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Abstract: The segmentation of optic disc (OD) and optic cup (OC) are used in the automatic diagnosis
of glaucoma. However, the spatially ambiguous boundary and semantically uncertain region-of-
interest area in pictures may lead to the degradation of the performance of precise segmentation
of the OC and OD. Unlike most existing methods, including the variants of CNNs (Convolutional
Neural Networks) and U-Net, which limit the contributions of rich global features, we instead
propose a hybrid CNN-transformer and polar transformation network, dubbed as Polarformer,
which aims to extract discriminative and semantic features for robust OD and OC segmentation.
Our Polarformer typically exploits contextualized features among all input units and models the
correlation of structural relationships under the paradigm of the transformer backbone. More
specifically, our learnable polar transformer module optimizes the polar transformations by sampling
images in the Cartesian space and then mapping them back to the polar coordinate system for masked-
image reconstruction. Extensive experimental results present that our Polarformer achieves superior
performance in comparison to most state-of-the-art methods on three publicly available datasets.

Keywords: deep learning; multi-model learning; medical segmentation; transformer; attention

1. Introduction

The number of people diagnosed with glaucoma is increasing. According to one fore-
cast [1], the number of glaucoma patients will reach 111.8 million in the future. As a result,
early detection is essential for treatment to preserve vision, thereby, avoiding permanent
vision loss. In the diagnosis method of glaucoma, OD and OC segmentation is typically
performed first as an antecedent task in most glaucoma diagnostic approaches. Given that
OD and OC segmentation is costly, tedious and burdensome, accurate segmentation of
OD/OC is of great significance in assisting doctors in disease assessment and diagnosis [2].

It is hoped that algorithms may be used to facilitate detection and even diagnosis,
which has motivated works on fundus image-segmentation tasks. Figure 1 shows the
retinal fundus images of a healthy eye and a glaucoma-suspicious eye, which are the main
structures of the fundus captured by the fundus camera, including OD and OC. Compared
with the two types of images, glaucoma will cause pathological areas in the background
image of the eye and will change the physiological structure of the optic nerve.

The images are clear; however, normal (healthy) images cannot be easily distinguished
from abnormal (glaucoma) images with the naked eye. Therefore automated systems
need to be developed. Recently, OD and OC segmentation approaches have evolved from
conventional craft methods into deep-learning methods. Conventional methods are mostly
based on circular transformation for detecting the boundaries [3–5]. However, in these
methods, most of the features used are designed by hand, which not only requires strong
prior knowledge but also requires a great deal of computation.

Thus, these methods are intractable for segmenting a subtle OC. In response to this
problem, deep-learning methods [6–9] play an important role and have achieved promising
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performance. However, these deep-learning methods only used original fundus images.
According to our observations, a valid geometrical constraint is that the closed nested struc-
tures of OD and OC are both of approximately elliptical shape, and there is variability of the
object (size, position, etc.). However, representing this information and these constraints is
difficult to implement within the network.

Figure 1. The region enclosed by the green dotted circle is the optic disc (OD); the central bright
zone enclosed by the blue dotted circle is the optic cup (OC); and the region between them is the
neuroretinal rim. (a) An example of a healthy eye. (b) An example of a glaucoma-suspicious eye.

With these in mind, M-Net [6] converts images to polar coordinates to learn repre-
sentations for improving the performance of segmentation. Under the polar coordinate
system, this geometric constraint can be easily converted into spatial relationships and can
present an ordered layer structure. However, these similar methods only treat the center
of the image as the polar origin in the transformation and coordinate system, while we
formulate a Polar Origin Predictor capable of automatically detecting the centroid of the
OC as the polar origin.

The previous methods take polar transformation as a preprocessing process with no
parameters learned. Since the hyperparameter is not optimal for segmentation evaluation
and effective training, they cannot exploit all supervisory signals incorporating the ex-
tracted features. To solve this problem, we formulate a polar converter, which conducts the
original image, and its polar origin performs a polar transform. Consequently, a learnable
polar transformer module (LPTM) is proposed, which consists of a polar origin detector
and a polar converter. It is trained for transforming the original images into the polar
coordinate system. Thus, the network enables learning the polar representation.

Another challenge is that the blurred edges, shape and size of the OC and OD vary
among patients. Features of the background region (such as blood vessels and exudates)
easily interfere with the foreground (the OD and OC regions). Accordingly, it is necessary to
introduce sufficient contextual information and global information under different receptive
fields to search for relationships between features.

The image features extracted by the methods [6–11] mentioned before mostly focus
on local information, which cannot accurately capture the global contextual information,
particularly from the OD and OC regions, thus, limiting the model’s generalizability.
The underlying reason is that convolutions have a limited field of perception. In other
words, the network focuses more on local features when extracting features and cannot
effectively consider the large-range contextual information.

To achieve this, we design a transformer module to capture global contextual informa-
tion, which enhances the correlation between feature information by using the transformer’s
unlimited effective receptive fields. Unlike the existing transformer models, our Polar-
former incorporates the CNN-based module and the transformer-based module under
the deep neural network after the LPTM. For the local visual features, the CNN-based
module extracts the local visual features with CNNs to obtain more discriminative features,
and then we combine the feature pyramid network (FPN) [12] to improve their spatial
resolution, which handles multi-scale feature information.
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For the global contextual information, our transformer-based module introduces global
contextual information that leverages unlimited effective receptive fields to enhance useful
features and suppress useless feature responses, thereby, distilling spatial relationships.

In summary, we propose a hybrid CNN-transformer and polar transformation network
to solve the problem mentioned above. Our Polarformer aims to extract discriminative and
semantic features for robust OD and OC segmentation, thus, developing a more accurate
segmentation model. The remainder of this paper is organized as follows: We present
related works on the segmentation of the OD and OC in Section 2. Section 3 gives the
specific details of our model. In Section 4, we give our experimental results, compare them
with other methods and discuss our approach. In Section 5, we conclude our work.

2. Related Work
2.1. Optic Disc and Cup Segmentation

In the past few years, CNNs have made progress on the optic disc (OD) and optic cup
(OC) segmentation tasks. For example, Liu et al. [13] detected OD by training a segmenta-
tion network to detect OD from fundus images based on CNN. Mohan et al. [14] combined
the FCN [15] network with atrous convolution to achieve automatic segmentation of OD
and reliable detection of diseases, such as glaucoma. Furthermore, Sevastopolskyet al. [8]
modified a U-Net convolutional neural network for easier and faster OD and OC segmen-
tation tasks; however, it still operates in two stages.

Subsequently, Fu et al. [6] proposed M-Net, which considered the relationship between
OD and OC. Their method used OD and OC simultaneously and presented a multi-label loss
function to generate the final segmentation images. Zhang et al. proposed a generic medical
segmentation framework called ET-Net [16], which extracts discriminative contextual
features and selectively aggregates multi-scale information and embedding edge attention
representations. This was developed to guide the segmentation process.

Yin et al. [17] presented a region proposal network based on Mask-RCNN localization
to pay attention to accurate optic nerve head localization, which combines prior information
to learn a discriminative feature representation for segmentation.

2.2. Polar Transformation Networks

Most recently, Salehinejad et al. [18] improved the diversity of the datasets by propos-
ing a sampling method based on generating a new image for each pixel. Liu et al. [19]
proposed DDNet, a method that learned rich contextual information from both the Carte-
sian domain and the polar domain. Zahoor et al. [20] applied a polar transform to convert
the circular ROI into different rectangular tiles, which were adaptively thresholded to
obtain the exact OD boundary.

Fu et al. [6] first localized the disc center by using the Active Contour Models and
then transferred the original fundus image into the polar coordinate system based on
the detected disc center. Jiang et al. [21] considered the rotation-invariant problem as
a translation-invariant problem, and their method adopted the center loss function to
learn rotation-invariant features. In order to achieve rotational invariance, Kim et al. [22]
developed a deep network for original images in a polar coordinate system in classification
tasks. Their method replaced convolution layers in conventional CNNs with cylindrical
convolutional layers by using cylindrical sliding windows.

2.3. Transformer Models

The transformer is different from the traditional CNN and Recurrent Neural Network
(RNN). It does not have a complex network structure. The core of the transformer is
the self-attentive mechanism, which was applied for the first time in the area of natural
language processing. Ashish Vaswani et al. [23] proposed a transformer for the first time, as
using the self-attentive mechanism could obtain potential relationships between the input
and output.
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Due to the advantages of the transformer, researchers began to apply it to the seg-
mentation field. Dosovitskiy et al. [24] interpreted an image as a sequence of patches and
processed it using a standard transformer encoder. Liu et al. [25] presented the Swin
Transformer, which brought greater efficiency by limiting the self-attention computation to
non-overlapping local windows while also allowing for cross-window connection. Carion
et al. [26] introduced DETR, a new design for transformer-based object detection systems
and bipartite matching loss for direct set prediction.

Our motivation is to propose a hybrid CNN-transformer and polar transformation
network by taking advantage of the transformer’s unlimited effective receptive fields to
introduce global contextual information. To our knowledge, there has been no work consid-
ering polar representation with a transformer in the fundus medical task. Although some
methods have combined polar transformation with classification tasks by using neural
networks, OD and OC segmentation use polar transformation only for a preprocessing step.

3. The Proposed Method

Unlike U-Net-based OD and OC segmentation methods where the global context
feature relationship cannot be modeled, our basic idea is to globally optimize the feature
extraction process and strengthen correlations between features in parallel to improve the
discrimination ability of each pixel’s representation. As illustrated in Figure 2, there are
two major components in our Polarformer. (1) A learnable polar transformation module
(Section 3.1), which performs a differentiable log-polar transform. (2) A CNN-transformer
module (Section 3.2), which extracts image features with high resolution and aggregates
global self-attention at the end. Finally, we apply a segmentation head to output each
class’s confidence scores and convert the final predictions back to the Cartesian coordinate
system. The combination of two components forms our method and is described in the
following sections.

Figure 2. The architecture of our proposed Polarformer.

3.1. Learnable Polar Transformation Module

Regarding the imbalanced class distributions in fundus images, OC pixels are more
likely to be misclassified. M-Net [6] segmented the OC and OD in the polar coordinate space
to alleviate this problem. However, M-Net takes polar transformation as a pre-processing
process without learned parameters. With the hyper-parameter being not optimal for
segmentation evaluation and optimal training, features extracted by them cannot exploit
the full supervision. To overcome the limitations of using the original images, we designed
a learnable polar transformation module (LPTM). As visualized in Figure 3, our LPTM
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consists of a polar origin detector, which detects the origin of the polar transform, and a
polar converter transforms the original images into a polar representation.

3.1.1. Polar Origin Detector

When performing polar coordinate transformation, the polar origin is an important
parameter that determines the final segmentation performance. In order to obtain a better
polar representation, it is necessary to select an image center that is close to the segmented
object and to then proceed to the next step based on the polar origin. Otherwise, the sub-
sequent analysis in polar coordinates is likely to be inaccurate. Recent deep models [27]
directly regress the coordinates of the target point through the fully connected layer of
the network. However, these methods are not an optimal choice. Other methods predict
heatmaps and take their argmax [28,29].

These are not the best positions because the backpropagation gradients are zero for all
parts except the target point, which interferes with training. To be specific, we proceed as
follows: According to [30], the green channel highlights the features of the OC. Thus, we
take the green channel of the images and follow stepwise convolution to obtain a heat map.
The polar origin detector consists of a sequence of standard convolution blocks followed by
a 1×1 convolution. The polar origin is the pixel coordinate point with the highest intensity
calculated from the heatmap predicted in the last layer of the model.

Figure 3. An example of segmentation using polar coordinates. (a) Glaucoma fundus image. (b) Fun-
dus image in polar coordinates. (c) The ground truth in polar coordinates.

3.1.2. Polar Converter

In the original fundus datasets, the OC is contained in the OD, both are approximately
elliptical, and there is variability of the object (size, position, etc.). However, the representa-
tion of this information and the constraints are difficult to implement in the network. From
observations, under the polar coordinate system, this geometric constraint can be easily
converted into spatial relationships and can present an ordered layer structure. Follow-
ing [31], we employ log-polar coordinates for original datasets that effectively improve the
cup-to-disk ratio, balance the dataset, prevent overfitting and improve the segmentation
accuracy. Inspired by a Spatial Transformer Network (STN) [32], we formulate γi to denote
the output coordinates, where X denotes the input:

xs
i = x0 + rxt

i /W0 cos
2πyt

i
H0

, (1)

ys
i = y0 + rxt

i /W0 sin
2πyt

i
H0

, (2)

where (x0, y0) is the origin input coordinates. W0 and H0 are the width and height of the

output. γ is the maximum distance to the origin, which we set to 0.5
√

H2
0 + W2

0 in our

experiments. (xs
i , ys

i ) denotes the source sample point coordinates, and (xt
i , yt

i) denotes the
transformed log-polar coordinates.
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3.2. CNN-Transformer Module

The distance between different regions has changed in the images’ polar representation.
As the input areas have a significant impact on the model output, without a larger receptive
field, the network may obtain incorrect segmentation results by misleading local features.
In the OD and OC segmentation task, these U-Net variants have limited effective receptive
fields and only focus on the local information of images.

To solve this problem, we first exploit CNN to extract the local visual features to obtain
more discriminative features. Next, we take advantage of the feature pyramids network
to improve their spatial resolution, which handles multi-scale feature information. Then,
we propose a transformer-based module, which is used to obtain better feature represen-
tation by aggregating long-range context information. Our module computes pairwise
interactions (self-attention) between the optic cup and optic disc features, combining their
features and generating contextualized features. The results of the experiment proved that
transformer could obtain global contextual information.

3.2.1. Feature Pyramids Network

In our method, we use a CNN as a backbone to extract feature maps. Then, we place
the rich semantic feature maps X0 ∈ RH0×W0×D0 , where D0 is the number of color channels,
W0 represents the width and H0 represents the height. Our FPN is shown in Figure 4.
The FPN learns a feature map Pout from different resolution feature maps Pin, where
Pin = (Pin

1 , Pin
2 , . . .), and feature map Pin

i is obtained by the encoder at layer i. The size of
the feature is (W, H), and the feature map size Pin

i is (W
2i , h

2i ). In the network, we designed
this as Pout = upsample×2(P

in
i ) + Convi(Pin

i−1). As described above, P(X0) = 1/16 of the
origin. In this case, segmentation cannot be done accurately due to the coarseness of the
data. Thus, we obtain upsampled feature maps Pout by upsampling the input FPN.

Figure 4. An overview of the CNN-transformer module.

When feeding the input to the transformer, due to its characteristics, the spatial
resolution of the feature map can be kept unchanged, and thus the output feature map is
also 1/8 the size of the input images. The problem is that segmentation is not possible
at this spatial resolution; therefore, we have to upsample the feature maps and find the
output FPN. The process is as follows:

Pout = upsample×2(Pin
i ) + Convi(Pin

i−1), (3)

gout = upsample×4(gin) + Convi(Pout). (4)
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3.2.2. Transformer Module

We obtain the local image features using the CNN backbone and the feature pyramid
network. The transformer module builds global contextual information based on them.
The transformer part is a conventional encoder–decoder structure to learn contextual
information for the segmentation. In order to extract image features, [33,34] use a vision
transformer [24] as the encoder. Inspired by these, our transformer module is followed [24]
using a vision transformer, which consists of a number of stacked transformer layers. Each
layer calculates the paired interaction between input units and outputs the upper and lower
contextual Xout from the same number of the unit. Before inputting the transformer, the
CNN-transformer module outputs the corresponding image feature maps.

The feature map is then flattened into 1-D patch embedding by adding a positional
embedding. The visual features and position codes of each unit: Fs = Fv + E. Then, Fs

is input to the transformer encoder, which contains L layers of multi-head self-attention.
We emphasize the mechanism of self-attention (SA) as the self-attention layer is the most
important part of the encoder. The transformer architecture is shown in Figure 5. It contains
a query Q, a key K and a value V as input and outputs a refined feature as follows:

SA(zi) = So f tmax(
qikT
√

dh
)v, (5)

where [q,k,v] = zW(qkv), W(qkv) ∈ RD0×3Dh is the projection matrix and vector zi ∈ R1×D0 ,
qi ∈ R1×Dh are the ith row of z and q, respectively. The output FPN upsamples the
transformer’s output, and then the segmentation head of the module outputs confidence
scores of each class in the mask in polar coordinates. Finally, the image is converted from
polar coordinates to the image in Cartesian coordinates.

Figure 5. The architecture of the transformer.
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4. Experiments and Results
4.1. Datasets and Evaluation Metrics

The experiment was conducted using three public datasets: REFUGE Challenge [35],
DRISHTI-GS [36] and RIM-ONE v3 [37]. All images were cropped to a size of 576 × 576
pixels according to the approach proposed by [6]. REFUGE dataset : The REFUGE dataset
contains 1200 images in total, which is divided into three parts. There are 400 images that
can be used for training, 400 images for validation and 400 images for testing. DRISHTI-GS
dataset : The DRISHTI-GS dataset contains 101 images: 51 images are randomly selected for
training and 50 images for testing. RIM-ONE v3 dataset: There are 159 images in the data
set. In this paper, we randomly selected 99 images for training and 60 images for testing.

Evaluation Metrics

Our test set was evaluated by the standard Dice coefficient as the evaluation metric.
The overlap of the algorithm segmentation results and the ground truth labels was mea-
sured using the Dice score. For each image, we calculated the prediction result of the OD
and OC Dice scores.

Dice =
2|X uY|
|X|+ |Y| , (6)

where X is the ground truth and Y is the prediction result.

4.2. Implementation Details

Each model was trained using PyTorch 1.10.0 on the NVIDIA GeForce RTX 3090 GPU.
For all networks, the batch size was 4. In the comparative experiment, the learning rate for
the SETR [33], TransU-Net [34] and our model was 0.0002 and for the other models was
0.0001. The iterations of all models are 10,000 iterations (27 epochs). After each epoch, we
store the model with the best validation loss by using checkpoints.

In order to solve the problem of poorly trained deep convolutional neural network
models due to small amounts of data, we first trained the network on ImageNet [38] and
then fine-tuned the model on a small-scale dataset. In this way, we significantly reduced
the time needed to train the model and achieve better results, initializing the weights of the
convolutional layer with the pre-trained weights of our CNN backbone. For the training,
we used a combinational average of pixel-wise cross-entropy loss and dice loss.

4.3. Comparisons with the State of the Art

We compared Polarformer with other methods, including U-Net variant methods,
which utilize skip connections, and transformer-based methods, which introduce global
contextual information. The methods with U-Net and variants include U-Net [39], U-
Net++ [40], U-Net3+ [41] and Attention-based U-Nets [42]. The transformer-based methods
include SETR [33] and TransU-Net [34]. We compared with BGA-Net [43], NENet [44],
PraNet [45], M-Net [6], nnU-Net [46], which were proposed for OD and OC segmentation
tasks. We compared DeepLabV3+ [47] as well. We compared them using RIM-ONE v3,
REFUGE and DRISHTI-GS with their released source codes.

Table 1 tabulates the Dice scores of Polarformer compared with the state-of-the-art
methods. From the table, it can be seen that our Polarformer achieved better results.
SETR [33] and TransU-Net [34] are transformer-based methods. In terms of accuracy, we
can see that these methods are slightly inferior to our method, indicating that more detailed
features are learned under polar representation. The shape of the OC and OD are non-
rotated ellipses, and their features contain structural information. Our model can learn
more discriminative features of the OD and OC by learning long-range dependencies.

Furthermore, our proposed LPTM automatically globally optimizes the spatial re-
lationship between the OD and OC and can be explicitly modeled in a prior way. In
addition, our model has a greater advantage compared with M-Net [6]. The reason is that
the polar transformation in [6] is a hyper-parameter that may fall into local optima. Clearly,
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we observe that our Polarformer demonstrates the competitive performance of the OC
segmentation compared with DeepLabV3+ [47] and U-Net [34], even if there is difficulty
distinguishing and there is noise in the images.

Table 1. Comparisons of our approach compared with different state-of-the-art methods on the
DRISHTI-GS dataset, RIM-ONE v3 dataset and REFUGE dataset.

Method RIM-ONE v3 DRISHTI-GS REFUGE
Dicecup Dicedisc Dicecup Dicedisc Dicecup Dicedisc

U-Net 0.837 0.948 0.830 0.945 0.835 0.951
U-Net3+ 0.843 0.955 0.833 0.952 0.837 0.959
DeepLabV3+ 0.857 0.961 0.842 0.951 0.855 0.943
AttU-Net 0.852 0.965 0.845 0.950 0.857 0.964
M-Net 0.862 0.952 0.859 0.948 0.864 0.952
PraNet 0.856 0.961 0.841 0.953 0.857 0.966
nnU-Net 0.865 0.966 0.862 0.960 0.876 0.965
SETR 0.877 0.965 0.880 0.954 0.878 0.955
TransU-Net 0.874 0.954 0.883 0.944 0.877 0.964
BGA-Net 0.872 0.967 0.898 0.975 % %
NENet % % 0.840 0.963 % %
Polarformer(R101) 0.888 0.968 0.893 0.974 0.890 0.975
Polarformer(eff-B4) 0.895 0.972 0.901 0.977 0.892 0.974

Figures 6–8 show the comparison between our method and other methods on REFUGE
dataset, DRISHTI-GS dataset and RIM-ONE v3 dataset of the same image. The figures’
black parts represent the OC , and the gray parts represent the OD. By comparing the
ground truth and our visualization results in the figures, we can see that the segmentation
results of different models have differences, particularly in the edge of the OD and OC.
From the visualization of the experimental results, DeepLabV3+ had a better effect on the
boundary segmentation of the OC. AttU-Net showed results that were not ideal. The U-Net
methods were inaccurate , and the boundaries were chaotic. Compared with our method,
this is because the method in this paper adopts the transformer module to take advantage
of its unlimited effective receptive fields to introduce global contextual information, which
makes the boundary segmentation more accurate.

Figure 6. Visualization of OD and OC segmentation results on the DRISHTI-GS dataset. From top to
bottom: (a) DRISHTI-GS images. (b) The ground truth. (c) The segmentation results of U-Net. (d) The
segmentation results of DeepLabV3+. (e) The segmentation results of AttU-Net. (f) The segmentation
results of nnU-Net. (g) The segmentation results of our Polarformer.
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Figure 7. Visualization of OD and OC segmentation results on the REFUGE dataset. From top
to bottom: (a) REFUGE images. (b) The ground truth. (c) The segmentation results of U-Net.
(d) The segmentation results of Deeplabv3plus. (e) The segmentation results of AttU-Net. (f) The
segmentation results of nnU-Net. (g) The segmentation results of our Polarformer.

Figure 8. Visualization of OD and OC segmentation results on RIM-ONE v3 dataset. From top
to bottom:(a) RIM-ONE v3 images. (b) The ground truth. (c) The segmentation results of Unet.
(d) The segmentation results of Deeplabv3plus. (e) The segmentation results of AttU-Net. (f) The
segmentation results of nnU-Net. (g) The segmentation results of our Polarformer.

4.4. Ablation Study

To further test our module, we performed ablation studies to evaluate the LPTM and
Transformer Module as shown in Table 2. We used the OpenCV linear polar transformation
implementation to compare with our Polarformer. In our experiments, we took ResNet-
101 [48] and EfficientNet-B4 [49] as the CNN backbone. We used three layers of the
transformer. In most cases, the Dice score of OD’s Dice scores only changed by ±0.005, so
here we only report the Dice scores of OC.

Two conclusions can be made from Table 2. (1) The polar origin detector (POD)
achieved higher performance than training without it. LPTM played a crucial role in
performance by converting the original images through the POD and polar converter.
(2) The combination of the transformer module had a different effect on the task when
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compared with the combination without the module. According to the results, we the
modules in our Polarformer indicate the contributions of the discriminative features.

Table 2. Ablation study on every module of our proposed method on the DRISHTI-GS dataset,
RIM-ONE v3 dataset and REFUGE dataset.

Model DRISHTI-GS REFUGE RIM-ONE v3
ResNet-101 Eff-B4 ResNet-101 Eff-B4 ResNet-101 Eff-B4

Baseline 0.881 0.870 0.873 0.876 0.868 0.872
w/o POD 0.887 0.890 0.884 0.887 0.882 0.885
w/o Transformer 0.878 0.882 0.885 0.880 0.879 0.882
Polarformer 0.893 0.901 0.890 0.893 0.888 0.895

4.5. Discussion

In the field of OD and OC image segmentation, the labeled fundus images are small.
Overfitting problems often occur when training network models on small datasets. Thus,
we use other datasets (e.g., ImageNet [38]) to pre-train the model weights. To investigate
the effect of pre-training, we set up a comparison experiment. Table 3 compares the
performance. From these results, we observe that the performance of using pre-trained
weights showed an increase in Dice scores for both OD and OC.

Table 3. Comparisons of our approach (pre-trained weights) compared with the U-net (training from
scratch) on the REFUGE dataset.

Method REFUGE
Dicecup Dicedisc

U-Net (R101 scratch) 0.825 0.948
U-Net (R101 pretrain) 0.835 0.951
Ours (R101 scratch) 0.881 0.960
Ours (R101 pretrain) 0.892 0.974

5. Conclusions

In this paper, we developed a hybrid CNN-transformer and polar transformation
network for OD and OC segmentation. We handled this segmentation task from a funda-
mentally new perspective, where the OD and OC were represented and segmented in the
polar coordinate space rather than in the original image space. Specifically, we combined
the CNN network and transformer to explore the polar representation of fundus images
with the transformer to exploit contextualized features among all input units to greatly
improve each pixel’s representational discrimination ability.

The polar origin detector is of great importance for OD and OC segmentation. In
addition, a polar converter was introduced to train the neural network and use the polar
coordinate transformation of the original fundus datasets, which balances the view cup
view disc ratio. As the shape of the OD and OC are elliptical, this transformation results
in a reduction in the dimensions. Moreover, we developed a transformer module to take
advantage of its unlimited effective receptive fields to introduce global contextual infor-
mation. After that, we used a feature pyramid network not only to enable fusing different
scale features but also to provide a multi-scale prediction for further segmentation tasks.

The performance of our method on three publicly available datasets verified the
effectiveness of our approach. Our Polarformer also demonstrated cross-domain ability
and had powerful performance in the few-shot scenario, which is a future direction of
this research.
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