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Abstract: Video super-resolution reconstruction is the process of reconstructing low-resolution video
frames into high-resolution video frames. Most of the current methods use motion estimation and
motion compensation to extract temporal series information, but the inaccuracy of motion estimation
will lead to the degradation of the quality of video super-resolution results. Additionally, when using
convolution network to extract feature information, the number of feature information is limited by
the number of feature channels, resulting in poor reconstruction results. In this paper, we propose
a recurrent structure of regional focus network for video super-resolution, which can avoid the
influence of inaccurate motion compensation on super-resolution results. Meanwhile, regional focus
blocks in the network can focus on different areas of video frames, extract different features from
shallow to deep layers, and skip-connect to the last layer of the network through feature aggregation
to improve the richness of features participating in the reconstruction. The experimental results show
that our method has higher computational efficiency and better video super-resolution results than
other temporal modeling methods.

Keywords: recurrent neural network; regional focus; feature aggregation; video super-resolution.

1. Introduction

Super-resolution is a classical problem in the computer vision field. Its main ob-
jective is to predict high-resolution images with rich texture details from low-resolution
images, which is essentially the solution of ill-posed problems. In recent years, with the
increasing demand for high-definition display, this problem has received wide attention.
Single image super-resolution mainly uses the method based on image prior information
and self-similarity, and takes a single low-resolution image as an input to predict the
high-resolution image. Method [1] uses the combination of adaptive reconstruction and
learning to complete the super-resolution reconstruction of a single image. However, the
reconstruction results with these methods are very limited. Compared with the single
image super-resolution, video super-resolution takes multiple consecutive low-resolution
video frames as input and utilizes the temporal information between adjacent frames to
further improve the recovery quality of video frame details.

Deep learning is one of the popular methods for video super-resolution. Video
super-resolution methods can be divided into video frames alignment methods and
video frames misalignment methods because of the differences in the processing of video
super-resolution reconstruction. For the video frames alignment, explicit motion com-
pensation methods [2–6] and implicit motion compensation methods [7–12] are the main
methods. Explicit motion compensation methods usually obtain inter-frame motion infor-
mation through optical flow calculation, and perform warping operations to align adjacent
frames and target frames based on inter-frame motion information. The first end-to-end
video super-resolution reconstruction methods were proposed in Reference [2], which
combines optical flow estimation and spatio-temporal network training to achieve video
super-resolution. In order to improve the reconstruction quality of video super-resolution,
Wang et al. [13] calculated the high-resolution optical flow image to make the video frame
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alignment more accurate, so as to improve the reconstruction quality. Song et al. [14] learned
the gradient mapping function between high-resolution and low-resolution to regularize
multi-frame fusion, and used forward and backward motion field priori to regularize the
estimation of interframe motion flow, which can restore better details with less information.

Deformable convolution is the most common implicit motion compensation method.
As its typical example, Wang et al. [10] uses a deformable alignment module and a spatio-
temporal attention fusion module to solve the large motion problem and efficient fusion of
multiple frames in video super-resolution, respectively. Different from alignment methods,
non-aligned methods [15–17] do not perform frame alignment before video super-resolution
reconstruction, and mainly utilize spatial information or spatio-temporal information to
extract features, such as 3D convolution, recurrent neural network, and non-local method.
The non-local operation of method [18] is to calculate the similarity between other pixels
in the image and the pixel at the current position, where the response value of the current
position is equal to the sum of the weights of all possible positions in the input feature map.
Isobe et al. [19] adopts the structure of cascaded residual blocks in the recurrent network,
which reconstructs rich texture details while avoiding the vanishing gradient problem.
The cascaded residual structure [20] has achieved a good effect in processing single-image
super-resolution. However, when applied to the video super-resolution, this structure does
not take into account the unbalanced proportion between simple and complex areas of
the video frame. Usually, most of the video frames are simple regions, which makes the
optimization direction of the network dominated by simple regions during the training
process, resulting in the deterioration of the reconstruction results quality and the blurring
of local regions. In addition, because the convolutional network has the characteristics of
local connection and global sharing, the super-resolution task based on the convolutional
network needs to restore the detailed information of the reconstruction results point-by-
point. The features extracted from different residual blocks in the residual cascade network
have the characteristics of progressive refinement. The output features of different residual
blocks are similar, and the feature diversity is limited by the number of feature channels,
which affects the recovery of high-frequency details in complex regions.

Motivated by the above discussion, a recursive regional focus network for video super-
resolution will be proposed in this paper. In this recursive network, the regional focus block
is designed to change the coupling relationship between the former and the latter layers in
the cascading residual structure, and to give different degrees of attention to the regions
with different reconstruction difficulties in the video frame. Meanwhile, we designed a
feature aggregation structure that can send different features from shallow layer to deep
layer extracted from each regional focus block in parallel to the last layer of the network for
feature fusion, so as to increase the feature richness involved in video frame reconstruction.

The innovation of this paper mainly includes the following two points:

(1) The regional focus block proposed in this paper changes the coupling relationship
between adjacent layers in the cascading residual structure, and pays different degrees
of attention to different texture regions in the video frame. The feature information
extracted from the network of different layers can participate in the reconstruction of
the video frame, and will not lead the optimization direction of the network because
the video frame contains more simple areas.

(2) The feature aggregation structure in the network sends the feature information ex-
tracted from different layers of networks from the shallow layer to the deep layer into
the last layer of the network in a parallel manner, and carries out the feature fusion
with the feature information extracted from the series structure in the network, which
increases the feature information involved in the reconstruction of video frames and
improves the quality of the reconstruction results.

The above structure can effectively improve the reconstruction quality of the video
frame while guaranteeing the network computing speed. As shown in Figure 1, it is a
comparison of the results of our method and other different methods. From the figure, we
can see that our method has achieved better results in both contour reconstruction and the
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detailed recovery of images. Finally, we carry out experiments in different test datasets, and
compare them with the current mainstream video super-resolution work, the experimental
results of which show that the reconstruction results obtained by our method are better
than those obtained using other methods.

Figure 1. Comparison of the ×4 reconstruction results of our method and other methods in city
video sequence.

2. Related Work

In the video super-resolution task, some methods explore the timing information be-
tween video frames with explicit motion estimation and compensation. Kim et al. [21] pro-
posed a method of calculating optical flow using multiple frames of video simultaneously,
which alleviates the occlusion problem when only adjacent frames are used to calculate
optical flow. Xiao et al. [22] improved the performance of video super-resolution network
via information extraction without changing the original network structure. Wang et al. [23]
proposed a multi-memory convolutional neural network cascading optical flow network
and image reconstruction network, which can make full use of the spatio-temporal comple-
mentary information of low-resolution video frames. Bao et al. [24] proposed an adaptive
warping layer that combines optical flow and interpolation to synthesize target frame pixels.
In order to fully utilize the temporal information, Li et al. [25] adopted motion compen-
sation, depth full recursive convolution, and later feature fusion in the network to obtain
more accurate video super-resolution results. The video super-resolution method proposed
by Bare et al. [26] solved the inaccurate problem of motion estimation and the influence
of the unreasonable design of partial convolutional network structure on reconstruction
results. Kalarot et al. [27] proposed a full convolution neural network with unknown scene
and category, which can take full advantage of previous estimates and share redundant
information across continuous video frames. A time self-monitoring method was proposed
by Chu et al. [28], and the method where temporal confrontation learning can achieve
temporal consistency without sacrificing spatial details was proven. Li et al. [29] not only
used the similarity between frames to overcome the error prone problem of optical flow
estimation, but also designed a non-local aggregation scheme to discuss the self-similarity
of cross-scale images. Li et al. [30] adopted the fusion of non-local modules and multi-scale
features to further mine the effective information of video frames while calculating the
optical flow of adjacent video frames. To better extract the complementary information
of video frames, Isobe et al. [31] divided the pixels with different differences into two
different subsets by calculating the temporal difference between video frames, and handed
them with the receptive fields of different branches. Chan et al. [32] proposed a concise
network structure by redesigning some basic functions of video super-resolution. After
that, Chan et al. [33] redesigned the proposed network structure via second-order network
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propagation and deformable alignment, and effectively exploited the spatio-temporal in-
formation of exaggerated misplaced video frames. In the alignment method, the purpose
of motion estimation is to extract the motion information between video frames, and the
motion compensation is to perform a warping operation to align the video frames according
to the motion information between the video frames. Most of the motion estimation is
achieved using optical flow methods, which calculates the motion between adjacent frames
through the correlation and variation of adjacent frames in the temporal domain. However,
the estimation of dense optical flow is a very time-consuming work. Meanwhile, errors are
prone to occur in the optical flow estimation process, and the resulting inaccurate optical
flow will cause artifacts in the results of video super-resolution based on optical flow.

In addition to the methods mentioned above, another class of methods are to use
motion information between video frames to perform video super-resolution reconstruction
in an implicit manner. Ying et al. [34] proposed a deformable 3D convolutional network
to integrate spatio-temporal information in video super-resolution, which has excellent
spatio-temporal modeling and flexible motion perception ability. Chen et al. [35] designed
a separate non-local module to explore the relationship between video frames, effectively
fuse video frames, and capture the relationship between feature maps via channel attention
residual blocks. Dai et al. [36] introduced deformable convolution and deformable pooling
in the model, used an additional offset to increase the spatial sampling location in the
module, and learned the target task offset without additional supervision. The temporal
variant alignment network proposed by Tian et al. [37] aligns the reference frame and
each corresponding frame adaptively at the feature level without calculating the optical
flow. Compared with the explicit motion compensation method, these implicit alignment
methods reduce the computational cost, but in these methods, the redundant computation
of multiple adjacent frames still exists in a temporal window, which requires the caching of
multiple frames in advance to achieve video super-resolution.

Compared with the alignment methods, there are another class of methods that do not
use frame alignment to achieve video super-resolution. Such methods mainly use spatial
or spatio-temporal information for feature extraction, where the 2D convolution method
extracts the feature information of video frames in space, and the 3D convolution method
extracts the temporal information in the spatio-temporal domain to consider the correla-
tion between video frames. Here, recurrent neural network methods are very suitable for
processing video sequences with temporal information because of their recursive charac-
teristics. Yan et al. [38] proposed an end-to-end trainable video frame and video super-
resolution network about feature context correlation that is composed of local and context
networks. The fast spatio-temporal residual network proposed by Li et al. [39] uses 3D con-
volution for video super-resolution tasks, which improves performance while maintaining
a low computational load. Liu et al. [40] proposed a deep neural network with dual subnets
and multistage communication up-sampling for the super-resolution of large motion video.
Zhu et al. [41] proposed an end-to-end reversible residual spatio-temporal network, which
takes full advantage of spatio-temporal information from low-resolution to high-resolution,
and effectively modeled the temporal uniformity of continuous video frames.

There are also some methods to consider video super-resolution problems from an-
other perspective. Li et al. [42] expanded the super-resolution reconstruction magnification
from the traditional ×4 to the high magnification of ×16 and ×32. Lee et al. [43] com-
pleted the final video super-resolution task by taking different video frames taken by
the telephoto, wide-angle, and ultra wide cameras as mutual references. The head pose
estimation methods [44,45] proposed by Liu et al. also have some enlightenment and
reference significances.

To sum up, the non-alignment methods mainly rely on the nonlinear ability of the
neural network to learn the motion correlation between video frames, thereby achieving the
super-resolution reconstruction of video frames. The reconstruction result of the network
is not affected by whether the video frames are aligned or not, and the design of the
network structure determines the learning ability of the network. Therefore, the reasonable
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design of the network structure is helpful for improving the performance of video super-
resolution. The method proposed in this paper increases the feature information involved
in the reconstruction through the feature extraction from shallow layer to deep layer,
and the attention of different network layers to different feature regions. By using the
feature aggregation structure to fuse the feature information, more feature information
can be obtained to participate in the final super-resolution reconstruction of the network.
The quality of network reconstruction has not been improved with the increase in the
number of network parameters.. This issue will be further discussed in the subsequent
ablation experiments.

3. Proposed Model

The main contribution of this paper is to design a module that combines residual
blocks and regional focus blocks on the basis of recurrent network, and to combine feature
aggregation in the network structure. This design maintains the diversity of network
features, thus enhancing the quality of video super-resolution.

In the internal design of the network, a base module (BM) is composed of two residual
blocks and a regional focus block, in which residual blocks transfer rich image details
from the previous layer to the latter in a cascading manner while avoiding the problem
of gradient disappearance. The regional focus block carries out regional focus to some
feature information while retaining reconstruction details. After that, the output results
of each BM module are spliced by skip connection to maintain the diversity of features in
the reconstruction process of the network. Finally, the aggregated features are used for
network output reconstruction results and hidden state updates.

3.1. Network Structure

The network structure designed in this paper mainly consists of three parts, which are
the positive feedback part as the input, the basic module part for feature regional focus and
multi-feature fusion, and the output part for updating and reconstructing the hidden state.
Their structure relationship is shown in Figure 2.

The leftmost part of Figure 2 is the input part of the network; in the input part of the
network, the adjacent LR frames xt−1 and xt, the reconstruction result yt−1 of the previous
frame along the channel axis and the hidden state ht−1 generated in the reconstruction
process are spliced, and then sent to the network. For the video super-resolution task, if
the temporal continuity of the network model is limited, the reconstruction results are
prone to flicker distortion. The hidden state is spliced with the adjacent LR frames and
fed to the network, which helps to improve the continuity between frames and reduce the
occurrence of flicker and distortion. The reconstruction result yt−1 of the previous frame is
not directly spliced, but is obtained at the same size as the input frame after the space-to-
depth transformation, and then spliced as the network input. Due to the high correlation
between adjacent frames, when the reconstruction result yt is generated, the reconstruction
result of the previous frame contains the additional texture information that has been
processed at the previous time, which can supplement the information of the similar part of
the current frame. In addition, the preceding LR frame xt−1 is input into the network along
with the co rresponding rebuild output yt−1. This input–output mapping relationship can
guide the content that needs to be learned for the current frame reconstruction.

As shown in Figure 2, then 3 × 3 convolution is used to extract features from the input
network concatenation information, and the extracted features are sent into the BM module.
The BM module consists of two residual blocks and one regional focus block. The residual
block here can extract high-frequency information contained in the feature information,
and the regional focus block can decouple from the next BM module and focus on areas that
are difficult to recover in the video frame. Through the feature aggregation structure, the
high-frequency feature information extracted from different BM modules and the regional
feature information of focus are sent to the last layer of the network for concatenation.
After the feature fusion of 1 × 1 convolution, the feature information is sent to the two
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outputs of the network, respectively. One channel is directly output to hidden state ht
after 3 × 3 convolutions. In other channel, the result after a depth-to-space transformation
is added with the up-sampling result of the LR frame xt after bicubic interpolation as
the super-resolution output of the current frame yt. The LR frame xt contains the profile
information of the frame to be reconstructed. The interpolation and up-sampling of this
frame is to reduce the network’s estimation of the profile information, put more computing
resources into the recovery of details, and reduce the network’s computation.

Figure 2. The video super-resolution recurrent network structure proposed in this paper.

When the reconstruction result yt−1 of the previous frame is sent to the network as
positive feedback to participate in the reconstruction of the next frame, a space-to-depth
transformation needs to be performed to match the size of the input low-resolution frame.
The output part of the network is transformed from depth to space. After transformation,
all pixels contained in the low-resolution feature are rearranged in the corresponding high-
resolution feature area, preserving local integrity. The depth-to-space and space-to-depth
transformations are inverse to each other. The depth-space transformation can reduce the
complexity of the model without losing local information, as shown in Figure 3.

Equation (1) represents the process:

[yLR]
H×W×2s2 ↔ [yHR]

sH×sW×2 (1)

where H ×W represent the size of the low-resolution frame, s represents the reconstruc-
tion factor, and yLR and yHR represent the low-resolution feature and high-resolution
features, respectively.

Figure 3. Depth–space transformation.

In the designed network structure of this paper, the current frame xt to be reconstructed
can be spliced with the hidden state of the positive feedback network, and the reconstruction
result can be obtained from previous frame, and then input into the network. In addition,
we also designed a skip connection structure for the current frame to be reconstructed,
which adds the input network frame xt to be reconstructed with the output reconstruction
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results via bicubic interpolation up-sampling. The high-frequency information of the frame
to be reconstructed is seriously lost, but it contains a lot of low-frequency information.
The skip connection after interpolation and up-sampling can guide the network to pay
maximum attention to the high-frequency components of the reconstructed frame, avoid
the complex transformation of the network learning from the LR frame to the HR frame,
and greatly simplify the training difficulty of the network.

3.2. Residual Calculation and Regional Focus in the BM Module

After the different information input to the network is spliced, the convolution opera-
tion is first performed to extract different feature information, and then the information
is sent to the BM basic module of the network. Each BM base module in the designed
network structure contains two residual blocks and one regional focus block, as shown
in Figure 4. The cascade of residual blocks can transfer rich image information from the
previous layer to the next layer. The regional focus block (RF-Block) can adaptively focus
on the features of specific regions, and extract the feature information that needs to be
focused on in different regions.

The calculation process of the first BM block in Figure 4 can be described by mathe-
matical Formula (2); the calculation of other BM blocks is the same as this process:

F1 = RF{Res{Res{F0}}} (2)

where F0 is the input feature, Res{·} is the residual feature calculation, RF{·} is the regional
focus feature calculation, and F1 is the output feature of the first BM block. After all BM
blocks are calculated, the output feature Fi is obtained to participate in the subsequent
work of the network.

Figure 4. The structure of the base module (BM).

The cascade of residual blocks can extract the feature information contained in the
image. With the increase in network layers, the deep feature information of the input
information can be further extracted, and the skip connections of residual blocks can
alleviate the gradient disappearance problem with the increase in network depth. The task
of video super-resolution is to restore the missing information to the complete information.
In the traditional network structure, the information will be lost in the transmission process,
which will affect the reconstruction quality. The skip connection structure can ensure the
integrity of information transmission in the network and avoid information loss.

The main task of video super-resolution reconstruction is to minimize the pixel-by-
pixel error between the reconstruction result and the high-resolution label. Video frames
contain smooth regions with single details, and complex regions with rich textures. In
the reconstruction process of the video frame, the loss values of smooth regions and label
frames are small, but the loss values of complex regions and label frames are quite different.
Compared with complex regions, smooth regions account for a larger proportion in video
frames. This data imbalance leads to the optimization direction of the network being
dominated by smooth regions, resulting in the unsatisfactory reconstruction results of
complex regions. Therefore, we add regional focus blocks to the BM. During the network
training process, the regional focus module is used to focus on different regions in the
process of video frame reconstruction, and not just simple regions.

The structure of the regional focus block is shown in Figure 5. After the feature Fn is
input into the regional focus block, step convolution is first used to reduce the dimension of
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space and channel for the feature Fn. The down-samplings of space and channels ensures
the lightweight nature of the module. Meanwhile, not all features require a regional focus.
The dimensionality reduction for feature channels can adaptively select the feature channels
that need to be focused. Then, the large receptive field is obtained by pooling the large-size
max, and the significant features in the space are obtained by connecting the convolution
layer. The significant features are restored to the input size using bilinear interpolation and
1× 1 convolution, and the regional focus weights are obtained by the sigmoid function. The
result of multiplying the weight by the input feature Fn is spliced with the input feature Fn
in the channel dimension, and the new feature Fm after regional focus is obtained through
1× 1 convolution fusion. The regional focus block not only retains the details learned
currently, but also performs regional focus on some features.

Figure 5. The structure of the regional focus block (RF-Block).

The calculation process in Figure 5 can be expressed using Formula (3) as follows:

Fm = Conv1×1{Concat{Fn, Fn ·Mask}} (3)

where Fn represents the feature of the input regional focus block (RF-Block). Mask rep-
resents the focus weight calculated by the pooling, up-sampling, and sigmoid functions.
Concat{·} represents the splicing operation, Conv1×1{·} represents fusing the features with
1× 1 convolution kernels, and Fm represents the output features.

3.3. Feature Aggregation

The results of the regional focus block are sent to the lower BM module as the input
features. This serial structure determines that the features participating in the final recon-
struction results are deep-seated features, while the shallow features can not effectively
participate in the network reconstruction, thus reducing the learning efficiency of the
network. Therefore, we have designed a skip connection structure in the network, which
connects the shallow features of the regional focus block output to the last layer of the
network. In addition to the serial structure, there is also a parallel structure between the
features of each layer, which sends the features of different regional focus blocks to the last
layer of the network for splicing with the deep features. The dimension of splicing results
is reduced through 1× 1 convolutions, and the aggregation features obtained can be used
to reconstruct the final result and update the hidden state. We call this structure Feature
Aggregation (FA), as shown in Figure 6.

We use the calculation Formula (4) to express the feature aggregation calculation
process in Figure 6, as follows:

Fs = Conv1×1{Concat{F1, F2, F3, F4, F5} (4)

where F1, F2, F3, F4, F5 represents the output characteristics of different BMs. Concat{·}
represents the splicing operations. Conv1×1{·} represents the fuse features with 1 × 1
convolution kernels. Fs represents the output features, which participate in the final result
reconstruction and the hidden state update.

By splicing the shallow features and deep features via skip connection, the number
of features involved in video frame reconstruction can be increased without increasing
the network parameters. There are n BMs in the network, and the number of features
is expanded by N times. The number of BMs is set to 5 in our network. The feature
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aggregation structure takes into account the diversity of features while retaining the shallow
features to participate in network reconstruction. In the process of network reconstruction,
the shallow network mainly focuses on the simple areas and smooth areas of the video
frame to be reconstructed, and the deep network mainly focuses on the complex areas and
texture areas of the video frame to be reconstructed.

Figure 6. Feature aggregation structure.

Feature aggregation is essentially a feature selection process. Under the function of
a regional focus block, the features of different layers focus on the regions with different
reconstruction difficulties of the video frame. The skip connection structure sends the
different features output from different BMs to the last layer of the network, and then
splices them for convolution and fusion, so as to improve the availability of parameters.
During network training, the loss between the reconstruction results and the label frames
directly affects each regional focus block through the skip connection structure of feature
aggregation. The regions with poor reconstruction results can be directly fed back to the
regional focus block, which can be optimized in the subsequent network, thereby obtaining
better reconstruction results.

Finally, the aggregation features that contain rich feature information are divided
into two ways. One is the convolution operation, depth-to-space transformation, and the
interpolated up-sampled frame to be reconstructed, which is added as the reconstruction
result yt of the current frame output network. The others is the result with convolution and
nonlinear operation as the hidden state ht output network. Then, the reconstruction result
yt, the hidden state ht, the next frame to be reconstructedm and the preamble frame of this
frame are sent to the network together to start the reconstruction of the next frame, and the
process is repeated until the reconstruction of all video frames is completed.

4. Experiments
4.1. Experimental Datasets

The training dataset in this paper adopts the Vimeo-90K dataset [6], which consists
of 91,701 short video sequences. Each video sequence contains seven video frames, and
the resolution of each video frame is 448× 256. Vimeo-90K datasets can be used for video
denoising, deblocking, and super-resolution tasks. The 7K videos were selected as the
validation dataset in this dataset. The task of video super-resolution reconstruction is to
reconstruct the detailed information of the video frame while enlarging the low-resolution
video frame by r times. The low-resolution video frames in the training data are obtained
by using Gaussian fuzzy kernel with standard deviation σ = 1.6 to down-sample the
existing high-resolution video frame labels by r times. The test data adopts the Vid4 [46]
and UDM10 [11] datasets; the Vid4 dataset contains four different video sequences, and
each video sequence contains different scene information and motion patterns. The UDM10
dataset contains video sequences of 10 different scenes, and each video sequence consists
of high-definition video frames with a resolution of 2K.

4.2. Experimental Details

Label video frames are first down-sampled using a Gaussian fuzzy kernel of σ = 1.6
before being sent to the network. Since we mainly verify the results of the ×4 times video
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frame reconstruction in this paper, we obtain low-resolution video frames via the ×4 times
down-sampling of label frames. During the training process, a video frame is randomly
extracted from a low-resolution video sequence, and then a 64× 64 patch is randomly
cropped into the network, and the corresponding region is cropped in the labeled video
frame for the input network. We use random flips and mirrors to increase the amount of
training data, which can improve the generalization ability of the network.

Because our network is a recurrent structure, we initialize both the previous frame
reconstruction result and the hidden state to zero. The network model is trained for a total
of 130 epochs, and the learning rate of each 60 epochs decays to 0.1 times of the original.
Here, we set the learning rate to 1× 10−4. The Adam optimizer is used in the training
process, and we set β1 = 0.9, β2 = 0.999, and the weight decay rate is 5× 10−4. The
experiment was performed on NIVIDIA GTX 1080Ti GPU in Python 3.6.4 and Pytorch 1.1.
The Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) were used as the
evaluation indexes. All the evaluation indexes were performed on the brightness channel
of the video frame YCbCr space.

4.3. Ablation Experiment

In order to further explore the influences of different modules of the recurrent net-
work structure proposed in this paper on the final video super-resolution reconstruction
results, we designed a network structure containing different modules for ablation ex-
periments to verify the role of each module in the network and its impact on the final
reconstruction results.

We conducted the ablation experiment on the Vid4 dataset. Firstly, the regional
concern block and feature aggregation structure in the network structure were removed,
and a recursive network structure containing only 10 residual blocks with series structure
was adopted for the super-resolution reconstruction of datasets. Secondly, the feature
aggregation structure in the network structure was removed, and the regional focus blocks
were reserved. Thirdly, all regional focus blocks in the network structure were removed,
and the feature aggregation structure was retained. Finally, the dataset was tested with
a complete network structure, including regional focus blocks and feature aggregation
structures. The experimental results are shown in Table 1.

Table 1. Ablation experiments of our method on the Vid4 dataset, by removing different modules in
the network and comparing the functions of different modules in the network structure.

Method PSNR SSIM

Ours w/o FA + RF-blocks 27.69 0.848
Ours w/o feature aggregation 27.91 0.849
Ours w/o regional focus blocks 27.70 0.849
Ours 28.39 0.858

After removing the regional focus blocks and feature aggregation structure, the net-
work structure in this paper degenerates into a recurrent network structure with only
concatenated residual blocks. It can be seen from Table 1 that the reconstruction result
index of this network is the lowest. In the network that removes the feature aggregation
structure and retains the regional focus blocks, the reconstruction results of the video frames
are greatly improved. It shows that the regional focus block does pay attention to multiple
features of different regions in the video frame, which increases the features diversity
involved in reconstruction and improves the quality of the network reconstruction results.

In the network that removes the regional focus blocks and retains the feature aggrega-
tion structure, the index of the reconstruction results is similar to that of the reconstruction
results of that are completely degenerated into a recursive network with only serial resid-
ual blocks. This is because the skip connection method of feature aggregation does not
completely change the direct relationship between the output of the previous layer and
the input of the next layer. Although the shallow features are skip-connected to the last
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layer to participate in the reconstruction, the features input to the deep network does not
change, and the network can choose only the deep features of the last layer instead of the
shallow features during the training process. The network does not use shallow features
and degenerates into a series residual network, resulting in similar reconstruction results
of the two networks.

The last line of Table 1 is the result of the method in this paper. Different features
extracted from the regional focus block are skip-connected to the last layer of the network
through the feature aggregation structure, and spliced with the deep features to participate
in the network reconstruction, and to obtain better reconstruction results.

A Reasonable network model structure design can improve the quality of reconstruc-
tion results to different degrees. In addition, simply increasing the depth of the network can
expand the receptive field of the convolution kernel, and extract deeper feature information
to participate in the reconstruction of the final result, which is helpful to improve the quality
of the reconstruction result, but meanwhile, the complexity of the model and the amount
of parameters will also increase. In order to explore the influence of model parameters on
the reconstruction results, we designed a comparative experiment in Table 2 using Vid4 as
the experimental dataset.

Table 2. The influence of the parameters of the network model on the reconstruction results. The
results show that the performance of the network model cannot increase indefinitely with the increase
in the number of network model parameters.

Method Numbers of
Residual Blocks

Numbers of
Regional Focus Blocks Param PSNR/SSIM

Ours w/o FA + RF-blocks 10 0 3.4M 27.69/0.848
Ours w/o FA + RF-blocks 12 0 3.9M 27.85/0.849
Ours w/o Feature Aggregation 10 5 3.8M 27.91/0.849

After removing the regional focus blocks and feature aggregation structures, our
method degenerates to a recurrent network structure in which the number of residual
blocks is 10, as shown in Table 2. Although the structure has fewer parameters, the
reconstruction will result in the lower index. The method marked with ‘∗’ also removes the
regional focus block and feature aggregation structure; the difference is that the number of
residual blocks is set to 12. This structure increases the depth of the network and the amount
of parameters, which brings a small improvement to the quality of the reconstruction results
of the model. The last is the reconstruction result of our method that removed the feature
aggregation structure. Because of the introduction of regional focus blocks, the model
parameters of the network also increase, but they are still less than the parameters amount
of the network structure with 12 residual blocks in series. At the same time, the quality
of the network reconstruction results is higher than that of the network structure with
12 residual blocks in series. This experiment demonstrates that the proposed regional focus
block in the network structure can achieve higher reconstruction benefits with a small
increase in the number of model parameters. However, it is not that the larger the number
of parameters contained in the network model, the higher the performance of the network
model will be. In Table 2, the number of parameters in the second row and the third row
differed by 0.1M, but the index of reconstruction results with a large number of parameters
are lower. In the method of this paper, we need to balance the relationship between the
quantity of network parameters and the quality of network reconstruction. Increasing the
number of modules in the network blindly may lead to the opposite results.

The network structure of this paper adds a feature aggregation structure on the
basis of the regional focus block. This feature aggregation structure does not increase
additional parameters, which makes our method obtain great benefits with a small increase
in model complexity. The interaction between the regional focus blocks and the feature
aggregation structures enriches the diversity of features participating in the reconstruction,
and improves the quality of the reconstruction results.
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To further demonstrate the role of regional focus blocks in the video frame recon-
struction process, we visualize the features extracted from the regional focus blocks. As
shown in Figure 7, the green highlighted part is the attention mask learned by the regional
focus block. We selected the ‘walk’ and ‘foliage’ video sequences from the Vid4 dataset,
and the ‘caffe’ and ‘photography’ video sequences from the Udm10 dataset. The video
sequences ’foliage’ and ’caffe’ were taken under a fixed lens, and the car and the raised
coffee cup in the video frame are constantly moving and changing areas, which are difficult
to recover. The regional focus mask captures these two regions very accurately; especially
in the ‘foliage’ video sequence, for the same car region, the stationary white car is not
captured by the regional focus block, but the moving black car is accurately captured. The
video sequences ‘walk’ and ‘photography’ were taken with motion shots, and the moving
character areas in the video sequences can also be accurately captured. Through the display
of feature visualization, we can see that the regional focus block can focus on the regions
that are difficult to recover in the video frame, which can guide the subsequent network
to learn to different degrees for different reconstructed regions, thereby improving the
reconstruction quality of these regions.

Figure 7. Feature visualization of the regional focus block; the green part shows the attention paid to
different reconstruction areas of different video frames.

4.4. Comparative Experiment

We test our proposed method on the datasets Vid4 and Udm10, and compare them with
the existing video super-resolution methods TOFLOW [6], FRVSR [4], DUF [9], RBPN [8],
RLSP [7], PFNL [11], and RRN [19]. Here, low-resolution video frames are obtained by
down-sampling a Gaussian fuzzy kernel with a standard deviation of σ = 1.6. The FRVSR
method uses explicit motion estimation and compensation to reconstruct video frames.
The networks designed using the DUF and PFNL methods transfer motion information
in an implicit way. The RBPN method does not use explicit motion compensation, but it
calculates the optical flow and inputs it to the network as additional information. The RLSP
method adopts a cascaded convolution structure, and the RRN method adopts a cascaded
residual block structure. Our method also adopts a cascade structure. The difference is that
our method not only cascades residual blocks and regional focus blocks, but it also designs
a feature aggregation structure to increase the feature richness of the video frames involved
in reconstruction. The quantitative comparison results are shown in Table 3. We calculated
PSNR and SSIM in the luminance channel of the YCbCr color space and the RGB color
space, respectively. In addition, we also calculated the amount of the model parameters
and the average time taken by the network to reconstruct a frame of video.

It can be seen from Table 3 that the sliding window methods DUF, RBPN, and PFNL
are more temporal-consuming than the recurrent structure methods FRVSR, RLSP, and
RRN. Therefore, our method adopts a recursive structure, which takes about the same time
as other recursive structure methods. Meanwhile, our method has a better performance in
PSNR and SSIM than for other methods, which objectively proves the effectiveness of our
proposed method.
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Table 3. Comparison of results with different methods in Vid4 and Udm10 datasets.

Method Param (M) Runtime (ms) Vid4 (Y) Vid4 (RGB) Udm10 (Y) Udm10 (RGB)

TOFLOW [6] 1.4 1658 25.85/0.765 24.39/0.743 36.26/0.943 34.46/0.929
FRVSR [4] 5.1 129 26.68/0.810 25.01/0.791 37.09/0.952 35.39/0.940
DUF [9] 5.8 1393 27.38/0.832 25.91/0.816 38.48/0.960 36.78/0.951
RBPN [8] 12.8 3482 27.17/0.820 25.65/0.799 38.66/0.959 36.53/0.946
RLSP [7] 4.3 50 27.48/0.838 25.69/0.815 38.48/0.960 36.39/0.946
PFNL [11] 3.0 295 27.16/0.836 25.67/0.818 38.74/0.962 36.91/0.952
RRN [19] 3.4 45 27.69/0.848 26.16/0.820 38.96/0.964 37.03/0.953
Ours 3.9 58 28.39/0.858 26.81/0.839 39.69/0.967 37.42/0.955

We select representative ‘calendar’ and ‘city’ video sequences from the Vid4 dataset to
visually demonstrate our method. As shown in Figure 8, for the ‘calendar’ video sequence,
we intercepted complex texture regions and character regions. Our method can completely
restore the texture regions, and the outlines of character regions are also clearer than other
methods. For the ‘city’ video sequence, our method obtains clear building textures and
outlines compared with other methods, and the reconstruction results of other methods
have blurred or unclear building outlines.

Figure 8. Comparison of reconstruction results with different methods in the Vid4 dataset.

We select representative ‘archpeople’ and ‘auditorium’ video sequences from the
Udm10 dataset to visualize the reconstruction results of our method. As shown in Figure 9,
for the ‘archpeople’ video sequence, our method is superior to other methods in reconstruct-
ing the details of human hair and the contour details of sunglasses. For the ‘auditorium’
video sequence, other methods have lost details in the reconstruction of the horizontal
axis connection part in the shelf. Our method completely reconstructs this part, and the
reconstruction result is similar to the label. The comparison proves that the results of this
method are of higher reconstruction quality and give a better visual experience than those
of other methods.

Figure 9. Comparison of reconstruction results with different methods in the Udm10 dataset.
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5. Conclusions

A video super-resolution method with a recurrent network structure is proposed in
this paper. In addition to the cascade of residual blocks in our network structure, we also de-
signed a regional focus block to focus on the areas with different reconstruction difficulties
in the video frames to be reconstructed. The feature extractions of these areas overcome the
problem of feature limitation in traditional cascade residual network. Then, the different
extracted features are fused through the feature aggregation structure, which increases the
diversity of features involved in video frame reconstruction without excessively increasing
the network parameters, and effectively improves the quality of the reconstruction results.
Experiments on the test datasets show that the reconstruction results of our method obtain
a higher index and a better visual experience, which verifies the validity of this method.
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