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Abstract: Air-rib tents are widely used because they are lightweight and site adaptable, but the large
deformation of these tents reduces their effective space. It is important to reduce the displacement of
the air-rib tent by parameter optimization. The influences of external factors on the tent are studied
in this paper. Four parameters of the tent’s wind ropes are the angle of the wind ropes, the number of
the wind ropes, and the initial prestress of the wind ropes on the side or end faces. The influence of
the angle of the wind ropes and the number of the wind ropes on the displacement is larger than
the other two parameters. The closer the wind ropes are to the center of the tarpaulin, the greater
the displacement of the tent. Based on an analysis using response surface methodology, the optimal
parameters are as follows: the angle of the wind ropes is 41◦, the number of the wind ropes on the
side is two, the initial prestress of the wind ropes on the end face is 800 Pa, and the initial prestress
of the wind ropes on the side is 0 Pa. Under these optimal parameters, the maximum displacement
decreases by 10.2%, and the maximum stress barely changes.

Keywords: separated air-rib tent; response surface methodology; wind and snow load; structure
optimization

1. Introduction

As simple and foldable building structures, inflatable tents are lightweight and site
adaptable. Along with the development of generalization, integration, and facilitation [1,2],
inflatable tents are widely used in tourism, military, disaster relief, and construction fields.
Air-rib tents, which are one kind of inflatable tent, are widely used. These tents are
supported by air ribs which are filled with high-pressure air and based on the shape of the
ribs, and they include two main types: arched rib tents and broken-line rib tents. They can
also be divided into vertical types and curved types by the arrangement of ribs, as shown
in Figure 1.
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Figure 1. The shape and arrangement of the tents [3,4]: (a) the arched-rib tent; (b) the broken-line 
rib tent; reprinted with permission from Ref. [3]. 2021, Hang Haonan. (c) The vertical type tent; (d) 
the curved type tent. Adapted with permission from Ref. [4]. 2008, Feng Yuanhong. 
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under external load is larger [5,6]. The main evaluation indexes for the stability of an air-
rib tent are stress and displacement. The bearing capacity of an arched-rib tent is better 
than that of a tent with broken-line ribs in the same arrangement. Tents with curved type 
ribs can resist more loads than tents with the vertical type [Error! Reference source not 
found.]; however, a tent of the vertical type has more effective space. The large 
deformation of the tent reduces the effective space, so it is important to reduce the 
displacement of air-rib tents by parameter optimization. 

To analyze the mechanical properties of structures, there are, mainly, test and finite 
element simulation methods. Because of the large size of separated air-rib tents, the testing 
cost is high. Using the finite element method, the calculation time is short, the applicability 
is strong, and the testing cost is low [Error! Reference source not found.,Error! Reference 
source not found.]. Therefore, finite element analysis is more suitable for tent mechanical 
property analysis. The influence of the structural parameters of an air-rib tent on its load 
bearing capacity has been studied by many scholars. Cui et al. [Error! Reference source 
not found.] established a finite element model of a long-span skeleton membrane 
structure by tension-only bar elements. A prestressed cable was added to the membrane 
structure to meet the strength requirements. Wu et al. [Error! Reference source not 
found.] set up cables to enhance the stability of a dry coal shed with a long span. The dry 
coal shed was composed of cable-arch trusses, and the prestressed cable was represented 
by a bar element in the simulation model. Li et al. [Error! Reference source not found.] 
established a finite element model of an air-tight inflatable tent, and the rod element 
Link10 was used to simulate the wind ropes. The effects of parameters such as the internal 
pressure of the tent, the internal pressure of the ribs, and the structural parameters on the 
stability were studied. He et al. [Error! Reference source not found.,Error! Reference 
source not found.] explored the wind pressure distribution of a large stadium by wind 
tunnel tests and finite element simulation methods. They proposed that a cable can reduce 
the displacement of the membrane, and showed that the cross-sectional area of the cable 
has no significant effect on the displacement. To date, most researchers have improved 
the stability of structures by adding wind ropes, but less research has investigated the 
influence of wind rope parameters on the tarpaulin displacement. Therefore, it is 
necessary to optimize the structure of wind ropes by exploring the influence of wind rope 
parameters on the tent. 

Figure 1. The shape and arrangement of the tents [3,4]: (a) the arched-rib tent; (b) the broken-line rib
tent; reprinted with permission from Ref. [3]. 2021, Hang Haonan. (c) The vertical type tent; (d) the
curved type tent. Adapted with permission from Ref. [4]. 2008, Feng Yuanhong.

Compared with a tent supported by a metal frame, the displacement of an air-rib tent
under external load is larger [5,6]. The main evaluation indexes for the stability of an air-rib
tent are stress and displacement. The bearing capacity of an arched-rib tent is better than
that of a tent with broken-line ribs in the same arrangement. Tents with curved type ribs
can resist more loads than tents with the vertical type [3]; however, a tent of the vertical
type has more effective space. The large deformation of the tent reduces the effective space,
so it is important to reduce the displacement of air-rib tents by parameter optimization.

To analyze the mechanical properties of structures, there are, mainly, test and finite
element simulation methods. Because of the large size of separated air-rib tents, the testing
cost is high. Using the finite element method, the calculation time is short, the applicability
is strong, and the testing cost is low [7,8]. Therefore, finite element analysis is more suitable
for tent mechanical property analysis. The influence of the structural parameters of an
air-rib tent on its load bearing capacity has been studied by many scholars. Cui et al. [9]
established a finite element model of a long-span skeleton membrane structure by tension-
only bar elements. A prestressed cable was added to the membrane structure to meet the
strength requirements. Wu et al. [10] set up cables to enhance the stability of a dry coal shed
with a long span. The dry coal shed was composed of cable-arch trusses, and the prestressed
cable was represented by a bar element in the simulation model. Li et al. [11] established a
finite element model of an air-tight inflatable tent, and the rod element Link10 was used to
simulate the wind ropes. The effects of parameters such as the internal pressure of the tent,
the internal pressure of the ribs, and the structural parameters on the stability were studied.
He et al. [12,13] explored the wind pressure distribution of a large stadium by wind tunnel
tests and finite element simulation methods. They proposed that a cable can reduce the
displacement of the membrane, and showed that the cross-sectional area of the cable has no
significant effect on the displacement. To date, most researchers have improved the stability
of structures by adding wind ropes, but less research has investigated the influence of wind
rope parameters on the tarpaulin displacement. Therefore, it is necessary to optimize the
structure of wind ropes by exploring the influence of wind rope parameters on the tent.

Currently, the main optimization methods are the response surface methodology [14–17],
the linear weighting method [18], the coupled genetic algorithm [19], the chaotic water
strider algorithm [20], and the primary objective method [21]. The response surface method-
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ology transforms the implicit function relation in the actual model into a direct function
relation by mathematical statistics; then, the optimal solution is determined [22,23]. The
response surface methodology can reduce the number of experiments effectively, and
obtain the relationships of influencing factors. Peng [24] established a finite element model
of frame stope with different structural parameters, and optimized the pillar size based on
the response surface methodology. Zhan et al. [25] obtained the relationship between the
cable force and the maximum displacement (between the two ends of the crossbeam) by
the response surface methodology. The particle swarm optimization algorithm was used to
optimize the cable force. Zhu et al. [26] optimized the weight of composite perforated plate
of ship by the response surface methodology and finite element simulation together.

In this paper, the wind and snow load are applied to the separated air-rib tents, the
effects of the wind rope parameters on the Von Misses stress and displacement of the
separated air-rib tents are explored by the control variable method, and the value range
of each factor is determined. The response value equation, which reflects the relationship
between the maximum displacement and wind rope parameters, is established by the
response surface methodology, and the optimal values of the wind rope parameters are
obtained.

2. Numerical Calculation Model of Separate Air-Ribbed Tent

A numerical model of the separated air-rib tent is established by ABAQUS 6.14
(SIMULIA Company, Providence, RI, USA). The separated air-rib tent consists of separated
arch ribs and a tarpaulin, which is shown in Figure 2. The structural dimension parameters
are derived from the best-selling product of a tent supplier. The width of the tent is 4 m,
and the length is 18 m. For the ribs, the cross-section diameter of a rib is 0.3 m, and the
centerline radius of a rib is 4 m. The distance between two ribs is 2 m, and ten ribs are
arranged side by side. The tarpaulin and air ribs are made of two new braided materials,
and the property parameters of the two materials are shown in Table 1. The inflated air ribs
are mainly used to support the tent, and the working pressure of the ribs is 0.2 MPa [9].
The wind ropes are added to strengthen the stability of the separated air-rib tent. The
cross-section diameter of the wind ropes is 8.9 mm, and the elastic modulus is 2.82 GPa.
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Figure 2. The finite element model of the separated air-rib tent. (a) The tarpaulin; (b) the air rib;
(c) the cross section of an air rib.

Table 1. The property parameters of two kinds of tent materials.

Part Thickness
(mm)

Density
(g/cm3)

Elastic
Modulus

(GPa)

Poisson’s
Ratio

Fracture
Strength

(MPa)

Tarpaulin 0.27 1.000 0.940 0.35 178.33
Air rib 2.60 1.069 0.470 0.32 119.47



Appl. Sci. 2023, 13, 55 4 of 16

The tarpaulin and the air rib are set as membrane elements (M3D4R) [27], and the
wind ropes are set as truss elements (T3D2) [28]. At the beginning of the simulation, the
geometric is coarse meshed. To improve the calculation accuracy, the connection position
between the tarpaulin and the air rib is divided into finely grid cells. The stress and the
displacement change little with further refinement of the grid cells [29]. The grid cells are
shown in Figure 3. The model has a total of 148,734 grid cells and 149,017 nodes. The
tarpaulin has 69,002 grid cells and 69,025 nodes, and the air ribs have 75,360 grid cells and
75,600 nodes.
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Figure 3. The finite element model of the separated air-rib tent. (a) The tarpaulin grid; (b) the air rib
grid.

In the model, the edge of the tarpaulin and the air ribs are fixed to the ground to
restrict the XYZ three direction axial movement and rotating movement. The tarpaulin is
tangent to the air rib, and the contact area is narrow to be simplified into line contact. So,
the node coordinates on the contact line of the tarpaulin and the air ribs are consistent [30].
One end of a wind rope is fixed to ground, and the other end is fixed to the tarpaulin by
binding constraint, and then the initial prestress is added to the wind ropes [31].

According to the extreme condition of the Load Code for the Design of Building
Structures (GB50009-2012), standard dead load, wind load, and snow load are applied to
the tent. The standard dead load is the gravity, the value is 9.8 m/s2, and load coefficient is
1.3. The coefficients of wind load and snow load are both 1.5. Based on the force eight wind,
the essential wind pressure is set to be 0.3 kN/m2, and the combined load coefficient is 0.6.
The coefficient is shown in Figure 4, and wind pressure applied on the tent is calculated by
the following Formula (1):

wk = βzµsµzw0 (1)
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In the formula, wk is the standard value of wind load (kN/m2), βz is the wind vibration
coefficient at height z, µs is the wind load figure coefficient, µz is the coefficient of variation
of wind pressure height, taken as 1.0; w0 is the basic wind pressure (kN/m2).

The pressure of the return period of 100 years in North China is defined as average
basic snow, namely 0.5 kN/m2. As shown in Figure 4, the snow load is applied on the top
of the tent, and it can be calculated as follows (2):

Sk = µrS0 (2)

In the formula, Sk is the standard snow load value (kN/m2), µr is the roof snow
distribution coefficient, and S0 is the basic snow pressure (kN/m2).

3. A Single Parameter Analysis of Separated Air-Rib Tent

In the simulation of the separated air-rib tent, the angle of the wind ropes, the number
of the wind ropes on the side, and the initial prestress of the wind ropes on the end face
and the side, are four critical external parameters to be studied. The process flowchart of
the proposed methodology is shown in Figure 5. The test scheme by the control variable
method is shown in Table 2. The influence of each parameter on the Von Misses stress and
displacement of the tent is analyzed.

Table 2. The test scheme for exploring the influence of a single variable.

Parameters
Angle of the
Wind Ropes

(◦)

Number of the Wind
Ropes on the Side

(1)

Initial Prestress of the
Wind

Ropes on the End Face
(Pa)

Initial Prestress of the
Wind

Ropes on the Side
(Pa)

Case 1 30/33.75/37.5/41.25/45 6 400 400
Case 2 37.5 2/4/6/8/10 400 400
Case 3 37.5 6 0/200/400/600/800 400
Case 4 37.5 6 400 0/200/400/600/800
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3.1. Analysis of Von Misses Stress Results

The maximum Von Misses stress of the separated air-rib tent, according to the single-
factor test scheme, is shown in Figure 6. Because of the synergistic effect of load and the
pulling force of the wind ropes, the maximum Von Misses stress of the tent is located at the
connection area, between the end face of the tarpaulin and the wind ropes. The maximum
Von Misses stress distributes around 39.89–51.10 MPa.
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As shown in Figure 7, the maximum Von Misses stress appears when the angle between
the wind ropes and the ground is 30◦. The maximum Von Misses stress of the tarpaulin
appears at the connected area between the +Z direction end face and the wind rope. The
maximum Von Misses stress is 51.10 MPa which is less than the fracture strength of the
tarpaulin. Under the action of the external load, the maximum Von Misses stress of the air
rib appears at the point the angle between where and the ground is 45◦. The tension raised
from the deformation has the same direction, with the internal pressure on the downward
surface of the air rib [32]. The maximum Von Misses stress of the air rib is 18.97 MPa. It can
be seen from Figure 6 that the maximum Von Misses stress varies little with the load, and
ranges within the fracture strength. So, the effect of the external parameters of the wind
ropes on the maximum Von Misses stress of the tent is not taken into consideration.
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3.2. Analysis of Displacement Results

The curves of displacement of the tent are shown in Figure 8. The maximum displace-
ment occurs at the top of the tarpaulin. Due to the difference between the stiffness of the
tarpaulin and the air rib, the pocket effect appears in the middle position of the air rib.
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The relationship between the angle of the wind ropes and the total maximum dis-
placement of the tarpaulin is shown in Figure 8 (A). With the increase in the angle, the
displacement of the tarpaulin increases at first, and then decreases. The Y direction compo-
nent of the load on the tent, which is derived from the wind ropes, increases with the angle;
however, the X direction component of the load on the tent decreases with the angle. The
minimum displacement appears when the angle of the wind ropes is 41.25◦. In order to
minimize the displacement of the tarpaulin and improve its supporting capacity of the tent,
the angles of the wind ropes are comprehensively considered to be 30◦, 37.5◦, and 45◦for
the next optimization test.

The relationship between the number of wind ropes on the side and the total maximum
displacement of the tarpaulin is shown in Figure 8 (B). It can be seen that the displacement
of the tarpaulin increases at first, and decreases with the increase in the number of the wind
ropes on the side. When the wind ropes are fixed on the tarpaulin, the load is added to
the tarpaulin in the same direction as the snow load. With the increase in the number of
wind ropes on the side, the Y direction component of the load applied on the tarpaulin
increases, and the displacement of the tarpaulin is larger. The wind ropes are fixed on
the end face of the air rib, and when the number is two, they have little influence on the
displacement of the middle of the tarpaulin. With the increase in the number of the wind
ropes, the wind ropes approach the center position gradually. The displacement of the tent
is maximum when six wind ropes are fixed on the tent. The displacement of the tarpaulin
in the X direction is shown in Figure 9. It can be seen that the X direction displacement
decreases with the increase in the number of wind ropes on the side. When more than six
wide ropes are fixed on the tent, the total maximum displacement decreases. The closer
the wind ropes are added to the center of the tarpaulin, the greater the displacement of
the tarpaulin is. The influence of the number of wind ropes on the side on the maximum
displacement under load is nonlinear. The numbers of the wind ropes on the side which
are selected for the optimization analyses are 2, 6, and 10.
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Figure 8 (C) shows the relationship between the initial prestress of the wind ropes
on the end face, and the total maximum displacement of the tarpaulin. When the initial
prestress of the wind ropes is less than 600 Pa, the maximum displacement of the tarpaulin
decreases with the increase in the initial prestress of the wind ropes. When the initial
prestress of the wind ropes on the end face is 600 Pa, the displacement of the tarpaulin is
the minimum, and increases slightly with the increase in initial prestress of the wind ropes.
Based on careful consideration, the initial prestresses of the wind ropes on the end face are
determined to be 400 Pa, 600 Pa, and 800 Pa for the optimization test.
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Figure 8 (D) shows the relationship between the initial prestress of the wind ropes on
the side, and the total maximum displacement of the tarpaulin. When the initial prestress
of the wind ropes is less than 400 Pa, the maximum displacement of the tarpaulin decreases
with the increase in the initial prestress of the wind ropes. When the initial prestress of
the wind ropes on the side is 600 Pa, the displacement of the tarpaulin is the minimum.
The initial prestresses of the wind rope on the side are determined to be 0 Pa, 100 Pa, and
200 Pa for the optimization test.

4. Optimized Design of the Wind Ropes Parameters Based on the Response
Surface Methodology

The effect of a single factor on the stress and the displacement of the tarpaulin can be
obtained by the single-factor analysis method. The results show that the parameters of the
wind ropes have little influence on the stress. The decline in displacement can increase the
effective space and improve safety. Therefore, the response surface methodology is used to
analyze the implicit relationship between the parameters and the maximum displacement
by Design-Expert 12 (Stat-Ease Inc., Minneapolis, MN, USA).

4.1. Optimization of Programmed Design

The angle of the wind ropes, the number of the wind ropes on the side, the initial
prestress of the wind ropes on the end face, and the initial prestress of the wind ropes on the
side have been considered as the most important factors for response surface methodology.
The maximum displacement of the tarpaulin is the target parameter. The test plan is defined
by the central composite design method (CCD; four factors and three levels; Table 3). Each
trial is performed twice. The corresponding results are presented in Table 4 and Figure 10.

Table 3. The table of the research parameters.

Factor Code Parameter Name
Parameter Value

−1 0 +1

A Angle of the wind ropes 30◦ 37.5◦ 45◦

B Number of the wind ropes on the side 2 6 10
C Initial prestress of the wind ropes on the end face 400 Pa 600 Pa 800 Pa
D Initial prestress of the wind ropes on the side 0 Pa 100 Pa 200 Pa

Table 4. The table of the design values of the test plan.

Serial
Number

A
(◦)

B
(1)

C
(Pa)

D
(Pa)

Displacement of the Tarpaulin
(mm)

1 30 2 600 100 409.2
2 45 2 600 100 354.9
3 30 10 600 100 420.0
4 45 10 600 100 384.3
5 37.5 6 400 0 370.8
6 37.5 6 400 200 366.1
7 37.5 6 800 0 382.2
8 37.5 6 800 200 371.6
9 30 6 400 100 419.5
10 45 6 400 100 413.7
11 30 6 800 100 434.8
12 45 6 800 100 420.8
13 37.5 2 600 0 333.2
14 37.5 10 600 0 379.9
15 37.5 2 600 200 357.9
16 37.5 10 600 200 374.1
17 30 6 600 0 426.0
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Table 4. Cont.

Serial
Number

A
(◦)

B
(1)

C
(Pa)

D
(Pa)

Displacement of the Tarpaulin
(mm)

18 45 6 600 0 407.2
19 30 6 600 200 419.8
20 45 6 600 200 412.6
21 37.5 2 400 100 368.4
22 37.5 10 400 100 374.1
23 37.5 2 800 100 343.3
24 37.5 10 800 100 379.5
25 37.5 6 600 100 379.2
26 37.5 6 600 100 382.2
27 37.5 6 600 100 378.5
28 37.5 6 600 100 372.6
29 37.5 6 600 100 389.3
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4.2. Analysis of the Results

The simulation results of the CCD are fitted with a second-order polynomial equation.
The fitted equation is shown as follows (3):

X = 382.20 − 11.32A + 12.08B + 0.2333C + 1.63D + 4.65AB + 2.90AC − 2.05AD − 7.62BC + 7.62BD − 1.47CD +
35.75A2 −19.75B2 − 4.42C2 + 1.00D2 (3)

where X is the maximum displacement of the tent. A, B, C, and D are the values of four
parameters, respectively (the angle of the wind ropes, the number of the wind ropes on the
side, the initial prestress of the wind ropes on the end face, and the initial prestress of the
wind ropes on the side). The coefficient means the influence weight of each parameter on
the maximum displacement. Once the values of the four parameters are determined, the
value of the maximum displacement can be predicted according to the equation.

As shown in Figure 11, the maximum displacements calculated by the simulation
are concentrated on the regression line. The error value between the predicted value and
the calculated value is less than 3.5%. For the experimental model, F = 10.21, p < 0.0001,
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the fitted equation meets good relevancy. It is significant to analyze the variance of the
simulation data. From the equation coefficient, it is known that A (the angle of the wind
ropes) and B (the number of the wind ropes on the side) have a significant influence on the
maximum displacement of the tent. The two parameters’ p-values are less than 0.05.
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Figure 11. The comparison between the results of the numerical simulation and the predicted results
of the response surface methodology. (The color of the points, which are set in the figure, changes
from blue to red with the increase in the values).

The two-dimensional contour plots are shown in Figure 12. Figure 12a represents the
effect of the angle of the wind ropes and the number of the wind ropes on the side, on
the maximum displacement of the tent. It can be seen that the relationship between the
angle of the wind ropes and the number of the wind ropes on the side is significant. The
effect of the angle on the maximum displacement of the tent decreased with increasing the
number of the wind ropes on the side. When two wind ropes are fixed on the end face of
the tarpaulin, the angle of the wind ropes has a significant influence on the displacement
of the air rib on the end face. With increasing the number of the wind ropes, the wind
ropes distribute uniformly, the force which distributes on the air ribs decreases, so the
displacement decreases.
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Figure 12. The effect of different wind rope parameters on the displacement of the tarpaulin. (a) The
angle of the wind ropes and the number of the wind ropes on the side; (b) the angle of the wind ropes
and the initial prestress of the wind ropes on the end face; (c) the angle of the wind ropes and the
initial prestress of the wind ropes on the side; (d) the number of the wind ropes on the side and the
initial prestress of the wind ropes on the end face; (e) the number of the wind ropes on the side and
the initial prestress of the wind ropes on the side; (f) the initial prestress of the wind ropes on the
end face and the initial prestress of the wind ropes on the side. (In the figure, the red circle means
the value of the displacement of the tarpaulin is large, while the pink circle means the value of the
displacement of the tarpaulin is small).
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Figure 12b,c represent the relationship between the angle of the wind ropes and the
initial prestress of the wind ropes on the end face, and the initial prestress of the wind ropes
on the side, respectively. When the initial prestress of the wind ropes is fixed, the maximum
displacement decreases at first, and increases with the increase in the angle of the wind
ropes. The influence trend of the angle of the wind ropes on the maximum displacement
changes little with the initial prestress of the wind ropes on the end face and the initial
prestress of the wind ropes on the side. It can be seen from Figure 12f that the relationship
between the initial prestress of the wind ropes on the end face and the initial prestress
of the wind ropes on the side is poor. The slope of the response surface curve is gentle.
With the increase in the initial prestress of the wind ropes on the end face, the maximum
displacement changes little with the initial prestress of the wind ropes on the side.

Figure 12d,e represent the relationship between the number of the wind ropes on the
side and the initial prestress of the wind ropes on the end face, and the initial prestress of
the wind ropes on the side, respectively. It can be seen that the relationship between the
two parameters is weak.

According to the results of the simulation data, the optimal scheme parameters are
determined as follows: the angle of the wind ropes is 41◦, the number of the wind ropes on
the side is 2, the initial prestress of the wind ropes on the end face is 800 Pa, and the initial
prestress of the wind ropes on the side is 0 Pa. To confirm the accuracy of the model in the
optimum conditions, an additional experiment is performed in the optimum conditions.

5. Validation of the Results in the Optimum Conditions

The simulation model is established according to the optimal parameters which are
determined by the response surface methodology, and the calculation results are shown in
Figure 13. The maximum displacement of the tarpaulin is 329.7 mm, and the difference
between the result (332.5 mm), which is estimated by the response surface equation, is
0.84%. The difference between the maximum displacement of the tarpaulin which is
calculated at the optimum condition, and that which is calculated by the single factor
method is 10.2%. The maximum displacement of the air rib is 237.1 mm. The maximum
Von Misses stress of the tarpaulin is 48.78 MPa, and the maximum Von Misses stress of the
air rib is 17.17 MPa. They are all within the allowable strength of the tarpaulin and the
air ribs.
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6. Conclusions

The air-rib tents are widely used because they are lightweight and site adaptable, but
the large deformation of these tents reduces their effective space. It is significant to reduce
the displacement of the air-rib tent by parameter optimization. Four external parameters of
the tent’s wind ropes, which are studied in the paper, are the angle of the wind ropes, the
number of the wind ropes on the side, and the initial prestress of the wind ropes on the side
or end faces. The effect of the wind rope on the Von Misses stress and the displacement
under load is studied by the finite element method, and the response surface methodology
is used to minimize the displacement of the tent. The results are only applicable to the
specific geometry and the size of the tent. The tents of other sizes and structures will be
optimized in the future.

The effect of the wind ropes on the maximum displacement of the tent is stronger than
that on the Von Misses stress of the tent under the external load. The angle of the wind
ropes and the number of the wind ropes on the side are the two most significant parameters
which affect the displacement of the tent. With the increase in the angle, the displacement
of the tarpaulin increases at first, and then decreases. The minimum displacement appears
when the angle of the wind ropes is 41.5◦. The closer the wind ropes are added to the center
of the tarpaulin, the greater the displacement of the tent is. The influence of the number of
the wind ropes on the maximum displacement under load is nonlinear.

Based on the analysis using the response surface methodology, the relationship be-
tween the angle of the wind ropes and the number of the wind ropes on the side is
significant. The effect of the angle of the wind ropes on the maximum displacement of
the tent decreased with increasing the number of the wind ropes on the side. The optimal
parameters are as follows: the angle of the wind ropes is 41◦, the number of the wind ropes
on the side is two, the initial prestress of the wind ropes on the end face is 800 Pa, and the



Appl. Sci. 2023, 13, 55 15 of 16

initial prestress of the wind ropes on the side is 0 Pa. In the condition with the optimal
parameters, the maximum displacement reduces by 10.2%, and the maximum stress barely
changes.

It can be concluded from the results that the external factors have a significant effect
on the maximum displacement of the tent. The maximum displacement can be reduced by
changing the angle of the wind ropes and the number of the wind ropes on the side, if the
structural parameters of the tent are fixed. The best values of the external factors can be
used to increase the effective space of the air-rib tents.
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