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Abstract: In modern robot applications, there is often a need to manipulate previously unknown
objects in an unstructured environment. The field of grasp-planning deals with the task of finding
grasps for a given object that can be successfully executed with a robot. The predicted grasps can
be evaluated according to certain criteria, such as analytical metrics, similarity to human-provided
grasps, or the success rate of physical trials. The quality of a grasp also depends on the task which
will be carried out after the grasping is completed. Current task-specific grasp planning approaches
mostly use probabilistic methods, which utilize categorical task encoding. We argue that categorical
task encoding may not be suitable for complex assembly tasks. This paper proposes a transfer-
learning-based approach for task-specific grasp planning for robotic assembly. The proposed method
is based on an automated pipeline that quickly and automatically generates a small-scale task-specific
synthetic grasp dataset using Graspit! and Blender. This dataset is utilized to fine-tune pre-trained
grasp quality convolutional neural networks (GQCNNs). The aim is to train GQCNNs that can
predict grasps which do not result in a collision when placing the objects. Consequently, this paper
focuses on the geometric feasibility of the predicted grasps and does not consider the dynamic
effects. The fine-tuned GQCNNs are evaluated using the Moveit! Task Constructor motion planning
framework, which enables the automated inspection of whether the motion planning for a task is
feasible given a predicted grasp and, if not, which part of the task is responsible for the failure. Our
results suggest that fine-tuning GQCNN models can result in superior grasp-planning performance
(0.9 success rate compared to 0.65) in the context of an assembly task. Our method can be used to
rapidly attain new task-specific grasp policies for flexible robotic assembly applications.

Keywords: grasp planning; robotic grasping; robot manipulation; deep learning; GQCNN; synthetic
data

1. Introduction

Robots are excellent at performing tasks that would be too tedious and repetitive for
human workers. As a result, they are widely used in industrial packaging and assembly
processes, where their ability to reliably and rapidly repeat the same tasks for long durations
can be well-utilized. However, modern trends in the industry tend to shift toward flexibility,
bringing forth new requirements for robot applications and giving rise to novel challenges
in robotic manipulation. One such challenge is grasp planning, which considers finding
appropriate grasps for a given object according to a quality measure, such as analytically
computed wrench-space metrics [1], empirical evaluation on physical trials [2] or similarity
to human-provided grasps [3].

Grasp planning is needed because the pose and/or the object’s geometry is often not
known in advance. Thus, a “rigid” robot program that can only repeat the exact same
movements over and over is not sufficient for performing robotic manipulation in such
tasks. By utilizing grasp planning in the robot manipulation pipeline, the application can
quickly and easily be adjusted for novel objects or objects with unknown poses.
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Determining the quality of grasps is a complex challenge since it greatly depends
on the object geometry, the gripper geometry, dynamic properties, such as friction forces,
and the task that will be performed after the object is grasped [4]. Analytical approaches
can offer reliable solutions, based on simulated contacts and dynamics. Still, they often rely
on known object geometry, material, inertia matrix, etc., and their computation is often
time-consuming [1]. Object detection and pose estimation also have to be performed on top
of the analytical grasp planning for objects with unknown poses. Additionally, the relevant
information about the task which will be performed after the grasping is very hard to
formulate, and thus, it is nearly impossible to utilize it in grasp planning with analytical
approaches. On the other hand, data-driven approaches for grasp planning can incorporate
object detection, pose estimation and grasp planning into a single model [5]. With the use
of large datasets, they are able to learn general grasping policies, which can be applied to
novel objects as well [2,5]. Grasp prediction with such models is also significantly faster
when compared to analytical methods [5]. However, a large dataset is required to train
such models. Collecting a large-scale grasping dataset using physical robots can take up to
months and incur great costs [2]. As a result, offline-generated simulation-based synthetic
data are usually preferred, where the analytical grasp quality approaches can be utilized
for ground-truth generation [5].

Miller and Allen created a simulator called Graspit! for evaluating robotic grasps [1].
In Graspit! , arbitrary gripper and object geometries can be imported. Using a sampling-
based method, a large number of grasps can be evaluated for a given gripper-object
combination to find the best-quality grasps. It can also be used to simulate and compute
the quality of grasps in a dynamic environment, but this is out of the scope of this paper.
Goldfeder et al. created the Columbia Grasp Database and a corresponding data-driven
approach for grasp planning with the help of the Graspit! simulator [6,7]. Their approach is
based on matching partial object geometry information against a large dataset of 3D models
and selecting appropriate grasps from a set of pre-computed grasps for the matched objects.
A similar approach of using pre-computed grasps, called Dex-Net 1.0, was introduced by
Mahler et al. who leveraged the benefits of cloud computing to reduce the application run-
time significantly [8]. For measuring the similarity between objects, they used multi-view
convolutional neural networks. Later, based on their results in Dex-Net 1.0, Mahler et al.
compiled a huge synthetic dataset (called Dex-Net 2.0) of 6.7 million point clouds with
grasps and associated analytic grasp metrics, where grasps are represented by a planar
position, an angle and the depth of the gripper relative to the RGB-D sensor [5]. They also
proposed a convolutional neural network architecture called grasp quality convolutional
neural network (GQCNN) that could predict the probability of the success of grasps directly
from depth image data. They showed that a GQCNN trained on their Dex-Net 2.0 synthetic
dataset outperformed other state-of-the-art approaches using point cloud registration while
being 3× faster. They also demonstrated great precision (99%) on a set of novel objects.

One drawback of the previously mentioned methods is that they only consider grasp-
ing in isolation. However, the quality of a grasp also greatly depends on the task which will
be performed after the grasping is done. Costanzo et al. demonstrated that fixed grasps
can make a robot manipulation task infeasible [9]. They suggest, that in-hand manipu-
lation maneuvers, such as object pivoting based on tactile feedback (described in [10] in
detail) might be necessary for a successful task solution, and as such, grasps should be
selected, taking this into consideration. On the other hand, task-specific grasp planning
approaches aim to overcome this challenge by incorporating a task encoding into the grasp
prediction pipeline [11–13]. The task encoding in these approaches is usually categorical,
and describes a generalized use case such as poke, pour water, etc. While these solutions
work well for some general scenarios, categorical task encoding might not be sufficient in
specific pick-and-place tasks for robotic assembly, where object geometries and assembly
order limit the number of appropriate grasps. When approached with a categorical task
encoding, such solutions would have to represent each unique assembly as its own category.
Since the number of categories and their semantic meaning are core components of such
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networks, the model would have to be retrained from scratch each time a new assembly
task is available. We suggest that a transfer-learning-based approach is much better suited
for such scenarios.

Transfer learning allows for reusing large deep-learning models which were pre-
trained on large datasets. During transfer learning, only the top layers of the network are
modified, and the lower layers, which extract more general features, are left untouched [14].
Since only a fraction of the network’s parameters needs to be adjusted, a relatively small
dataset can be used without overfitting. This process is called fine-tuning the network.
This paper proposes an automated synthetic dataset generation pipeline using Grasipt! and
Blender for fine-tuning GQCNN models for task-specific grasp planning in robotic assembly.
We focus on predicting geometrically well-placed grasps and do not examine dynamic grasp
qualities. The results are demonstrated and discussed through a simple, yet representative
simulated task.

2. Methodologies

Similarly to the Columbia Grasp Database by Goldfeder et al. our synthetic dataset
generation pipeline also utilizes Graspit! for determining grasps qualities. Figure 1 shows
the proposed synthetic dataset generation pipeline. As it can be seen, Graspit! is used
to automatically acquire grasps for the object in two scenarios. The first one is the pick
scenario, from where Graspit! provides multiple possible grasps for picking the object.
The second scenario is the placing, where Graspit! provides grasps which are suitable for
placing the object. For our experiments, we use a Franka Emika Panda robot, its signature
parallel jaw gripper, and an object made up of simple box primitives. Our experiment
mimics an insertion-type assembly subtask, where the object should be grasped at the
thicker part. By chaining such pick-and-place setups according to the assembly order one
after another, a more complex assembly could also be similarly composed. The required
inputs in this setup are the 3D models of objects, the gripper model, and knowledge of the
assembly process (location of parts relative to each other and assembly order).

Graspit!

place

scenario

pick

scenario

Blender

pick grasps

place grasps

valid grasps

invalid grasps

scene

...

Output

...

synthetic depth image

} GQCNN

training

Figure 1. Synthetic data generation and GQCNN training pipeline.

The here-discussed pipeline incorporates Graspit! with the robot operating system
(ROS), an open-source robotics framework that provides useful tools for creating and man-
aging robotic applications [15]. With the help of the Graspit! ROS interface (Available online
at https://github.com/graspit-simulator/graspit_interface, accessed on 12 December 2022)
in conjunction with Graspit! Commander (Available online at https://github.com/graspit-
simulator/graspit_commander, accessed on 12 December 2022), one can automate the
Graspit! grasp planning process using Python programming language and ROS. We store
the outputs of the Graspit! grasp planning in multiple JSON files, where the name of
the JSON file reflects whether the contained grasps are for the pick or the place scenario.
The files contain the object pose, the list of search energies from Graspit! (these can be
used to make a hierarchy of predicted grasps), and a list of predicted grasp poses. Both

https://github.com/graspit-simulator/graspit_interface
https://github.com/graspit-simulator/graspit_commander
https://github.com/graspit-simulator/graspit_commander
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the object pose and the grasp poses are relative to the world frame, and they are made
up of a 3D vector for object/gripper location and a quaternion (in [x, y, z, w] format) for
object/gripper orientation.

For generating the synthetic depth images, we use Blender, an open-source 3D
computer graphics software [16]. Blender provides a Python API that offers program-
matic control over the rendering and the scene, which our solution takes advantage
of to automate all the necessary processes inside Blender. Through this API, we mod-
ify the intrinsic and extrinsic parameters of the camera in Blender so they match the
“real-world” calibrated camera. In our experiments, we use the camera parameters for
the PrimeSense camera provided with the GQCNN implementation (Available online at
https://github.com/BerkeleyAutomation/gqcnn, accessed on 12 December 2022). Af-
ter the camera setup, the grasp poses which were saved from Graspit! are loaded, and all
the necessary transformations are performed on them to represent all the pick and place
grasps relative to the object frame in Blender, regardless of its placement in Graspit! and
Blender. After this, based on geometric proximity, the pick grasps are sorted into two
groups. The group of pick grasps with a corresponding place grasp is classified as valid,
while the pick grasps with no corresponding place grasps are classified as invalid. Figure 2
displays the pick grasps, the place grasps, and the separation of the pick grasps into
valid and invalid grasps. The grasps are represented as coordinate frames in Blender.
In our experiments, two grasps are considered “corresponding” if the distance between
their position is smaller than 5 mm and their orientation forms a smaller angle than 10°.
Based on this correspondence, the grasps are also pre-filtered to remove pick grasps that
are too similar. Once all the pick grasps are classified as either valid or invalid, a JSON
object is generated and saved, which contains a list of 2D grasps, represented by a 2D
point (in pixel units), an angle, and a label (1 for valid grasps and 0 for invalid grasps).
After this, an RGB-D image is rendered. The RGB image is saved as a PNG, while the
depth data are saved as a NumPy array (npy file). We also generate segmentation masks
for each rendered frame using the Blender Annotation Tool (BAT) (Available online at
https://github.com/ABC-iRobotics/blender_annotation_tool, accessed on 12 December
2022), although currently these segmentation masks are not utilized [17]. The Blender scene
is prepared so that the object’s location along the X and Y axes and its orientation along the
Z axis are set to a random value for each frame. As a result, repeating the above process for
multiple frames leads to a collection of rendered synthetic depth images and corresponding
2D grasps for multiple object poses.

Using the output from Blender, a Python script creates a synthetic grasp dataset in Dex-
Net 2.0 format. The Python script loads the depth images and the corresponding 2D grasps
and crops, rotates and resizes the depth image to create 32 × 32 sized depth images for
each grasp, where the grasp point is in the middle of the image, and the opening direction
of the gripper is horizontal. Since we only use grasps which are appropriate for picking
(but not necessarily for placing), additional 12 invalid grasps are added to each grasp (both
valid and invalid), which are located at the same spot where the original grasp is, but they
are rotated in either the positive or negative direction along the Z axis in increments of 15°
(up to +90° and −90°). During our experiments, adding these additional invalid grasps
improved the accuracy of the orientation of the predicted grasps significantly. For cropping,
we found that a 128 × 128 square proved to be better than 64 × 64, although the best value
most likely depends on the specific setup (camera-object distance). The 32 × 32 depth
images are bundled in a single NumPy array and saved as an npz file. Similarly, the labels
and the hand poses (containing the depth of the grasp points) are saved as npz archives.

Finally, the GQCNN, which was pre-trained on the Dex-Net 2.0 dataset, is fine-tuned
on our automatically generated synthetic grasp planning dataset, using the scripts provided
for fine-tuning with the GQCNN implementation (Available online at https://github.
com/BerkeleyAutomation/gqcnn, accessed on 12 December 2022). During fine-tuning,
a train/validation split of 0.9/0.1 was used and trained for 60 epochs. We used a base

https://github.com/BerkeleyAutomation/gqcnn
https://github.com/ABC-iRobotics/blender_annotation_tool
https://github.com/BerkeleyAutomation/gqcnn
https://github.com/BerkeleyAutomation/gqcnn
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learning rate of 0.01 with sparse loss, momentum-based optimizer, and 0.999 as the decay
rate. All the specific configuration settings can be found in our supplementary materials.

(a)

(b)

(c)

(d)

Figure 2. Proximity-based classification of pick grasps visualized inside Blender: (a) pick grasps,
(b) place grasps, (c) valid grasps out of all the pick grasps, (d) invalid grasps out of all the pick grasps.

After training, we evaluated the GQCNN models using synthetic depth images from
Blender and the Moveit! task constructor (MTC) framework [18]. MTC provides a flexible
way for defining a complex task, such as our pick-and-place experiment, using a modular
approach where elementary subtasks (called stages) can be used as building blocks to
compose the whole task. MTC can perform the robot motion planning for the whole task,
while also considering collisions in the scene. We define a grasp generator stage that queries
a single best grasp from a GQCNN, given a depth image, and using the ROS-based GQCNN
grasp planning service from the GQCNN implementation. With this new generator stage,
we re-purpose the MTC pick-and-place demo scene to conduct our experiments. The demo
scene uses the Franka Emika Panda robot. We add the table, the object, and the camera in
the MTC scene in the same relative arrangements as in Blender. Using the best predicted
grasp from the GQCNN model, we perform the robot motion planning using MTC and
evaluate the GQCNN models according to the motion planning results. The collision
checking is carried out throughout the whole task for the whole robot arm. During the
evaluation, a fixed place pose is defined for the object. MTC can identify which stage of the
task execution resulted in failure. Grasps resulting in a collision between the robot hand or
robot arm and the table at the time of placing the object (during the solution of the inverse
kinematics computation stage) are considered failed grasps, while grasps that do not result
in such collisions are considered successful. It is important to note that this evaluation
only considers geometric criteria in the form of collisions, and it has no concern about the
quality of the grasps regarding force closure or other dynamic properties. We hypothesize
that since the pre-trained GQCNNs already consider dynamics and the positive grasps in
our dataset are generated from Graspit! which also provides robust grasps, the predicted
grasps with our fine-tuned GQCNN models will also be robust. This statement, however,
needs to be validated by real-world trials in the future.

In summary, the main components of the synthetic data generation pipeline, GQCNN
training, and evaluation process, with their purpose, and requirements, are as follows:

• Graspit!: Used for automated robust grasp generation, given two scenarios, the pick-
ing, and the placing scenario. The 3D models of the robot gripper, the object, and the
table are needed for both scenarios. In the picking scenario, the object must be in a
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natural, stable lying position on the table. In the placing scenario, the object must
be in the pose it should have after the assembly is complete, relative to all the other
relevant (previous, according to the assembly order) assembly parts. The generated
grasp poses for both scenarios are expressed as the 3D poses of the robot gripper’s
frame relative to the Graspit! world frame.

• Blender: Used for rendering synthetic RGB-D frames and ground-truth grasp infor-
mation for training the GQCNN models and for evaluation. The Blender scene must
contain a camera and 3D models for the object and the table. For each newly rendered
frame, the object must be in a randomized natural lying pose on the table within the
field of view of the camera (position along the X and Y axes and rotation around the
Z axis of the Blender world frame are randomized). The Blender camera’s intrinsic
parameters must match the intrinsic parameters of the camera used in the real-world
setup. These parameters can be determined by camera calibration. The effects of
different extrinsic camera parameters during training and inference are discussed in
Section 3.3. The pick and the place grasps from Graspit! are all transformed into a
common coordinate frame inside Blender (the object’s frame), and the pick grasps are
classified as either valid or invalid, based on their proximity to place grasps. The valid
and invalid grasp points are projected onto the image plane using Blender’s camera
projection. Together with their orientation, they are used to create ground-truth grasp
information for training the GQCNN models.

• Moveit! Task Constructor: Used for automating the evaluation of the GQCNN mod-
els after they have been trained. It uses the robot model, the 3D model of the object
and the table, and a dummy object (cylinder) for the camera. The camera, the object,
and the table can be placed at any location in the robot’s workspace, but their poses
relative to each other must be the same as in Blender at the time the depth image was
rendered that the model is currently evaluated on. MTC performs motion planning for
the whole task with collision checking, using the grasp predicted by the GQCNN and
a fixed place pose. The evaluation is considered successful if the motion planning for
the task can be completed successfully and unsuccessful if the motion planning results
in failure due to a collision during the solution of the inverse kinematics solution for
the place pose.

Figure 3 shows the flowchart representation of the automated synthetic grasp dataset
generation.

Start

Coordinate transform

Camera intrinsics

End

Pick grasps in

world frame

Gpick

Place grasps in

world frame

Gplace

Pick grasps in

object frame

Gpick

Place grasps in
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Gplace

i = 0

Gpick[i] has
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grasp in Gplace

Yes
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Figure 3. Flowchart of the automated synthetic grasp dataset generation procedure.
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3. Results
3.1. Experimental Setup

In our experiments, a simple peg-in-hole-like insertion task is considered, where we
evaluate the quality of predicted grasps from different GQCNN models according to the
success rate of collision-free motion plans. The experimental setup can be seen in Figure 4
(as visualized by RViz). The peg object in the experiments is made up of two box primitives,
one of which is sized 10 cm in the X direction and 1 cm in both Y and Z directions, with the
origin being the geometric center of the box, the other one is sized 3 cm in X and 2 cm in Y
and Z directions and is located 3.5 cm in the X direction. In the setup, the object is lying on
its side (the Z axis of the object frame pointing upwards) on the surface of a table. The table
is simply represented as a flat surface.

(a) (b) (c)

Figure 4. Experimental setup used for evaluation: (a) scene setup with the robot, object camera,
and table, (b) planned grasps which do not result in collisions are evaluated as successful, (c) grasps
that result in collisions between the robot and the table are evaluated as unsuccessful.

Since the 3D grasp pose predicted by the GQCNNs is oriented according to the line
between the depth camera and the grasp point, we included an additional platform for
placing in MTC to avoid unnecessary collisions between the robot arm and the table. Inside
Graspit! we simply use the “table” object instead. For the gripper (our solution is based
on the Panda Hand model provided here: https://github.com/JenniferBuehler/graspit-
pkgs/issues/55#issue-515423230, Accessed: 12 December 2022), we defined the virtual
contacts using the user interface of Graspit! and modified the inventor files to include
appropriate scaling so the size of the gripper in Graspit! matches the real-life gripper. We
ran the Graspit! grasp planning a total of 3 times for pick grasps and 5 times for place
grasps, from which we acquired 23–26 pick grasps, and around 30 place grasps for each
frame after the initial filtering (removing multiples of pick grasps and place grasps or
grasps with high contact energy). Based on geometric proximity, 5 of the pick grasps were
classified as valid, and the rest were classified as invalid (see Figure 2).

The fine-tuning dataset was generated using the first 20 frames (the object pose is
randomized for each frame) from Blender. For these, a total of 489 pick grasps were
classified as either valid or invalid. During converting the data into Dex-Net 2.0 format, we
added the additional 12 invalid grasps for each of the 489 original ones to enforce precise
gripper orientation prediction. This resulted in a total of 6357 grasps, of which the ratio of
grasps with positive labels was around 1.57%.

On this dataset, we fine-tuned the Dex-Net 2.0 pre-trained GQCNN model, for 60 epochs
using a batch size of 64. This fine-tuned model is evaluated against the original Dex-Net 2.0
pre-trained model. The success rate of the pick-place operations was evaluated by comparing
the original and the fine-tuned GQCNN. For this evaluation, we used 20 additional frames
(not used for training or validation) that use the same camera placement as in the setup for
generating the training dataset, and 40 other frames generated using a camera placement
different from the training setup. The findings of these evaluations are reported separately to
highlight the method’s sensitivity to the variation of the setup.

https://github.com/JenniferBuehler/graspit-pkgs/issues/55#issue-515423230
https://github.com/JenniferBuehler/graspit-pkgs/issues/55#issue-515423230
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3.2. Results Using Camera Extrinsic Parameters from Training Setup

Table 1 shows the results of our evaluation using synthetic depth images from Blender
and the same camera extrinsics as in the setup for generating the training data. As a result,
in these evaluation frames, only the object pose was randomized. It can be seen that our
fine-tuned GQCNN outperformed the original Dex-Net 2.0 pre-trained model significantly.

Table 1. Evaluation of our fine-tuned GQCNN against the Dex-Net 2.0 pre-trained GQCNN for depth
images generated from a camera with the same extrinsic parameters as in the training setup.

Model Success Rate (Task) Success Rate (Pick) Success Rate (Place)

Dex-Net 2.0 GQCNN 0.65 1.0 0.65
Fine-tuned GQCNN 0.9 1.0 0.9

It is important to note that none of the predicted grasps from either model resulted in
a collision during picking the object. All the failed grasps in our experimental setup can be
attributed to the fact that the models failed to predict an appropriate grasp in the given
task context. Thus, the predicted grasp resulted in a collision during placing the object.
Having a higher success rate for picking the object than placing it is to be expected since
out of all the possible grasps for picking the object, only a few will be feasible for placing it
as well. As a result, the probability of predicting a grasp that will be successful for placing
the object too is lower. The results suggest that fine-tuning a GQCNN on a small number
of synthetic grasps labeled with the task-specifics in mind can significantly increase the
probability of the GQCNN model predicting a grasp which will be successful for the whole
task (both picking and placing the object).

Given the assembly information (assembly order, objects’ relative poses), scene setup,
and the 3D models of the objects and the robot, our method can quickly be applied to new
objects or new assembly tasks. As a result, the grasp prediction pipeline can be adjusted
flexibly for novel scenarios, even within a single day, including scene setup in Blender,
fine-tuning dataset generation, and GQCNN model training (especially since the scene,
robot and camera setups usually do not change as frequently as the assembly tasks, so they
only need to be created once).

3.3. Results Using Different Camera Extrinsic Parameters

Table 2 demonstrates the results obtained by evaluating our fine-tuned GQCNN model
against the Dex-Net 2.0 pre-trained GQCNN on 40 synthetic depth images, which were
prepared with a camera location different from the one used in the setup for generating
the fine-tuning dataset. As can be seen, the difference between the performance of the
two models is not as apparent as it was when using camera extrinsics from the training
setup. This suggests that the fine-tuned model’s predictions for setups different from the
training setup align more with the predictions of the original GQCNN. This shortcoming
could potentially be mitigated by automatically varying the camera pose in Blender for
the training dataset generation. It is a promising way for future improvement to make the
fine-tuned GQCNN models robust to changes in camera setup.

Table 2. Evaluation of our fine-tuned GQCNN against the Dex-Net 2.0 pre-trained GQCNN for depth
images generated from a camera with the different extrinsic parameters from the training setup.

Model Success Rate (Task) Success Rate (Pick) Success Rate (Place)

Dex-Net 2.0 GQCNN 0.5 1.0 0.5
Fine-tuned GQCNN 0.55 1.0 0.55

4. Discussion

In this paper, we proposed an automated pipeline for synthetic training data genera-
tion and fine-tuning of GQCNN models for task-specific grasp planning in robotic assembly
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scenarios. Our method assumes that the object models and assembly information, such as
assembly order and the relative pose of objects in the assembly, are known in advance. We
generated robust grasps for picking the object using Graspit! and automatically classified
these grasps into valid and invalid ones based on their similarity to grasps from another
set, generated from Graspit! for the placing of the object. For the set of valid and invalid
grasps, we automatically generated synthetic depth images using Blender, and we used
these synthetic images to fine-tune a GQCNN model. As a result, the fine-tuned GQCNN
model learned to predict grasps with a high probability of success, which is feasible for
picking the object and placing it into the assembly as well.

We evaluated our method on a simple simulated scenario and showed that a fine-
tuned GQCNN can significantly outperform the original Dex-Net 2.0 pre-trained model,
in the context of grasp planning for a specific task. Our method can quickly be applied to
train GQCNN models for a flexible robotic assembly scenario.

One limitation of the proposed method is that in Graspit!, only the robot gripper
is included during determining the pick and place grasps. While this may work well
for simple scenes of tabletop assembly, it may result in a fine-tuned GQCNN, which
predicts infeasible grasps in a highly cluttered scene due to the robot’s self-collisions or
interferences with the environment during task execution. A possible future solution would
be to use MTC for determining valid and invalid grasps, where collision for the whole
robot arm could be considered instead of the currently used proximity-based method.
During our experiments, we concluded that training data generated with only a single
camera pose results in a fine-tuned GQCNN that loses its edge against the original pre-
trained model in scenarios when the camera pose is different from the one used for the
generation of the training data. In the future, the robustness of fine-tuned GQCNNs could
be examined by including randomization in the camera pose for generating the training
data. Additionally, this paper focuses on the geometric evaluation of predicted grasp
poses (via collision detection), but an evaluation in a dynamic environment could also be
performed in the future.
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