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Abstract: Feature selection is an NP-hard problem to remove irrelevant and redundant features
with no predictive information to increase the performance of machine learning algorithms. Many
wrapper-based methods using metaheuristic algorithms have been proposed to select effective
features. However, they achieve differently on medical data, and most of them cannot find those
effective features that may fulfill the required accuracy in diagnosing important diseases such as
Diabetes, Heart problems, Hepatitis, and Coronavirus, which are targeted datasets in this study. To
tackle this drawback, an algorithm is needed that can strike a balance between local and global search
strategies in selecting effective features from medical datasets. In this paper, a new binary optimizer
algorithm named BSMO is proposed. It is based on the newly proposed starling murmuration
optimizer (SMO) that has a high ability to solve different complex and engineering problems, and it is
expected that BSMO can also effectively find an optimal subset of features. Two distinct approaches
are utilized by the BSMO algorithm when searching medical datasets to find effective features.
Each dimension in a continuous solution generated by SMO is simply mapped to 0 or 1 using
a variable threshold in the second approach, whereas in the first, binary versions of BSMO are
developed using several S-shaped and V-shaped transfer functions. The performance of the proposed
BSMO was evaluated using four targeted medical datasets, and results were compared with well-
known binary metaheuristic algorithms in terms of different metrics, including fitness, accuracy,
sensitivity, specificity, precision, and error. Finally, the superiority of the proposed BSMO algorithm
was statistically analyzed using Friedman non-parametric test. The statistical and experimental
tests proved that the proposed BSMO attains better performance in comparison to the competitive
algorithms such as ACO, BBA, bGWO, and BWOA for selecting effective features from the medical
datasets targeted in this study.

Keywords: disease diagnosis; medical data; feature selection; binary metaheuristic algorithms;
starling murmuration optimizer (SMO); transfer function

1. Introduction

With recent advancements in medical information technology, a huge volume of
raw medical data is rapidly generated from different medical resources such as medical
examinations, radiology, laboratory tests, mobile health applications, and wearable health-
care technologies [1–3]. Extracting informative knowledge from these medical data using
artificial intelligence and machine learning algorithms can help in faster treatment and
significantly reduce patient mortality rates [4,5]. Application of these algorithms in some
diseases such as Diabetes, Heart problems, Hepatitis, and Coronavirus is more common
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than others due to their high epidemic and mortality rates, expensive tests, and the require-
ment of special experience [6–8]. One of the main challenges in such disease datasets is
the existence of redundant and irrelevant features [9], which can decrease the effectiveness
of disease diagnosis systems. In medical data mining and machine learning [10,11], one
of the most crucial preprocessing steps is feature selection, which eliminates redundant
and irrelevant features to uncover effective ones. Since there are 2N distinct feature subsets
in a dataset with N features, the feature selection problem is NP-hard [12,13]. Therefore,
evaluating all feature subsets to find effective features is very costly, and if each feature is
added to the dataset, then the complexity will be doubled [13,14].

Filter-based, wrapper-based, and embedded methods are the three main categories
of feature selection techniques [15,16]. The classification algorithm is not involved in
filter-based methods, which typically operate based on feature ranking. Wrapper-based
methods use a classifier algorithm to evaluate individual candidate subsets of features
as opposed to filter-based methods [17,18]. Embedded methods combine the qualities
of filter and wrapper methods, and the feature selection algorithm is integrated as part
of the learning algorithm [16]. Many wrapper feature selection methods based on meta-
heuristic algorithms have been proposed [15,16] that can effectively solve feature selection
problems as an NP-hard problem in a reasonable response time [19,20]. The main goal
of using metaheuristic algorithms is to search the feature space and find near-optimal
solutions effectively. Metaheuristic algorithms are recognized as robust problem solvers to
solve a variety of problems with different types, such as continuous [21], discrete [22–24],
and constraint [25,26]. Particle swarm optimization (PSO) [27], ant colony optimization
(ACO) [28], differential evolution (DE) [29], cuckoo optimization algorithm (COA) [30],
krill herd (KH) [31], social spider algorithm (SSA) [32], crow search algorithm (CSA) [33],
grasshopper optimization algorithm (GOA) [34], quantum-based avian navigation opti-
mizer algorithm (QANA) [35] and African vultures optimization algorithm (AVOA) [36]
are some of the successful metaheuristic algorithms that are promisingly developed to
solve feature selection problems.

Many metaheuristic-based methods have been proposed to select features from med-
ical data [37–39]. However, a few of them can select effective features that may provide
acceptable accuracy in diagnosing all the targeted diseases in this study, including Diabetes,
Heart problems, Hepatitis, and Coronavirus [40]. The main reason for this drawback is
generating and storing many irrelevant and redundant features in the medical processes,
which reduces the efficiency of classification algorithms used in disease diagnosis systems.
Therefore, a metaheuristic algorithm is needed to select useful and effective features from
medical datasets by striking a proper balance between local and global search strategies.
Responding to this need, particularly for the datasets targeted in the scope of this study, is
our motivation to introduce binary versions of the newly proposed starling murmuration
optimizer (SMO) algorithm [41], which can balance between its search strategies efficiently.
The SMO algorithm uses a dynamic multi-flock construction and three search strategies:
separating, diving, and whirling. Starlings in large flocks turn, dive, and whirl across the
sky in SMO. The separating search strategy enriches population diversity by employing
the quantum harmonic oscillator. With the help of a quantum random dive operator, the
diving search strategy enhances the exploration. In contrast, the whirling search strategy
significantly uses cohesion force in the vicinity of promising regions. The SMO algorithm
has shown a high ability to solve different complex and engineering problems, but it was
not yet developed for solving feature selection problems. The binary version of SMO or
BSMO is expected to effectively solve the feature selection problem.

The BSMO algorithm generates candidate subsets of features using two different
approaches. The first approach develops binary versions of BSMO using several S-shaped
and V-shaped transfer functions. In contrast, in the second approach, BSMO maps each
dimension in a continuous solution generated by SMO to 0 or 1 using a variable threshold
method. The scope of this study is limited to selecting effective features from four targeted
datasets consisting of Diabetes, Heart, Hepatitis, and Coronavirus. The performance of the
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BSMO’s variants is assessed on targeted datasets in terms of fitness, accuracy, sensitivity,
specificity, precision, and error. The results are contrasted with competing binary algorithms
like the ant colony optimization (ACO) [28], binary bat algorithm (BBA) [42], binary grey
wolf optimization (bGWO) [43], and binary whale optimization algorithm (BWOA) [39].
The main contributions of this study can be summarized as follows.

• Developing the BSMO algorithm as a binary version of the SMO algorithm.
• Transferring the continuous solutions to binary ones effectively using two different

approaches, including S-shaped and V-shaped transfer functions and value threshold
method.

• Evaluating BSMO on medical datasets targeted in this study and comparing its perfor-
mance with other popular feature selection algorithms.

• Finding satisfactory results in selecting effective features from the targeted medical
datasets.

The rest of this paper is organized as follows. The related works are reviewed in
Section 2. A description of the standard SMO algorithm is presented in Section 3. The
details of the proposed BSMO algorithm are presented in Section 4. Section 5 includes the
experimental evaluation and the comparison between the proposed BSMO and contender
algorithms. Section 6 concludes this study and its finding, and suggests some future works.

2. Related Works

Real-world optimization problems have different properties and involve various intri-
cacies, creating critical challenges for optimization algorithms in solving them. Generally,
optimization problems in mechanical and engineering applications are mostly faced with
multiple properties, such as linear and non-linear constraints in decision variables, non-
differentiable objectives, and constraint functions. Therefore, many constraint-handling
methods, such as penalty functions, static, dynamic, annealing, adaptive, co-evolutionary,
and the death penalty, are developed to cope with such challenges [44]. The other opti-
mization problems, especially in feature selection applications, mostly involve different
intricacies such as discrete search spaces, existing irrelevant and redundant features, and
high dimensionality feature space. Feature selection is a common way in preprocessing
phase to cope with such intricacies by selecting only a small subset of relevant features
from the original dataset [45,46]. Feature selection reduces the feature space’s dimension-
ality, speeds up the learning process, simplifies the learned model, and boosts classifier
performance by eliminating redundant and irrelevant features [47–49].

The topic of feature selection is presented as a binary optimization problem with
the conflicting objectives of reducing the number of features and enhancing classification
accuracy. Each solution is presented by a D-dimensional binary vector that only has the
two values 0 and 1, where 0 signifies that the corresponding feature is not selected, and 1
indicates that it is selected. The number of dimensions in this binary vector corresponds
to the number of features in the initial feature dataset. In many machine learning and
data mining tasks, including intrusion detection [50–53], spam detection [54,55], financial
problem prediction [56], and classification [57–59]. Particularly, finding an optimal subset
of features from medical datasets is a challenging problem that many researchers have
recently considered. Metaheuristic algorithms are recognized as prominent problem-solver
to solve optimization problems especially feature selection. Based on the source of their
inspiration, metaheuristic algorithms may be divided into eight groups: physical-based,
biology-based, swarm-based, social-based, mu-sic-based, sport-based, chemistry-based,
and math-based [60–62]. Since most metaheuristic algorithms are proposed for continuous
problems, many binarization methods such as logical operators, variable threshold methods
and transfer functions, are developed to map the continuous feature space to the binary one.
In the literature, the most famous transfer functions are S-shaped [63], V-shaped [64–66],
U-shaped [67,68], X-shaped transfer function [69], and Z-shaped [70]. This section presents
an overview of the most recent related works on metaheuristics for the wrapper feature
selection problem in medical data classification.
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Nadimi-Shahraki et al. [40] proposed an improved whale optimization algorithm
called BE-WOA. In BE-WOA, a pooling mechanism and three effective search strategies,
migration, preferential selection, and surrounded prey, are used to improve the WOA to
select effective features from medical datasets. BE-WOA also applied to predict Coronavirus
2019 disease or COVID-19. The obtained results prove the efficiency of the BE-WOA
algorithm. The gene selection technique is used for high-dimensional datasets where the
number of samples is small, and the number of features is large. Finding the best feature
subset in a dataset is the process of gene selection [71]. For gene selection, Alirezanejad
et al. [72] developed two Xvariance heuristics against mutual congestion. This approach
involves ranking the features first. Then, using Monte’s cross-validation, ten subsets
of features are chosen based on forward feature selection (FFS). To enhance the results,
majority voting is applied to the features selected in the prior stage to calculate accuracy,
sensitivity, specificity, and matthews correlation coefficient.

Asghari Varzaneh et al. [73] proposed a new COVID-19 intubation prediction strategy
using the binary version of the horse herd optimization algorithm to select the effective
features. The results of the tests showed that the proposed feature selection method is
better than other methods. Pashaei et al. [74] introduced two binary variations of the chimp
optimization algorithm using S-shaped and V-shaped transfer functions for biomedical
data classification. In a recent study, Nadimi-Shahraki et al. [75] proposed the binary
version of the quantum-based avian navigation optimizer algorithm (BQANA) to select
the optimal feature subset from high-dimensional medical datasets. The reported results
show that the BQANA using a threshold method can dominate all contender algorithms.
Alweshah et al. [76] proposed the greedy crossover (GC) operator strategy to boost the
exploration capability of the coronavirus herd immunity optimizer (CHIO). Then, some
medical datasets were used to evaluate the performance of the proposed algorithm in
addressing the feature selection problem in the field of medical diagnosis. The results
indicated that the GC operator strikes a balance between the search strategies of the
CHIO algorithm.

For challenges involving medical feature selection, Anter et al. [77] proposed a hybrid
crow search optimization algorithm combined with chaos theory and a fuzzy c-means
algorithm (CFCSA). The suggested algorithm avoids local optima and improves the CSA’s
convergence using chaos theory and the global optimization method. The test results
show the efficiency and stability of CFCSA for solving medical data and real problems.
Singh et al. [78] proposed a hybrid ensemble-filter wrapper feature selection algorithm
to improve the performance of classifiers in medical data applications. In this algorithm,
first, the filter-based method is used based on the weight points to produce the ranking of
the features. Then, the sequential forward selection algorithm is used as a wrapper-based
feature selection to generate an optimal feature subset. To propose the binary version of
the atom search optimization algorithm (ASO), Too et al. [79] applied four S-shaped and
four V-shaped transfer functions to solve the feature selection problem. Among the eight
presented binary versions, BASO based on the S1–shaped transfer function has the highest
performance. Moreover, Mirjalili et al. [67] proposed a new binary version of the PSO
algorithm using a U-shaped transfer function to transform continuous velocity values into
binary values. The results show that U-shaped transfer functions significantly increase the
performance of BPSO.

Elgamal et al. [80] enhanced the reptile search optimization algorithm (RSA) by em-
ploying the chaotic map and simulated annealing algorithm to tackle feature selection
issues for high-dimensional medical datasets. Applying chaos theory to RSA improves its
exploration ability, and hybridizing RSA with the simulated annealing algorithm can avoid
local optima trapping. Many metaheuristic algorithms have been proposed to solve feature
selection problems, such as binary ant lion optimizer (BALO) [81], return-cost-based binary
firefly algorithm (Rc-BBFA) [82], chaotic dragonfly algorithm (CDA) [83], binary chimp op-
timization algorithm (BChOA) [84], altruistic whale optimization algorithm (AltWOA) [85],



Appl. Sci. 2023, 13, 564 5 of 26

binary African vulture optimization algorithm (BAVOA) [86], and binary dwarf mongoose
optimization algorithm (BDMSAO) [87].

Studying related works shows that various metaheuristic algorithms have been used
to select effective features from medical data. However, most of them cannot find effective
features for providing an acceptable diagnosis of important diseases such as Diabetes,
Heart, Hepatitis, and Coronavirus. To respond to this weakness, the BSMO algorithm
is introduced to develop a new wrapper feature selection method for these diseases in
this study.

3. Starling Murmuration Optimizer (SMO)

SMO is a population-based metaheuristic algorithm recently developed by Zamani
et al. [41]. The SMO algorithm is modeled the starlings’ behavior during their stunning mur-
muration using three new search strategies, separating, diving, and whirling. The starling’s
population is denoted by S = {s1, s2, . . . , sN}where N is the population size. The position
of each starling si at iteration t is denoted using a vector Xi(t) = (xi,1, xi,2, . . . , xi,D) and
its fitness value is expressed by Fi(t). In first iteration, each Xi(t) is initiated by a uniform
random distribution in a D-dimensional search space using Equation (1), where XL and XU

are lower and upper bounds of the search space, respectively and rand (0, 1) is a random
value between 0 and 1.

Xi(t) = XL + rand(0, 1)× (XU − XL), i = 1, 2, . . . ., N (1)

For the rest of the iterations, the population of starlings is moved using the separating,
diving, and whirling search strategies. The details of these search strategies are discussed
in the following sections.

3.1. Separating Search Strategy

The separation search strategy is promoted diversity throughout the population. In
this strategy, first, a portion of starlings with size Psep are randomly selected to separate
from population S using Equation (2). Then, some dimensions of the selected starlings are
updated using Equation (3), where XG(t) is the global best position, and Xr(t) is randomly
selected from a population S. In each iteration, the best position obtained so far is stored,
then these positions are joined with the separated positions with size Psep, ultimately Xr′(t)
is randomly selected from these sets. Q1(y) is a separation operator which is calculated
using Equation (4), where α is the quantum harmonic oscillator, parameters m and k are
the particle’s mass and strength, respectively and the parameter h is Planck’s constant.
Moreover, the function Hn is the Hermite polynomial with integer index n, and y is a
random number.

Psep =
log(t + D)

log(MaxIt)× 2
(2)

Xi(t + 1) = XG(t) + Q1(y)× (Xr′(t)− Xr(t)) (3)

Q1(y) =
(

α

2n × n!× π
1
2

) 1
2
Hn(α× y)× e−0.5×α2×y2

, α =

(
m× k
}

) 1
4

(4)

The rest of the starlings with a size of Ń (N − Psep) is flocked using dynamic multi-flock
construction to search the problem space using either diving or whirling search strategies.
Each iteration creates a dynamic multi-flock using k non-empty flocks f1 . . . fk. First, k best
starlings are separated from the population Ń and stored in matrix R, then the rest of the
population (Ń-R) is divided among the k flocks. Finally, each position of R assigns to each
flock such that f1← {R1 U f1}, . . . , fk← {Rk U fk}.

As shown in Equation (6), the diving and whirling search strategies are assigned to
the flocks based on the quality of each flock. The quality of each flock (Qq (t)) is evaluated
using Equation (5), where k is the number of flocks, sfij (t) is the fitness value of the starling
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si in the flock fj, and n is the number of starlings in each flock. The parameter µQ (t) in
Equation (6) denotes the average of all flock’s quality.

Qq(t) =
∑k

i=1
1
n ∑n

j=1 s fij(t)
1
n ∑n

i=1 s fqi(t)
(5)

Xi(t + 1) =


Diving search strategy Qq(t) ≤ µQ(t)

Whirling search strategy Qq(t) > µQ(t)
(6)

3.2. Diving Search Strategy

The diving search strategy is encouraged the selected flocks (Qq (t) ≤ µQ (t)) to
explore the search space effectively. The starlings are moved using upward and downward
quantum random dives (QRD). The starlings of a flock switch among these quantum dives
using two quantum probabilities shown in Equation (7), where

∣∣ψUp(Xi)
∣∣ and

∣∣ψDown(Xi)
∣∣

are the upward and downward probabilities that are computed using Equations (8) and (9).
Parameters ϕ and θ are set by the user, and |ψ(δ2) 〉 is an inverse-Gaussian distribution that
is computed using Equation (10), where the values of λ and µ are set by the user, and y is a
random number.

QRD =


Upward quantum dive

∣∣ψUp(Xi) >
∣∣ψDown(Xi)

∣∣
Downward quantum dive

∣∣ψUp(Xi)
∣∣≤∣∣ψDown(Xi)

∣∣ (7)

|ψUp(Xi)〉 = eiϕ cos θ × |ψ(δ2)〉 − e−iϕ sin θ × |ψ(δ2)〉 (8)

|ψDown(Xi)〉 = eiϕ sin θ × |ψ(δ2)〉+ e−iϕ cos θ × |ψ(δ2)〉 (9)

|ψ(δ2)〉 =
√

λ

2× π × y3 × e

[
− λ(y− µ)2

2× µ2 × y

]
(10)

The downward and upward quantum dives are computed using Equations (11) and
(12), respectively, where |ψ(RD)〉 is selected from set R, |ψ(Xi)〉 is the position of starling si
in the current iteration, the position of |ψ(Xr)〉 is randomly selected among flocks assigned
for diving strategy,

∣∣ψ(Xj
)
〉 is randomly selected from the population S and the best

starlings set. |ψ(δ1)〉 is a random position selected from the best starlings set obtained
from the first iteration so far and the starling population S.

|ψ(t + 1, Xi)〉 = |ψ(RD)〉 − |ψDown(Xi)〉 × (|ψ(Xi)〉 − |ψ(Xr)〉) (11)

|ψ(t + 1, Xi)〉 = |ψ(RD)〉+ |ψUp(Xi)〉 ×
(
|ψ(Xi)〉 − |ψ

(
Xj
)
〉+ |ψ(δ1)〉

)
(12)

3.3. Whirling Search Strategy

Starlings of a flock exploit the search problem using the whirling search strategy when
the quality of the flock is more than the average quality of all flocks (Qq (t) > µQ (t)). The
whirling search strategy is denoted in Equation (13), where Xi (t+1) is the next position of
starling si at iteration t, a position XRW (t) is randomly selected from set R of flocks that are
considered for the whirling search strategy, XN (t) randomly selected from all flocks that
want to use the whirling search strategy. Ci (t) is the cohesion operator which is calculated
using Equation (14), where ξ (t) is a random number between intervals 0 and 1.

Xi(t + 1) = Xi(t) + Ci(t)× (XRW(t)− XN(t)) (13)

Ci(t) = cos(ξ(t)) (14)

The pseudocode of the SMO algorithm is shown in Algorithm 1.
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Algorithm 1: Starling Murmuration Optimizer (SMO)

Input: N (Population size), k (Flocks size), and MaxIt (Maximum iterations).
Output: Global best solution.

1: Begin
2: Randomly distributed N starlings in the search space.
3: Set t = 1.
4: While t ≤MaxIt
5: Separating a portion of starlings with size Psep from the population using Equation (2).
6: The rest of the population is flocked into k flocks using the dynamic multi-flock construction.
7: Computing the quality of each flock (fq) using Equation (5).
8: For q = 1: k
9: If Qq (t) ≤ µQ (t)
10: Moving starlings of the flock fq using the diving strategy.
11: Else
12: Moving starlings of the flock fq using the whirling strategy.
13: End if
14: End for
15: Update the position of starlings and global best solution.
16: t = t + 1.
17: End while
18: Return position of best starling as a global best solution.
19: End

4. Binary Starling Murmuration Optimizer (BSMO)

SMO is a new metaheuristic algorithm that effectively solves various engineering and
complex problems. However, the ability of the SMO algorithm to solve feature selection
problems has not been studied yet, which is the motivation of this study. In this study, a
binary starling murmuration optimizer (BSMO) is proposed to select effective features from
the datasets of four important targeted diseases consisting Diabetes, Heart problems, Hep-
atitis, and Coronavirus. The proposed BSMO is developed using two different approaches.
The first approach uses S-shaped and V-shaped transfer functions, whereas the second
approach maps the continuous search space to 0 or 1 using a threshold value.

Suppose matrix X is to represent the population of starlings in the BSMO, then Figure 1
shows the representation scheme of the proposed BSMO algorithm in solving the feature
selection problem. Figure 1a–c show starling Si, binary vector Bi, and the selected feature
set SFi. Each starling Si is transformed using different transform functions to the binary
vector Bi in which the value of 1 for each element means the corresponding feature should
be selected to form the selected feature set SFi. Accordingly, the BSMO algorithm uses the
fitness function defined in Equation (15) [83,88].

Fiti = αE + β
|SFi|

D
(15)

where E determines the error rate of the classification algorithm, |SFi| and D are the number
of the selected feature in a subset of SFi, and the total features in the dataset, respectively.
α and β = 1− α are two constant values to control the significance of the classification
accuracy and feature subset reduction, respectively. Since the accuracy is more important of
the number of features, usually β is very smaller than α, in this study, α = 0.99 and β = 0.01,
according to [89].
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4.1. BSMO Using S-Shaped Transfer Function (S-BSMO)

This method uses the sigmoid transfer function (S-shape) to map the continuous to
the binary version of the SMO algorithm. Therefore, updating the position of the starlings
by the transfer functions S will cause them to be in a binary search space, and their position
vector will only take the values of “0” or “1”. The sigmoid function S2 formulated in
Equation (16) first used in BPSO to develop a binary PSO [89,90].

S
(

xd
i (t + 1)

)
=

1

1 + e−xd
i (t)

(16)

where xd
i (t) and S

(
xd

i (t + 1)
)

show the position and probability of changing the binary

position value of the search agent ith in dimension d in the tth iteration, respectively. Since
the calculated value of S is still in continuous mode, it must be compared with a threshold
value to create binary mode. Therefore, the new position of the search agent is updated
using Equation (17), where bd

i (t + 1) is a binary position of ith search agent in dimension d,
and r is a random value between 0 and 1.

bd
i (t + 1) =

0 i f r < S
(

xd
i (t + 1)

)
1 i f r ≥ S

(
xd

i (t + 1)
) , (17)

In addition to the transfer function S2 introduced in Equation (16), three other types
of S-shaped transfer functions, including S1, S3, and S4 have been used. All four transfer
functions are formulated in Table 1. Moreover, all these transfer functions are shown
visually in Figure 2. According to the figure, as the slope of the transfer function S increases,
the probability of changing the position value increases. Therefore, S1 obtains the highest
probability, and S4 obtains the lowest probability, effectively updating agents’ position and
finding the optimal solution.

Table 1. The formulation of S-shaped and V-shaped transfer functions.

Name S-Shaped Transfer Functions Name V-Shaped Transfer Functions

S1-shaped T(x) = 1
1+e−2x V1-shaped T(x) =

∣∣∣erf
(√

π
2 x
)∣∣∣

S2-shaped T(x) = 1
1+e−x V2-shaped T(x) = |tan h(x)|

S3-shaped T(x) = 1
1+e

−x
2

V3-shaped T(x) =
∣∣∣ x√

1+x2

∣∣∣
S4-shaped T(x) = 1

1+e
−x
3

V4-shaped T(x) =
∣∣∣ 2

π arctan
(

π
2 x
)∣∣∣
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4.2. BSMO Using V-Shaped Transfer Function (V-BSMO)

In this approach, the V-shaped transfer function is used to calculate the probability
of changing the position of the agents in the SMO algorithm. Probability values are
calculated using the V-shaped (hyperbolic) transfer function by Equation (18) [64], where
xd

i (t) indicates the position value of the ith search agent in dimension d at iteration t.

V
(

xd
i (t + 1)

)
=
∣∣∣tanh

(
xd

i (t)
)∣∣∣ (18)

Considering that the V-shaped transfer function is different from the S-shaped transfer
function, after calculating the probability values, the Equation (19) [64] is used to update
the position of each search agent.

bd
i (t + 1) =


xd

i (t)
−1 i f r < V

(
xd

i (t + 1)
)

xd
i (t) i f r ≥ V

(
xd

i (t + 1)
) (19)

where, bd
i (t + 1) indicates the binary position of the ith search agent at iteration t + 1 in

dimension d. Moreover, xd
i (t)

−1 indicates the complement of xd
i (t). In addition, r is a

random number in [0,1]. Unlike the S-shaped transfer function, the V-shaped transfer
function does not force the search agents into 0 or 1. According to Equation (19), if
the value of V is small and less than the value of r, the binary position of the search
agents in dimension d will not change. On the other hand, if the calculated value of
the transfer function is greater than or equal to the value r, the position of the search
agents is changed to the complement of the current binary position. Table 1 formulates the
mathematical equations of transfer functions V1, V2, V3, and V4, and Figure 2 represents
transfer functions visually. According to Figure 2, V1 has the highest probability, and
V2, V3, and V4 have lower probability values for moving the positions of search agents,
respectively [89].

4.3. BSMO Using Variable Threshold Method (Threshold-BSMO)

In this section, the SMO transforms the continuous solutions into the binary form
using the variable threshold method defined in Equation (20), where bd

i (t + 1) is a new
binary position of the ith search agent, and a variable threshold θ is 0.5 that is set by the user.

bd
i (t + 1) =


1 i f xd

i (t + 1) > θ

0 i f xd
i (t + 1) ≤ θ

(20)



Appl. Sci. 2023, 13, 564 10 of 26

Figure 3 represents the flowchart of the proposed BSMO algorithm, which is a binary
version of the SMO algorithm to solve the feature selection problem. As shown in this figure,
the optimization process is started by initializing the input variables, including a maximum
number of iterations (MaxIt), population size (N), problem size (D), and flocks size (k). First,
N starlings are randomly distributed in a D-dimensional search space. Then, a portion of
starlings (Psep) using Equation (2) are randomly selected to separate from the population
and explore the search space using the separating strategy defined in Equation (3). The
rest of the starlings are partitioned between different flocks to exploit the search space
using the whirling strategy defined in Equation (13) or explore using the diving strategy
defined in Equation (7). The obtained solutions from such search strategies are mapped
to binary using two binarization approaches demonstrated in Table 1 and Equation (20).
The obtained solutions are restricted to binary values 0 or 1 using Equations (17), (19), and
(20). Finally, the solutions are evaluated using Equation (15). The optimization process is
repeated until the termination condition, or MaxIt, is satisfied, and the global best solution
is reported as the output variable.

4.4. The Computational Complexity of the BSMO Algorithm

Since BSMO has six distinct phases: initialization, separating search strategy, multi-
flock construction, diving or whirling search strategy, mapping, and fitness evaluation,
its computational complexity can be computed as follows. The initialization phase’s com-
putational complexity is O (ND), considering N starlings are randomly allocated in a
D-dimensional search space using Equation (1). Then, a portion of the starlings is randomly
selected using Equation (2) to explore the search space with computational complexity O
(ND). The cost of the multi-flock construction phase to build k flocks by partitioning N
starlings is O (NlogN + k). In the next phase, the cost of each flock containing n subpopula-
tion for determining its quality utilizing Equation (5) is O (nD), and for moving by either
diving or whirling search strategy is also O (nD). Thus, the overall complexity of this phase
is O (knD) or O (ND) in the worst case. In the mapping phase, the continuous solutions
are transformed into binary ones based on Table 1 and Equation (20) with computational
complexity O (ND). Finally, in the fitness evaluation phase, the quality of binary solutions
is assessed using Equation (15), consisting of a K-fold cross-validation method, k-NN
classifier, and updating. The computational complexity of a K-fold cross-validation method
with M samples is O (KM). Since K is a constant value, complexity equals O (M). The k-NN
classifier with M samples and D features for training the classifier is O (MD), and the
complexity of updating is O (ND). Since these phases are repeated T times, therefor the
summation of the computational complexity of BSMO is O (ND + T (ND + (NlogN+k) + ND
+ ND + M + MD + ND)), which is equal to O (TD (N+M)).
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5. Experimental Evaluation

The performance of the proposed BSMO algorithm is assessed in finding the optimal
feature subset from targeted datasets, Diabetes, Heart, Hepatitis, and Coronavirus diseases
2019, downloaded from [91,92]. Then, the nine BSMO variants’ outcomes are then compared
with those of competitive algorithms, ACO [28], BBA [42], bGWO [43], and BWOA [39].
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All experiments are run under the same experimental conditions. MATLAB R2019b
programming language is considered for implementing the BSMO and running all com-
parative algorithms. All experiments are run using an Intel (R) Core (TM) i5-3770 CPU,
3.4 GHz, 8 GB RAM, and Windows 10 with the 64-bit operating system.

5.1. Parameter Settings of Algorithms and k-NN Classifier

In this study, the k-nearest neighbor (k-NN) classifier with k = 5 is used to classify the
feature subsets in all algorithms [93]. To learn the k-NN classifier, each dataset is randomly
partitioned using a K-fold cross-validation method into training and testing sets, where K
is a constant value equal to 10. One fold is used for the testing set, and the K−1 folds are
applied for the training set [94,95].

For a fair comparison, all results were obtained under the same experimental condi-
tions. The common parameters in BSMO and comparative algorithms, such as termination
criterion and population size (N), are the same. In most optimization algorithms, the termi-
nation criterion is defined using the maximum number of iterations (MaxIt) or maximum
function evaluations (MaxFEs), where MaxIt = MaxFEs/N and it is set to 300 and N is 30.
Due to the stochastic nature of the algorithms, all simulations and obtained results are
conducted with 15 independent runs. All results are reported using the standard statistical
metrics maximum (Max), average (Avg), and minimum (Min) values. In each table, the best
result is highlighted in boldface.

Table 2 shows the values of parameters used for BSMO and other comparative al-
gorithms. The parameter values of all contender algorithms were set as same as their
original papers. Moreover, a sensitivity analysis on key parameters of the BSMO algorithm,
such as flock size (k), and population size (N), is performed to tune the values of these
parameters using the offline parameter tuning method. The tuning results were reported in
Tables A1–A6 of Appendix A in terms of fitness, error, accuracy, sensitivity, specificity, and
precision metrics.

Table 2. Parameters setting.

Algorithms Parameters

ACO τ = 1, η = 1, ρ = 0.2, α = 1, and β = 0.1
BBA Qmin = 0 and Qmax = 2

bGWO a linearly decreases from 2 to 0, C1, C2, and C3 are a random numbers
BWOA a linearly decreases from 2 to 0, b = 1, r1 and r2 ∈ rand (0, 1)
BSMO k = 5, λ = 20, µ = 0.5, θ and φ ∈ (0, 1.8)

5.2. Evaluation Criteria

The performance of proposed BSMO and contender algorithms are assessed using
evaluation criteria such as fitness, accuracy, sensitivity, specificity, precision, and error.
The fitness evaluation metric is computed using Equation (15). The accuracy, sensitivity,
specificity, precision, and error are calculated using Equations (21)–(25) [96,97]. In these
equations, parameters TP and TN specify the number of positive and negative samples that
are correctly classified by the classifier, respectively. FN is the number of positive samples
incorrectly predicted as negative, and FP is the number of negative samples incorrectly
predicted as positive using a classifier [98].

Accuracy =
TP + TN

TP + TN + FP + FN
(21)

Sensitivity =
TP

TP + FN
(22)

Specificity =
TN

TP + FN
(23)

Precision =
TP

TP + FP
(24)
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The error metric is computed using the mean square error (MSE) denoted in Equa-
tion (25), where N is the number of samples, yi is the observed values and ŷi is the predicted
value. Moreover, evaluating the proposed algorithm does not use any constraint handling
methods since no constraints are considered in the feature selection problem.

Error =
1
N

N

∑
i=1

(yi − ŷi)
2 (25)

5.3. Numerical Results and Discussion

In this section, the simulation results of the proposed BSMO algorithm are presented
on targeted medical datasets.

5.3.1. Comparison of Algorithms to Detect Diabetes Disease

The Pima Indian Diabetes dataset [91] consists of eight features, 268 samples with
diabetes-positive labeling and 500 samples with diabetes-negative. The objective of this
dataset is to detect whether or not a patient has diabetes. Table 3 shows that the proposed
Threshold-BSMO can achieve the best performance compared to all comparative algorithms.

Table 3. Diabetes disease detection.

Algorithms
Fitness Accuracy Sensitivity Precision Specificity Error

Avg Min Avg Max Avg Max Avg Max Avg Max Avg Min

ACO 0.2384 0.2318 76.5109 77.0865 85.2345 86.6173 60.1832 64.0414 79.9663 82.1451 0.2351 0.2291
BBA 0.2331 0.2281 76.9974 77.4675 86.4089 88.748 79.8734 83.4279 59.365 63.0096 0.23 0.2253

bGWO 0.2295 0.2253 77.3573 77.8725 86.2124 89.3135 80.0664 83.5267 59.8209 65.9114 0.2264 0.2213
BWOA 0.2386 0.2344 76.4744 76.825 85.8432 87.8664 79.8754 82.3961 59.5944 64.961 0.2353 0.2317

S1-BSMO 0.2342 0.2266 76.9719 77.7409 88.5142 89.8454 83.2288 84.242 65.9602 68.2916 0.2504 0.2382
S2-BSMO 0.2352 0.2267 76.8537 77.7341 88.2422 89.2631 83.1426 84.2726 65.7932 68.023 0.2516 0.2369
S3-BSMO 0.2373 0.2291 76.6101 77.4897 88.1787 90.1796 82.925 84.4974 65.5806 67.8662 0.2508 0.2397
S4-BSMO 0.2368 0.2291 76.6654 77.4863 88.3085 89.7088 82.764 83.8476 65.0295 66.8104 0.2533 0.2384
V1-BSMO 0.2344 0.2294 76.889 77.3411 88.2848 89.7132 83.1764 86.1848 65.7345 70.5787 0.2552 0.2422
V2-BSMO 0.2343 0.2266 76.8872 77.6128 88.6261 90.0085 82.9072 83.761 65.7846 67.6503 0.2548 0.2345
V3-BSMO 0.2353 0.2306 76.7716 77.2163 88.245 89.6911 83.1812 84.5091 66.0204 69.1626 0.2547 0.2383
V4-BSMO 0.2335 0.2292 76.9639 77.471 88.1009 89.484 83.2658 84.4214 66.2564 69.1896 0.2534 0.2383

Threshold-BSMO 0.2306 0.2229 77.3077 77.9904 89 89.9871 83.5823 84.7376 66.6321 69.2028 0.253 0.2408

5.3.2. Comparison of Algorithms to Detect Heart Disease

The Statlog (Heart) dataset [91] consists of 13 features and 270 samples without no
missing values to detect the absence or presence of heart disease. In this dataset 120 of the
samples are labeled with the presence of heart disease and 150 samples are labeled with
the absence of this disease. The performance of the proposed BSMO with nine variants is
assessed and compared with well-known optimizers to diagnose heart disease. The results
in Table 4 show that the proposed Threshold-BSMO can obtain a minimum fitness value of
0.1322 and a maximum accuracy of 87.037 than other algorithms.

Table 4. Heart disease detection.

Algorithms
Fitness Accuracy Sensitivity Precision Specificity Error

Avg Min Avg Max Avg Max Avg Max Avg Max Avg Min

ACO 0.147 0.1387 85.4815 86.2963 88.8186 94.1537 86.8452 89.665 82.7764 86.6325 0.1452 0.137
BBA 0.1414 0.1380 86.0123 86.2963 94.0096 95.4345 89.7266 91.4855 88.5579 91.1526 0.1959 0.1519

bGWO 0.1383 0.1358 86.4198 86.6667 87.4898 93.0586 85.4259 90.2422 80.7175 87.4738 0.1578 0.1444
BWOA 0.1409 0.1387 86.1728 86.2963 89.4656 91.3609 86.9606 90.1189 82.8787 88.087 0.1383 0.137

S1-BSMO 0.151 0.1432 85.1852 85.9259 89.2216 95.26 83.6512 89.9588 78.67 87.0474 0.1481 0.1407
S2-BSMO 0.146 0.1411 85.8148 86.2963 93.6608 95.0876 89.2841 91.4817 86.0433 88.7512 0.1964 0.1593
S3-BSMO 0.1481 0.1424 85.5185 85.9259 93.3517 95.3351 89.403 91.5718 86.2794 88.2128 0.2015 0.1556
S4-BSMO 0.1495 0.1432 85.3333 85.9259 93.1475 94.4033 89.7136 91.6581 87.0123 89.3531 0.1930 0.1556
V1-BSMO 0.1492 0.1403 85.3704 86.2963 93.2132 95.0297 89.4763 91.4379 86.3764 89.284 0.1907 0.1481
V2-BSMO 0.1423 0.1387 85.9383 86.2963 93.8571 96.2621 89.3417 91.9558 89.0497 91.2747 0.1884 0.1593
V3-BSMO 0.1417 0.1380 86.037 86.2963 94.4918 96.2525 89.3503 91.9198 88.4579 91.1828 0.1911 0.1481
V4-BSMO 0.1411 0.1351 86.0741 86.6667 94.1042 95.6443 89.6908 91.8579 88.5817 90.503 0.1956 0.1667

Threshold-BSMO 0.1371 0.1322 86.5432 87.037 89.8998 93.4192 86.7337 90.5212 82.2366 87.3123 0.1346 0.1296
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5.3.3. Comparison of Algorithms to Detect Hepatitis Disease

The Hepatitis disease dataset [91] is complex with many missing values that contain
occurrences of hepatitis in people. This dataset consists of 19 features with 155 samples,
of which 123 samples are categorized in the live class, and 32 are categorized in the
die class. The optimization algorithms try to find the best feature set which can detect
Hepatitis disease with high accuracy. In this evaluation, the performance of the proposed
algorithm is assessed and reported in Table 5. The results show that the BSMO using
the variable threshold can obtain the optimum feature set with a minimum fitness value.
Additionally, the Threshold-BSMO achieves the highest classification accuracy compared
to the contender algorithm.

Table 5. Hepatitis disease detection.

Algorithms
Fitness Accuracy Sensitivity Precision Specificity Error

Avg Min Avg Max Avg Max Avg Max Avg Max Avg Min

ACO 0.1215 0.1074 88.0639 89.625 64.5377 76.411 94.4719 97.8957 75.7176 89.8369 0.1194 0.1037
BBA 0.1116 0.0977 89.1083 90.5 64.4286 80.5122 78.7006 90.214 95.0395 97.9604 0.109 0.095

bGWO 0.1067 0.0932 89.5417 90.9583 63.8564 82.9117 79.1231 85.5983 95.3145 97.5229 0.1046 0.0904
BWOA 0.1209 0.1135 88.1806 88.9583 60.8305 74.3306 78.0184 93.4557 95.2697 98.8117 0.1182 0.1104

S1-BSMO 0.1265 0.1147 87.8319 89 70.6404 80.2298 81.3914 95.0256 99.422 100 0.1659 0.1292
S2-BSMO 0.1218 0.1118 88.1708 89.1667 70.8924 84.532 78.9332 91.5289 99.4674 100 0.1598 0.1171
S3-BSMO 0.1213 0.1051 88.2153 89.9167 71.8705 85.8738 81.3385 96.9048 99.377 100 0.1599 0.1237
S4-BSMO 0.1209 0.1070 88.2306 89.6667 72.851 82.1369 81.9163 93.1111 99.3568 100 0.1603 0.1296
V1-BSMO 0.1109 0.0977 89.1542 90.5 78.8832 85.8624 83.8414 95.5556 99.471 100 0.1587 0.1292
V2-BSMO 0.1106 0.0998 89.2069 90.375 79.3521 87.3972 84.3151 96.3492 99.2964 99.9187 0.1589 0.1342
V3-BSMO 0.1107 0.0994 89.1986 90.375 78.5909 86.1964 85.7139 97.5 99.4433 100 0.1617 0.1412
V4-BSMO 0.1096 0.0990 89.3278 90.375 79.7051 88.4275 84.2503 98.75 99.4127 100 0.1617 0.1425

Threshold-BSMO 0.1081 0.0924 89.5194 91.0417 80.2438 91.3715 85.1981 95.7778 99.4531 100 0.1623 0.1342

5.3.4. Comparison of Algorithms to Detect Coronavirus Disease 2019 (COVID-19)

The COVID-19 pandemic is an infectious disease of severe acute respiratory syndrome
Coronavirus 2019 [99] which was initiated in Wuhan, China, in December 2019 and pro-
foundly affected human life [100]. Early detection of Coronavirus disease can reduce the
transmission rate and slow the epidemic outbreak. Many optimization algorithms have
been developed to alleviate this global crisis [101]. In this section, the performance of the
proposed algorithm is evaluated in the Coronavirus disease 2019 (COVID-19) dataset [92].
This dataset consists of two classes, death or recovery, and 13 features, including loca-
tion, country, gender, age, whether the patients visited Wuhan, whether the patients from
Wuhan had fever, cough, cold, fatigue, body pain, malaise, and day’s difference between
the symptoms being noticed and admission to the hospital. The results reported in Table 6
indicate the proposed Threshold-BSMO outperforms all contender algorithms and BSMO
variants to detect COVID-19.

Table 6. Coronavirus disease 2019 (COVID-19) detection.

Algorithms
Fitness Accuracy Sensitivity Precision Specificity Error

Avg Min Avg Max Avg Max Avg Max Avg Max Avg Min

ACO 0.0521 0.0493 95.2805 95.4825 98.3325 99.0601 96.3844 97.4589 74.0994 78.5774 0.0477 0.0452
BBA 0.0508 0.0494 95.3575 95.4838 98.411 98.9281 96.5039 97.1542 74.7778 79.4731 0.0464 0.0452

bGWO 0.0482 0.0455 95.4915 95.7137 98.6061 99.3678 96.1273 97.5426 73.3757 80.9149 0.0451 0.0429
BWOA 0.0518 0.0493 95.2667 95.7164 98.3045 99.0229 96.4153 97.1998 74.626 82.0579 0.0479 0.0428

S1-BSMO 0.0515 0.0493 95.417 95.5988 99.2906 99.7496 97.7266 98.2616 83.0173 87.3208 0.0511 0.0452
S2-BSMO 0.0516 0.049 95.3861 95.5961 99.3947 100 97.5923 97.9672 82.1743 85.5629 0.052 0.0498
S3-BSMO 0.0517 0.0497 95.3308 95.6001 99.3703 100 97.5576 98.2389 81.7173 87.298 0.0521 0.0487
S4-BSMO 0.0516 0.049 95.3347 95.5948 99.4093 100 97.5954 98.126 82.1407 86.2074 0.0532 0.0498
V1-BSMO 0.051 0.0497 95.2469 95.5974 99.8598 100 97.3384 97.924 80.376 84.761 0.0537 0.0476
V2-BSMO 0.0509 0.0489 95.263 95.4812 99.8182 100 97.364 97.8237 80.6954 84.0749 0.053 0.0474
V3-BSMO 0.051 0.0486 95.2695 95.4838 99.7693 100 97.3319 97.9259 80.477 83.9283 0.053 0.0475
V4-BSMO 0.0506 0.0478 95.2692 95.4892 99.7845 100 97.4058 97.956 80.7991 84.4487 0.0532 0.0452

Threshold-BSMO 0.0488 0.0451 95.537 95.8353 99.3774 100 97.7178 98.0502 83.1011 87.2075 0.0518 0.0487
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5.4. Convergence Comparison

In addition, to compare the efficiency of BSMO with other comparative algorithms,
convergence curves were drawn for each dataset used in the evolution. Figure 4 shows the
convergence curves of all algorithms based on the fitness value. According to the figure,
Threshold-BSMO has the highest efficiency in diagnosing Diabetes, Hepatitis, Heart, and
Coronavirus 2019 diseases with the lowest fitness value compared to competitive algorithms.
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Figure 4. Convergence comparison of the BSMO and comparative algorithms.

5.5. Statistical Analysis

To compare the algorithms fairly and to choose the best transfer function for mapping
the continuous solutions to binary ones, Friedman’s statistical test was used to rank the
algorithms. Table 7 shows the results of Friedman’s test according to the fitness values of
the algorithms in which the Threshold-BSMO is a great variant to select the effect features
from Diabetes, Heart, Hepatic, and Coronavirus diseases.

Table 7. Friedman test.

Algorithms
Medical Problems

Diabetes (Rank) Heart (Rank) Hepatics (Rank) COVID-19 (Rank)

ACO 10.37(11) 8.67 (8) 9.23 (8) 9.70 (11)
BBA 10.37 (11) 8.67 (8) 9.23 (8) 9.70 (11)

bGWO 2.80 (2) 2.17 (2) 3.07 (2) 2.27 (2)
BWOA 10.40 (12) 11.23 (12) 9.23 (8) 8.70 (9)

S1-BSMO 5.53 (4) 8.57 (7) 11.87 (11) 7.80 (7)
S2-BSMO 7.43 (8) 9.30 (9) 8.87 (7) 8.97 (10)
S3-BSMO 9.47 (10) 10.73 (11) 9.27 (9) 10.07 (12)
S4-BSMO 9.27 (9) 10.37 (10) 9.43 (10) 8.40 (8)
V1-BSMO 6.13 (5) 5.67 (6) 4.87 (6) 5.53 (3)
V2-BSMO 6.27 (6) 5.13 (5) 4.40 (4) 6.73 (6)
V3-BSMO 6.70 (7) 3.90 (3) 4.60 (5) 6.20 (5)
V4-BSMO 4.67 (3) 4.80 (4) 4.20 (3) 5.60 (4)

Threshold-BSMO 1.60 (1) 1.80 (1) 2.73 (1) 1.33 (1)
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6. Conclusions

Many metaheuristic algorithms have been applied in the wrapper-based methods
to select effective features from medical data; however, most cannot find those features
that can fulfill an acceptable accurate diagnosis of diseases. To deal with this weakness,
a new binary metaheuristic algorithm named binary starling murmuration optimization
(BSMO) is proposed to select the effective features from different important diseases such
as Diabetes, Heart, Hepatitis, and Coronavirus. The proposed BSMO used two different
approaches: S-shaped and V-shaped transfer functions and a variable threshold method to
convert the continuous solutions to binary ones. Moreover, metrics such as fitness, accuracy,
sensitivity, specificity, precision, and error were used to assess the proposed BSMO’s
performance compared to competing algorithms. Finally, the Friedman non-parametric
test was also used to show the proposed algorithm’s superiority statistically. The statistical
and experimental tests proved that the proposed BSMO algorithm is very competitive
in selecting effective features from targeted medical datasets. The proposed Threshold-
BSMO can effectively find the optimal feature subset for Diabetes, Heart, Hepatitis, and
Coronavirus diseases. Overall, considering the fitness criterion as the main criterion for
identifying the most effective binary algorithm in selecting the effective features from the
medical datasets targeted in this study, Threshold-BSMO was a superior variant to the
contender algorithms.

Although the proposed algorithm can select effective features compared to other
comparative algorithms, it was limited to four disease datasets targeted in this study.
Therefore, the proposed BSMO algorithm can be applied and improved for other real-world
applications. Moreover, a self-adapting parameter tuning method can be applied instead
of the try-and-test method used for tuning some parameters of BSMO. The BSMO can
be armed by other binarization techniques and transfer functions for selecting effective
features in other applications. In addition, the SMO’s search strategies can be hybridized
with other metaheuristic algorithms to generate better candidate continues solutions.
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Appendix A

The metaheuristic optimization algorithms’ performance is strongly dependent on
selecting the proper values for their parameters. Therefore, in this section, the sensitivity
on different values for key parameters of the BSMO algorithm, such as flock size (k) and
population size (N), are analyzed and tuned using the offline parameter tuning method.
The detailed results of pretests and experiments for tuning the BMSO’s parameter values to
find its best robustness in solving feature selection problems on targeted medical datasets
were reported in Tables A1–A6 in terms of fitness, error, accuracy, sensitivity, specificity,
and precision. The Friedman rank in Tables A1 and A2 specifies the highest performance
of BSMO when k and N are equal to 5 and 30, respectively.
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Table A1. Parameters setting of BSMO algorithm in terms of fitness values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 0.2349 0.1463 0.1235 0.0519 0.2354 0.1482 0.1238 0.0523
Min 0.2295 0.1382 0.1129 0.0493 0.2305 0.1418 0.1014 0.0490

S2-BSMO
Avg 0.2358 0.1486 0.1222 0.0517 0.2368 0.1492 0.1230 0.0522
Min 0.2317 0.1411 0.1067 0.0497 0.2292 0.1403 0.1080 0.0505

S3-BSMO
Avg 0.2370 0.1487 0.1196 0.0516 0.2367 0.1506 0.1242 0.0519
Min 0.2331 0.1403 0.1069 0.0493 0.2241 0.1403 0.1138 0.0485

S4-BSMO
Avg 0.2360 0.1497 0.1225 0.0519 0.2369 0.1517 0.1234 0.0521
Min 0.2305 0.1432 0.1118 0.0505 0.2319 0.1403 0.1050 0.0505

V1-BSMO
Avg 0.2338 0.1419 0.1103 0.0513 0.2361 0.1418 0.1109 0.0519
Min 0.2305 0.1358 0.0990 0.0479 0.2319 0.1380 0.0994 0.0510

V2-BSMO
Avg 0.2335 0.1413 0.1096 0.0515 0.2365 0.1428 0.1108 0.0510
Min 0.2319 0.1380 0.0995 0.0493 0.2345 0.1387 0.1059 0.0497

V3-BSMO
Avg 0.2341 0.1410 0.1091 0.0507 0.2347 0.1423 0.1103 0.0508
Min 0.2319 0.1351 0.0981 0.0497 0.2305 0.1395 0.1003 0.0475

V4-BSMO
Avg 0.2330 0.1410 0.1092 0.0505 0.2344 0.1422 0.1101 0.0514
Min 0.2240 0.1380 0.0990 0.0482 0.2319 0.1380 0.0999 0.0486

Threshold-
BSMO

Avg 0.2314 0.1375 0.1044 0.0487 0.2324 0.1395 0.1144 0.0497
Min 0.2268 0.1308 0.0884 0.0463 0.2254 0.1337 0.0978 0.0482

Friedman rank 2 4

Algorithms Metrics
k = 5, N = 30 k = 7, N = 30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 0.2342 0.1460 0.1265 0.0515 0.2352 0.1463 0.1230 0.0517
Min 0.2266 0.1411 0.1147 0.0493 0.2330 0.1374 0.1146 0.0497

S2-BSMO
Avg 0.2352 0.1481 0.1218 0.0516 0.2344 0.1462 0.1208 0.0518
Min 0.2267 0.1424 0.1118 0.0490 0.2293 0.1403 0.1088 0.0509

S3-BSMO
Avg 0.2373 0.1495 0.1213 0.0517 0.2360 0.1484 0.1211 0.0517
Min 0.2291 0.1432 0.1051 0.0497 0.2331 0.1432 0.1128 0.0505

S4-BSMO
Avg 0.2368 0.1492 0.1209 0.0516 0.2367 0.1497 0.1238 0.0518
Min 0.2291 0.1403 0.1070 0.0490 0.2331 0.1440 0.1120 0.0501

V1-BSMO
Avg 0.2344 0.1423 0.1109 0.0510 0.2343 0.1427 0.1096 0.0509
Min 0.2294 0.1387 0.0977 0.0497 0.2293 0.1411 0.0990 0.0489

V2-BSMO
Avg 0.2343 0.1417 0.1106 0.0509 0.2339 0.1410 0.1098 0.0508
Min 0.2266 0.1380 0.0998 0.0489 0.2294 0.1387 0.1046 0.0497

V3-BSMO
Avg 0.2353 0.1411 0.1107 0.0510 0.2354 0.1413 0.1125 0.0515
Min 0.2306 0.1351 0.0994 0.0486 0.2320 0.1380 0.1073 0.0496

V4-BSMO
Avg 0.2335 0.1414 0.1096 0.0506 0.2330 0.1425 0.1100 0.0507
Min 0.2292 0.1380 0.0990 0.0478 0.2293 0.1403 0.1049 0.0490

Threshold-
BSMO

Avg 0.2306 0.1378 0.1081 0.0488 0.2302 0.1370 0.0920 0.0491
Min 0.2229 0.1308 0.0924 0.0451 0.2266 0.1308 0.0920 0.0478

Friedman rank 1 3
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Table A2. Parameters setting of BSMO algorithm in terms of error values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 0.2505 0.1954 0.1594 0.0523 0.2541 0.2081 0.1692 0.0538
Min 0.2422 0.1556 0.1212 0.0498 0.2383 0.1593 0.1412 0.0498

S2-BSMO
Avg 0.2492 0.1949 0.1628 0.0518 0.2556 0.2096 0.1693 0.0531
Min 0.2370 0.1593 0.1358 0.0475 0.2422 0.1704 0.1342 0.0487

S3-BSMO
Avg 0.2517 0.1956 0.1624 0.0523 0.2541 0.2057 0.1672 0.0535
Min 0.2408 0.1519 0.1429 0.0476 0.2369 0.1519 0.1421 0.0498

S4-BSMO
Avg 0.2498 0.2016 0.1573 0.0529 0.2546 0.2037 0.1664 0.0536
Min 0.2371 0.1593 0.1225 0.0487 0.2383 0.1667 0.1358 0.0498

V1-BSMO
Avg 0.2551 0.1930 0.1549 0.0530 0.2589 0.2004 0.1623 0.0527
Min 0.2461 0.1519 0.1162 0.0486 0.2488 0.1519 0.1346 0.0510

V2-BSMO
Avg 0.2578 0.1946 0.1532 0.0528 0.2560 0.2044 0.1611 0.0542
Min 0.2461 0.1630 0.1096 0.0464 0.2396 0.1482 0.1300 0.0510

V3-BSMO
Avg 0.2504 0.1906 0.1588 0.0536 0.2590 0.2047 0.1669 0.0546
Min 0.2357 0.1519 0.1171 0.0486 0.2474 0.1704 0.1479 0.0509

V4-BSMO
Avg 0.2557 0.1878 0.1545 0.0528 0.2554 0.2049 0.1635 0.0538
Min 0.2474 0.1630 0.1279 0.0487 0.2422 0.1556 0.1417 0.0509

Threshold-
BSMO

Avg 0.2514 0.1925 0.1640 0.0525 0.2563 0.2163 0.1629 0.0534
Min 0.2370 0.1481 0.1233 0.0487 0.2448 0.1593 0.1150 0.0497

Friedman rank 2 4

Algorithms Metrics
k = 5, N = 30 k = 7, N = 30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 0.2504 0.1964 0.1659 0.0511 0.2506 0.2020 0.1612 0.0521
Min 0.2382 0.1593 0.1292 0.0452 0.2409 0.1630 0.1363 0.0463

S2-BSMO
Avg 0.2516 0.2015 0.1598 0.0520 0.2534 0.1983 0.1702 0.0520
Min 0.2369 0.1556 0.1171 0.0498 0.2423 0.1593 0.1500 0.0475

S3-BSMO
Avg 0.2508 0.1930 0.1599 0.0521 0.2532 0.1847 0.1598 0.0521
Min 0.2397 0.1556 0.1237 0.0487 0.2421 0.1630 0.1288 0.0464

S4-BSMO
Avg 0.2533 0.1907 0.1603 0.0532 0.2568 0.1901 0.1650 0.0532
Min 0.2384 0.1481 0.1296 0.0498 0.2487 0.1519 0.1429 0.0487

V1-BSMO
Avg 0.2552 0.1884 0.1587 0.0537 0.2537 0.1915 0.1572 0.0533
Min 0.2422 0.1593 0.1292 0.0476 0.2384 0.1593 0.1346 0.0498

V2-BSMO
Avg 0.2548 0.1911 0.1589 0.0530 0.2539 0.1896 0.1637 0.0527
Min 0.2345 0.1481 0.1342 0.0474 0.2447 0.1630 0.1483 0.0521

V3-BSMO
Avg 0.2547 0.1956 0.1617 0.0530 0.2558 0.2096 0.1531 0.0528
Min 0.2383 0.1667 0.1412 0.0475 0.2475 0.1889 0.1225 0.0464

V4-BSMO
Avg 0.2534 0.1959 0.1617 0.0532 0.2565 0.1959 0.1472 0.0538
Min 0.2383 0.1519 0.1425 0.0452 0.2396 0.1556 0.1163 0.0521

Threshold-
BSMO

Avg 0.2530 0.1952 0.1623 0.0518 0.2498 0.1986 0.1558 0.0528
Min 0.2408 0.1519 0.1342 0.0487 0.2395 0.1593 0.1558 0.0487

Friedman rank 1 3
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Table A3. Parameters setting of BSMO algorithm in terms of accuracy values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 76.9228 85.7901 88.1236 95.4467 76.8885 85.5802 88.1083 95.401
Max 77.3257 86.6667 89.125 95.5961 77.4761 86.2963 90.2917 95.707

S2-BSMO
Avg 76.8251 85.4568 88.1625 95.364 76.717 85.4444 88.0736 95.3321
Max 77.3582 86.2963 89.75 95.5921 77.4761 86.2963 89.625 95.4852

S3-BSMO
Avg 76.6528 85.4198 88.3667 95.3389 76.677 85.2222 87.9167 95.2899
Max 77.0899 86.2963 89.6667 95.4852 77.9973 86.2963 89.0417 95.4878

S4-BSMO
Avg 76.7293 85.3086 88.0444 95.3477 76.6684 85.0988 87.9708 95.3
Max 77.2198 85.9259 89.125 95.4878 77.0933 86.2963 89.875 95.4838

V1-BSMO
Avg 76.9143 86 89.2708 95.2115 76.707 86 89.158 95.197
Max 77.218 86.6667 90.375 95.4758 77.088 86.296 90.333 95.362

V2-BSMO
Avg 76.9203 86.0617 89.2958 95.2158 76.644 85.926 89.229 95.238
Max 77.0779 86.2963 90.375 95.3635 76.822 86.296 89.833 95.364

V3-BSMO
Avg 76.9173 86.0741 89.3458 95.2694 76.834 85.951 89.211 95.268
Max 77.2095 86.6667 90.4583 95.3729 77.227 86.296 90.292 95.595

V4-BSMO
Avg 76.9872 86.0864 89.3708 95.2895 76.876 85.951 89.289 95.204
Max 78.0041 86.2963 90.375 95.83 77.081 86.296 90.333 95.481

Threshold-
BSMO

Avg 77.3771 86.5309 89.8972 95.5124 77.136 86.37 88.919 95.467
Max 78.1203 87.4074 91.5 95.715 77.862 87.037 90.542 95.599

Algorithms Metrics
k = 5, N = 30 k = 7, N = 30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 76.9719 85.8148 87.8319 95.417 76.895 85.778 88.189 95.427
Max 77.7409 86.2963 89 95.5988 77.216 86.667 88.958 95.599

S2-BSMO
Avg 76.8537 85.5185 88.1708 95.3861 76.927 85.704 88.3 95.389
Max 77.7341 85.9259 89.1667 95.5961 77.344 86.296 89.542 95.482

S3-BSMO
Avg 76.6101 85.3333 88.2153 95.3308 76.763 85.457 88.192 95.336
Max 77.4897 85.9259 89.9167 95.6001 76.965 85.926 89.083 95.482

S4-BSMO
Avg 76.6654 85.3704 88.2306 95.3347 76.643 85.333 87.922 95.341
Max 77.4863 86.2963 89.6667 95.5948 76.96 85.926 89.167 95.484

V1-BSMO
Avg 76.889 85.9383 89.1542 95.2469 76.864 85.963 89.313 95.24
Max 77.3411 86.2963 90.5 95.5974 77.348 86.296 90.375 95.376

V2-BSMO
Avg 76.8872 86.037 89.2069 95.263 76.918 86.148 89.267 95.227
Max 77.6128 86.2963 90.375 95.4812 77.353 86.296 89.792 95.365

V3-BSMO
Avg 76.7716 86.0741 89.1986 95.2695 76.774 86.037 89.013 95.23
Max 77.2163 86.6667 90.375 95.4838 77.075 86.296 89.583 95.607

V4-BSMO
Avg 76.9639 86.0123 89.3278 95.2692 76.992 85.926 89.292 95.293
Max 77.471 86.2963 90.375 95.4892 77.346 86.296 89.833 95.365

Threshold-
BSMO

Avg 77.3077 86.5309 89.5194 95.537 77.328 86.6173 91.0833 95.4834
Max 77.9904 87.4074 91.0417 95.8353 77.6179 87.4074 91.0833 95.7124
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Table A4. Parameters setting of BSMO algorithm in terms of sensitivity values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 88.7609 93.8971 68.6377 99.2675 88.365 93.4924 68.8162 99.2336
Max 90.2278 96.2467 85.3876 99.7684 89.7842 95.292 78.4811 100

S2-BSMO
Avg 88.3668 93.6035 71.8856 99.3568 88.22 92.9212 69.6659 99.3498
Max 89.1665 95.3642 84.1441 99.8295 89.7151 95.2571 79.7631 100

S3-BSMO
Avg 88.1191 93.0296 72.7952 99.3912 88.0791 93.0515 69.5805 99.383
Max 89.0592 95.2235 85.8833 100 89.7059 95.8368 79.1405 100

S4-BSMO
Avg 88.191 93.1775 72.6372 99.4499 88.0248 93.0834 71.6037 99.2982
Max 89.0733 95.3049 81.5983 100 89.4038 96.6535 88.5142 99.7212

V1-BSMO
Avg 88.3628 94.2365 78.835 99.9088 88.327 94.012 76.679 99.504
Max 89.4449 95.5444 88.3507 100 89.715 94.952 85.144 100

V2-BSMO
Avg 87.6423 94.536 79.637 99.9252 87.515 93.419 80.879 99.696
Max 88.1193 96.3431 90.6895 100 88.523 94.47 88.078 100

V3-BSMO
Avg 87.8565 94.0807 79.3312 99.8619 88.05 94.206 75.106 99.811
Max 88.9304 96.2699 86.7033 100 89.359 95.947 83.572 100

V4-BSMO
Avg 88.4581 94.1059 80.3357 99.8371 88.104 93.948 78.811 99.775
Max 89.115 95.4339 89.9166 100 89.716 94.769 91.569 100

Threshold-
BSMO

Avg 89.0468 94.655 80.116 99.3936 88.503 94.575 75.676 99.348
Max 91.0607 96.4165 88.838 100 89.44 96.612 84.286 99.548

Algorithms Metrics
k = 5, N = 30 k = 7, N = 30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 88.5142 93.6608 70.6404 99.2906 88.514 93.831 71.703 99.26
Max 89.8454 95.0876 80.2298 99.7496 89.311 95.569 88.021 99.609

S2-BSMO
Avg 88.2422 93.3517 70.8924 99.3947 88.387 93.475 67.965 99.381
Max 89.2631 95.3351 84.532 100 89.719 94.748 75.613 99.822

S3-BSMO
Avg 88.1787 93.1475 71.8705 99.3703 88.325 92.863 69.775 99.512
Max 90.1796 94.4033 85.8738 100 90.142 95.51 75.39 100

S4-BSMO
Avg 88.3085 93.2132 72.851 99.4093 88.234 93.467 74.89 99.486
Max 89.7088 95.0297 82.1369 100 88.447 96.508 90.417 100

V1-BSMO
Avg 88.2848 93.8571 78.8832 99.8598 88.244 94.334 78.981 99.861
Max 89.7132 96.2621 85.8624 100 88.978 96.082 87.181 100

V2-BSMO
Avg 88.6261 94.4918 79.3521 99.8182 88.217 94.237 76.884 99.87
Max 90.0085 96.2525 87.3972 100 89.536 96.225 85.649 100

V3-BSMO
Avg 88.245 94.1042 78.5909 99.7693 88.328 94.287 78.435 99.707
Max 89.6911 95.6443 86.1964 100 89.598 96.606 85.285 100

V4-BSMO
Avg 88.1009 94.0096 79.7051 99.7845 88.377 94.327 77.526 99.802
Max 89.484 95.4345 88.4275 100 89.576 95.545 84.209 100

Threshold-
BSMO

Avg 89 94.6804 80.2438 99.3774 89.1512 94.8397 81.5161 99.4531
Max 89.9871 96.6626 91.3715 100 90.8328 96.8864 81.5161 100
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Table A5. Parameters setting of BSMO algorithm in terms of precision values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 83.3024 89.7759 81.8452 97.6496 82.9358 88.9528 77.9683 97.6013
Max 84.5112 91.1126 92.5556 98.0808 84.0629 91.3534 92.5714 97.9844

S2-BSMO
Avg 83.1656 89.6198 83.3028 97.5525 82.995 88.9851 77.8085 97.5018
Max 83.9979 91.6603 96.8889 97.9414 84.226 92.1922 96.6667 98.2263

S3-BSMO
Avg 82.8792 89.3916 80.6788 97.6031 82.7702 89.4225 78.8535 97.4893
Max 84.0439 92.1316 94 97.9846 84.4498 92.9411 96.6667 98.1287

S4-BSMO
Avg 82.9226 90.0263 82.091 97.5329 82.8662 89.0141 78.5044 97.5208
Max 83.5297 93.4569 98.3333 98.0334 84.1876 91.7804 92.4643 98.099

V1-BSMO
Avg 83.3034 89.275 82.3873 97.3381 82.916 89.014 82.316 97.303
Max 84.5946 91.9784 89.9596 97.6875 83.93 90.58 88.611 97.645

V2-BSMO
Avg 82.8698 89.5967 85.3515 97.3886 82.777 90.147 78.368 97.291
Max 83.2788 91.9132 100 97.8924 83.495 92.77 92.051 97.604

V3-BSMO
Avg 83.0581 89.6372 84.2314 97.4291 82.752 89.063 80.449 97.369
Max 84.4839 92.3453 94.6429 98.2173 84.24 92.867 96.349 97.735

V4-BSMO
Avg 83.0346 90.0785 84.4764 97.4154 83.013 89.097 81.099 97.38
Max 83.6545 92.453 100 98.0199 83.788 91.567 93.099 97.932

Threshold-
BSMO

Avg 83.7292 91.6759 85.2687 97.7006 83.564 91.301 81.078 97.67
Max 85.4714 93.7512 97.5 98.3656 84.936 92.869 95.325 98.032

Algorithms Metrics
k = 5, N =30 k = 7, N =30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 83.2288 89.2841 81.3914 97.7266 83.487 89.175 84.47 97.634
Max 84.242 91.4817 95.0256 98.2616 84.571 89.756 96.5 98.064

S2-BSMO
Avg 83.1426 89.403 78.9332 97.5923 83.224 89.761 81.574 97.574
Max 84.2726 91.5718 91.5289 97.9672 84.225 92.71 98 97.908

S3-BSMO
Avg 82.925 89.7136 81.3385 97.5576 82.855 89.229 78.523 97.55
Max 84.4974 91.6581 96.9048 98.2389 84.549 91.133 86.998 97.873

S4-BSMO
Avg 82.764 89.4763 81.9163 97.5954 83.236 89.538 82.034 97.459
Max 83.8476 91.4379 93.1111 98.126 84.582 90.938 98.75 97.872

V1-BSMO
Avg 83.1764 89.3417 83.8414 97.3384 82.958 89.327 83.84 97.356
Max 86.1848 91.9558 95.5556 97.924 84.323 90.731 91 97.672

V2-BSMO
Avg 82.9072 89.3503 84.3151 97.364 82.987 89.725 82.101 97.369
Max 83.761 91.9198 96.3492 97.8237 84.159 92.147 92.372 97.734

V3-BSMO
Avg 83.1812 89.6908 85.7139 97.3319 83.21 89.99 81.337 97.334
Max 84.5091 91.8579 97.5 97.9259 84.092 91.817 86.738 97.62

V4-BSMO
Avg 83.2658 89.7266 84.2503 97.4058 83.289 89.8 83.036 97.41
Max 84.4214 91.4855 98.75 97.956 84.474 92.318 95.238 97.716

Threshold-
BSMO

Avg 83.5823 91.4408 85.1981 97.7178 83.5777 91.6578 82.5912 97.6967
Max 84.7376 93.8631 95.7778 98.0502 84.5587 94.5662 82.5912 97.9926



Appl. Sci. 2023, 13, 564 22 of 26

Table A6. Parameters setting of BSMO algorithm in terms of specificity values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 66.2342 86.542 99.4587 82.4862 65.1298 85.5329 99.2915 82.346
Max 68.2502 87.9644 100 85.9366 66.4093 88.7883 99.8374 84.4318

S2-BSMO
Avg 65.4575 86.9073 99.5053 81.7373 65.6179 85.9113 99.3399 81.8105
Max 66.6288 89.656 100 85.0243 67.707 91.2161 99.9187 85.9674

S3-BSMO
Avg 64.8413 86.4002 99.4766 82.3377 65.1382 86.3003 99.2782 81.4987
Max 66.1969 89.2235 100 84.8969 67.4399 91.9747 100 86.2247

S4-BSMO
Avg 65.7836 87.4361 99.4948 81.9079 65.0415 86.3582 99.4617 81.5022
Max 66.5935 91.8474 99.9187 84.9453 67.8061 90.3087 100 86.1819

V1-BSMO
Avg 65.75 88.5427 99.368 80.2567 65.413 88.039 99.063 80.501
Max 67.4069 90.7376 100 83.9446 66.648 89.375 99.399 82.194

V2-BSMO
Avg 66.6065 89.1717 99.4428 80.7396 64.975 89.529 99.286 79.295
Max 68.4934 91.1563 100 84.5923 66.435 92.307 100 82.191

V3-BSMO
Avg 66.1459 88.7473 99.3145 81.0216 64.927 88.066 99.258 80.392
Max 67.5985 91.9959 99.8286 85.1101 66.815 90.58 99.829 82.735

V4-BSMO
Avg 65.8974 88.7773 99.4461 81.007 65.451 88.153 99.243 80.932
Max 67.0376 90.7347 100 85.0112 66.87 91.094 99.837 83.784

Threshold-
BSMO

Avg 66.9048 89.1478 99.3309 82.7429 66.572 88.889 99.058 81.727
Max 69.2527 92.084 100 87.2612 70.241 90.63 100 84.678

Algorithms Metrics
k = 5, N = 30 k = 7, N = 30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 65.9602 86.0433 99.422 83.0173 66.509 85.883 99.513 82.554
Max 68.2916 88.7512 100 87.3208 69.423 86.761 100 84.83

S2-BSMO
Avg 65.7932 86.2794 99.4674 82.1743 66.123 87.242 99.451 82.462
Max 68.023 88.2128 100 85.5629 68.293 90.414 100 84.963

S3-BSMO
Avg 65.5806 87.0123 99.377 81.7173 66.103 86.476 99.369 81.929
Max 67.8662 89.3531 100 87.298 69.399 88.543 99.837 84.695

S4-BSMO
Avg 65.0295 86.3764 99.3568 82.1407 65.939 86.436 99.48 81.524
Max 66.8104 89.284 100 86.2074 66.92 88.336 100 85.479

V1-BSMO
Avg 65.7345 89.0497 99.471 80.376 65.889 88.631 99.324 80.379
Max 70.5787 91.2747 100 84.761 68.174 89.595 99.919 82.705

V2-BSMO
Avg 65.7846 88.4579 99.2964 80.6954 65.45 89.022 99.279 80.59
Max 67.6503 91.1828 99.9187 84.0749 66.884 90.656 99.919 82.872

V3-BSMO
Avg 66.0204 88.5817 99.4433 80.477 65.038 88.873 99.174 80.363
Max 69.1626 90.503 100 83.9283 67.188 90.793 99.473 83.175

V4-BSMO
Avg 66.2564 88.5579 99.4127 80.7991 66.366 88.717 99.438 81.74
Max 69.1896 91.1526 100 84.4487 67.647 91.444 99.666 83.986

Threshold-
BSMO

Avg 66.6321 88.8911 99.4531 83.1011 66.562 89.1274 99.6652 82.6134
Max 69.2028 92.1136 100 87.2075 68.5097 92.9485 99.6652 85.0483
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