), and LCT [18] (red). The proposed tracker
was also compared with the SOTA trackers BACF [12] (orange) and ECO [14] (cyan) at
the time and the latest ADT [36] (purple). In the 165th frame (background similarity), the
LCT and ECO fail, following the car after the 320th frame. After the 810th frame (dark
area), the LRCF, fast DSST, and BACF remain in their original positions, and only LLCT
tracks the target to the last frame. Table 3 shows the average operating speed of the trackers
and their performance. The LLCT-E and LLCT-S (LIME-Exact and LIME-Speed version)
have the lowest processing speed of all trackers for the 720P resolution images, and the
LLCT-A (accelerated version) maintains the real-time speed. The LLCT trackers have high
accuracies and success rates, and the other baseline trackers except ADT fail to track in a
dark environment or with similar backgrounds. Thus, the proposed method outperforms
the other SOTA trackers.
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Figure 11. Field experiment in the underground garage. The proposed method performed well in
a low-illumination environment.

Table 3. The average operating speed and performance.

Tracker LLCT-A LLCT-E LLCT-S LRCF f-DSST LCT ECO-HC BACF ADT

FPS 38.9 1.00 4.49 35.6 146 48.59 55.69 40.36 38.04
DP 100% 1 100% 100% 68.8% 32.5% 28.6% 28.4% 67.1% 99.4%
OP 93.2% 95.6% 96.1% 17.1% 27.4% 24.1% 17.7% 46.0% 93.1%

1 Red: the best; Green: the second; Blue: the third. OP: average overlap score with the threshold of 0.5,
DP: average center location error with the threshold of 20 pixels.

Figure 12 shows that the image details obtained from the LIME [43] are excellent,
the noise control is effective, and only one overexposed area occurs on the left side of the
image. The proposed method does not perform well for image noise reduction, and almost
all areas other than the low-illumination area are overexposed. In practical application,
LIME better addresses the restoration of image details. Figures 11 and 12 indicate that
the accurate enhancement method has almost the same target tracking performance as
the “rough” enhancement method when the target is in a dark area. Additionally, the
proposed enhancement method has lower computational complexity and reasonable real-
time performance of the tracker. This means that the tracker does not require hyperfine
samples and can track the target accurately according to the difference between the target
and the background.
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4.5. Field Experiment in A Coal Mine

We conducted a field experiment in a coal mine in Pingdingshan, China, to evaluate
the proposed tracker. The experimental platform was the ZDY4000LK coal mine drilling
robot developed by the China Coal Technology Engineering Group (CCTEG) at the Xi’an
Research Institute. The experimental environment and hardware configuration are shown
in Figure 13. The experiment was conducted at the air shaft of a ventilation roadway in
a coal mine, where the lighting conditions were poor. An intrinsically safe (Ex i) three-
dimensional lidar sensor, an Ex i monocular camera, and two flameproof (Ex d) monocular
cameras were installed at the front of the robot. Two of the cameras faced the wall, and one
was pointed away from the robot. The forward-facing camera was used for real-time image
acquisition, and the data were stored in the rosbag format. Lidar collects 3D point cloud to
provide navigation information for a robot. The image resolution was 1280 × 720 pixels,
and 940 images were acquired. The video data contained challenges such as light changes,
out-of-plane rotation, out-of-view, and fast movement.
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ing target accurately, but some trackers show offsets (e.g., LCT and fast DSST). When the 
target rotates out of the plane around the 500th frame, the LCT and fast DSST lose the 
target, and a target offset occurs in the BACF. When the target moves out of view in the 
600th frame, the LLCT, BACF, and ECO-HC remain at the position where the target dis-
appears. After the target reappears in frame 635, ADT and LLCT reacquire the target. 
Overall, LLCT performed better than ADT. Table 4 shows the quantitative results, which 
indicate that the tracking success rate of the LLCT is higher than that of the other trackers. 
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Figure 13. Field experiment in a coal mine roadway. (A) shows the roadway environment and
the location of the drilling robot. (B) shows the location of the external sensors, which meet the
underground explosion-proof requirements.

In the field experiment, we use the C++ version of the algorithm and it runs in the ROS.
The target area is manually selected in the camera interface. The parameters are slightly
adjusted. We changed the search area shape as “square” instead of “proportional”, and the
search area scale was set as 5. The CSRM confidence was enabled. Other parameters are
consistent with the dataset evaluation.

Figure 14 shows the tracking results of the LLCT, baseline trackers (LCT [18], fast
DSST [39]), and the SOTA (BACF [12], ECO-HC [14], ADT [36]) for tracking a dynamic
object in the downhole environment. The proposed tracker outperforms most of the SOTA
trackers under these conditions. In the first 450 frames, all algorithms can track the moving
target accurately, but some trackers show offsets (e.g., LCT and fast DSST). When the
target rotates out of the plane around the 500th frame, the LCT and fast DSST lose the
target, and a target offset occurs in the BACF. When the target moves out of view in the
600th frame, the LLCT, BACF, and ECO-HC remain at the position where the target disap-
pears. After the target reappears in frame 635, ADT and LLCT reacquire the target. Overall,
LLCT performed better than ADT. Table 4 shows the quantitative results, which indicate
that the tracking success rate of the LLCT is higher than that of the other trackers.
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Table 4. The quantitative performance of the field experiment.

Tracker LLCT f-DSST LCT ECO-HC BACF ADT

FPS 36.6 154 1 51.8 56.7 52.4 35.6
DP 80.8% 8.72% 55.9% 57.1% 47.7% 48.2%
OP 65.3% 7.34% 48.2% 43.9% 38.1% 52.8%

1 Red: the best; Green: the second; Blue: the third. OP: average overlap score with the threshold of 0.5,
DP: average center location error with the threshold of 20 pixels.

Figure 15 shows the comparison of the predicted trajectory obtained from the LLCT
tracker and the actual trajectory. The trajectory tracking strategy refers to MACF [42]. In the
experiments, the depth information is replaced by the scale information of each frame, and
the initial scale is set to Sinit(n) = 1.0, i.e., n = 0. A larger St(n) value means that the target is
closer to the robot. The blue line represents the track fitted by the benchmark center point,
the yellow line is the track fitted by the LLCT at the center of the tracking BB, and the red
line is the filtered track obtained from a Kalman filter. The results in the 2D plane and 3D
space indicate that the LLCT tracker accurately predicts the position and scale of moving
targets in a static background.
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5. Conclusions

To address the impact of low illumination environments on vision tracking algorithms
for coal mine drilling robots. An effective tracker for mobile robot applications, LLCT,
was proposed for long-term VOT in low-illumination environments. The trick of fast
DSST was used to calculate the image correlation instead of the kernel convolution in
LCT, and a projection matrix was incorporated into the traditional DCF filter to reduce the
dimensionality of the extracted sample features. An effective method was proposed for
the detection of target illumination, which allows an accurate estimation of the brightness
around the target. An image enhancement module was added to achieve tracking in low-
illumination environments and proposed a fast image enhancement method, which can run
at a frame rate of around 60 FPS at 720P resolution. The experimental results demonstrated
that the LLCT had good robustness and excellent performance on the OTB-2013 benchmark
and UAV123 benchmark. Finally, a low-light vision tracking system based on the ROS
operating system was designed and successfully applied to a coal mine drilling robot. In
low illumination image sequences, the proposed tracker improves performance by more
than 200% over the baseline tracker and by more than 50% over its contemporaries. A
field experiment was conducted with an underground drilling robot in a coal mine. The
results revealed that the proposed LLCT was superior to other methods for target tracking
in low-illumination environments, and it can track the target trajectory correctly.

In the future, we aim to develop an autonomous detection and tracking system based
on our current work to achieve visual auto-following between the drilling robot and the
drill pipe transporting robot. In addition, the processing speed for large images requires
optimization, and the running speed of the image enhancement module must be improved.
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2. Kristan, M.; Matas, J.; Leonardis, A.; Vojíř, T.; Pflugfelder, R.; Fernandez, G.; Nebehay, G.; Porikli, F.; Čehovin, L. A novel
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