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Abstract: Network embedding is a promising field and is important for various network analysis
tasks, such as link prediction, node classification, community detection and others. Most research
studies on link prediction focus on simple networks and pay little attention to hypergraphs that
provide a natural way to represent complex higher-order relationships. In this paper, we propose a
link prediction method with hypergraphs using network embedding (HNE). HNE adapts a traditional
network embedding method, Deepwalk, to link prediction in hypergraphs. Firstly, the hypergraph
model is constructed based on heterogeneous library loan records of seven universities. With a
network embedding method, the low-dimensional vectors are obtained to extract network structure
features for the hypergraphs. Then, the link prediction is implemented on the hypergraphs as the
classification task with machine learning. The experimental results on seven real networks show our
approach has good performance for link prediction in hypergraphs. Our method will be helpful for
human behavior dynamics.

Keywords: link prediction; hypergraph; network embedding; machine learning; heterogeneous
network; library loan records; human behavior dynamics

1. Introduction

Link prediction [1–3] has been widely applied in many fields with extensive research
studies, especially in society networks, such as community detection [4] and recommen-
dation [5]. It aims to predict the potential links between nodes based on existing links,
and has a wide range of applications in many fields, from bioinformatics [6,7] and social
science [8] to computer science [9]. Existing traditional methods for link prediction [10–13]
focus on simple graphs mostly and less on the interactions between pairs of nodes present
in real-world systems, while research on high-order interactions is of great significance
for modeling complex systems. For instance, in scientific collaboration networks, several
researchers work together on a research project; in the brain network, a human behavior
usually involves multiple neurons. Link prediction on high-order interactions leads to
some challenges, while a hypergraph [14–16] provides a useful way to modeling such inter-
actions. A hypergraph can reflect multiple nodes’ relations with hyperlinks, and can be
used in evaluating vital nodes [17], describing protein interaction [18] and so on. Hyperlink
prediction on hypergraph has been investigated to predict higher-order links such as a
user releasing a tweet containing a hashtag [19]. Hyperlink prediction [20] has also been
helpful to predict multiactor collaborations [21]. By formulating various kinds of nodes and
associations into a hypergraph, link prediction on heterogeneous networks has developed
increasingly. Li Dong [19] modeled various types of objects and relations of networks as
hypergraphs and used link proximities to construct a cost function to predict users’ links.
Maria [22] constructed relations between pairs of drugs into a hypergraph to predict mul-
tidrug interactions. Liu et al. [23] proposed a Metapath-aware HyperGraph Transformer
(Meta-HGT) for node embedding to capture the high-order relations. Kang et al. [24] pro-
posed dynamic hypergraph neural networks based on key hyperedges (DHKH) to consider
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a dynamic hypergraph structure. Fan et al. [25] presented a method named heterogeneous
hypergraph variational autoencoder (HeteHG-VAE) for link prediction in heterogeneous
information networks (HINs) mapped to a heterogeneous hypergraph with a certain kind
of semantics to capture both the high-order semantics and complex relations among nodes,
while preserving the low-order pairwise topology information of the original HIN.

Network embedding [26,27] combining machine learning or deep learning with net-
work science has made it possible to automatically learn and preserve network properties
by representing nodes in a low-dimensional space. It is usually assumed that the dis-
tance between the representation vectors of nodes reflects the similarity of the nodes in
networks [28]. Network embedding typically realizes a network representation through
matrix factorization, random walk and neural network methods. The matrix factoriza-
tion methods select an adjacency matrix, an incident matrix, a Laplacian matrix and their
variant forms to factorize and obtain the embeddings, such as M-NMF [29] and Lapla-
cian eigenmaps [30]. The random walk methods generate embeddings through a random
walk of nodes on graphs and training node sequences in models; representative methods
include the Deepwalk [31], Node2vec [32] and Graphwave models [33]. The methods
based on a neural network realize an embedding by the nonlinear function of deep models
to map the networks in a vector space, such as HeGan [34], VERSE [35] and SiNE mod-
els [36]. Furthermore, deep-learning-based link prediction methods on hypergraphs have
achieved rapid development. Yadati et al. [37] proposed a neural hyperlink predictor (NHP)
adapting graph convolutional networks (GCNs) [38] for link prediction in hypergraphs.
Node2vec [32] with a single-layer perceptron (Node2vec-SLP) was an improved version
of Node2vec for hyperlink prediction, which employed a one-layer neural network to
compute hyperlink scores [39].

Considering that hypergraphs can represent higher-order systems more conveniently,
the interaction information of nodes is characterized into vectors with network embedding,
so that the link prediction on hypergraphs can be converted into a classification problem.
Therefore, we provide a novel idea of link prediction with hypergraphs with network
embedding (HNE) in this paper. Our motivation is to predict the relationships of students
based on the library loan records of universities, instead of higher-order relationships of
students. Thus, we investigate the link prediction with hypergraphs. We use a hypergraph
to model all types of objects and relations of the library loan record networks. Firstly,
we construct different kinds of nodes associations in a heterogeneous network with a
hypergraph according to the library loan records of seven universities. Secondly, a network
embedding method, Deepwalk, is utilized to extract structural information and represent
nodes by vectors. Thirdly, a machine learning model, a random forest [40], is applied
as a classifier for the link prediction. The experiments are conducted on seven sizes of
heterogeneous networks and compare several typical link prediction methods to verify
the performance of the proposed approach and achieve the promising results on the
seven datasets.

The innovations in this paper are as follows: We propose a link prediction method
using hypergraphs based on network embedding. The representation of the features
of library loan record associations are novel in the process of our overall algorithm for
link prediction of the relationship of students, which means that learning technology is
applied to human behavior dynamics networks, that is, network embedding technology is
introduced into human behavior dynamics networks. Then, a vector of each student for
library loan records is constructed as a training set. Our method achieves promising results
on the seven different datasets.

2. Materials and Methods

Figure 1 shows the complete flow chart for HNE, the link prediction approach we
propose based on hypergraphs with network embedding. First, the heterogeneous networks
constructed from library loan records of seven universities are explored, which consists of
two types of nodes (Node I represents students, Node II indicates the books borrowed by the
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students from libraries) and their interactions. The hypergraph is constructed according
to these interactions; the hyperlinks represent Node II linked with Node I. The Node I
network is constructed based on hypergraph properties. The incidence matrix denotes
the relationships between Node I and hyperlinks. The adjacency matrix describes the links
between Node I. Second, the embedding vectors of Node I are generated by the network
embedding model. Then, the embedding vectors of links are generated by concatenating
the vectors of pairwise nodes. Finally, the links vectors are divided into training data and
testing data. The training data are put into the random forest classifier to train the model,
then the testing data are used to predict potential links.
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Figure 1. The framework of link prediction for hypergraphs via network embedding (HNE).
(a) The heterogeneous network contains two types of nodes, Nodes I and II, with their interactions;
it can be constructed by a hypergraph model. The incidence matrix represents the node–hyperlink
interactions and the adjacency matrix describes node–node associations. (b) The Deepwalk model is
applied to learn the node embedding vectors. (c) The random forest classifier is trained to predict
link labels.

2.1. Hypergraph Construction

A hypergraph is defined as H = (V, E) where V = {v1, v2, . . . , vn} and E = {E1, E2, . . . ,
Em} [41]. V is a set of n hypernodes and E is a set of m hyperlinks. The hyperlink Ei =
{vi1, vi2, . . . , vij}, (i = 1, 2, . . . , m; j = 1, 2, . . . , n) contains j nodes, that is, the size of Ei is j.
The | V | × | E | incidence matrix can be represented by H.

H(v, e) =
{

1, i f v ∈ e
0, i f v /∈ e

(1)
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Based on H, the node degree d(v) of each node v meaning the number of neighbor
nodes of node v is represented as

d(v) = ∑
e∈E

H(v, e). (2)

The hyperdegree dH(v) of node v denotes the number of hyperlinks which the node v
participates in. The degree δ(e) of hyperlink e is the total number of neighbor hyperlinks of
hyperlink e as follows,

δ(e) = ∑
v∈V

H(v, e). (3)

The hyperdegree δH(e) of hyperlink e denotes the number of nodes of hyperlink e [42].

2.2. Learning Representations with Network Embedding

With the adjacency matrix from a hypergraph model, the representation learning
vectors of nodes are obtained by a network embedding model. In this paper, we introduce
the Deepwalk network embedding method which consists of two parts, that is, a random
walk and Skip-gram. Firstly, some sequences of nodes with the same length t can be
obtained by a random walk. Each node is the root of a walk sampling Wvi ; the root node vi
randomly selects one of the links connected to it and moves to the neighbor node to start
the next walk until the walk length reaches t; the maximum length t denotes the size for a
sequence of nodes. Secondly, a window of a specific length slides to sample the context for
target node vi in the sequence of nodes. Three layers are involved in the Skip-gram model:
input, hidden and output layer. The initial representation of target node vi is the input, the
model parameters are trained and updated to maximize the probability of the neighbors of
the target node vi.

Pr({vi−w, . . . , vi+w} \ vi | Φ(vi)) =
i+w

∏
j=i−w,j 6=i

Pr(vj | Φ(vi)) (4)

where Φ(vi) denotes the current representation vector of node vi, w is the size of the window
in Skip-gram, {vi−w, ..., vi+w} \ vi is the context of node vi, and the hierarchical softmax
adopts a binary tree to reduce the complexity of calculating Pr(vj | Φ(vi)). The problem
turns into maximizing the probability of paths from the root node to the tree nodes.

2.3. Loss Function

Finally, the node embedding output from this model is applied to the specific node
classification task of semi-supervised learning, and the loss function is calculated to min-
imize the cross-entropy loss value between the true label and the predicted value in the
training set. The calculation process is shown in Equation (5):

ι = −∑
l∈L

Yl ln(C · Zl) (5)

where C is the parameter of the classifier, L is the set of training set nodes, Yl and Zl

represent the true labels corresponding to the training set data and the predicted values
generated by the model, respectively. Based on the training set data, in this paper, we
used the backpropagation method to train the parameters of the model for learning more
accurate node embedding representations.

2.4. Datasets

In this paper, the real library loan records of seven universities in Shanghai, which
were Shanghai University of Electric Power (SUEP), Shanghai Ocean University(SHOU),
Shanghai University of Finance and Economics(SUFE), University of Shanghai for Science
and Technology(USST), Shanghai International Studies University(SISU), Shanghai Normal
University(SHNU) and Tongji University(TJU), were used to validate the performance
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of our approach. The datasets were collected from Huiyuan sharing [43]. We organized
the data from 2017 to 2018 and took two columns of data, ISBN and PATRON_ID, as the
different types of nodes to construct the hypergraphs. PATRON_ID represented NodeI and
ISBN denoted the hyperlinks in Figure 1. The structural properties of the hypergraphs are
analyzed in the Table 1. As shown in Table 1, n denotes the number of nodes, m0 refers to
the total number of links between nodes, 〈k〉means the average degree of nodes, m is the
number of hyperlinks, 〈dH(v)〉 refers to the average hyperdegree of a node, 〈δ(e)〉means
the average degree of hyperlink, and 〈δH(e)〉 is the average hyperdegree of a hyperlink.

Table 1. The structural properties of the seven hypergraphs.

Datasets n m0 m Density 〈k〉 〈dH(v)〉 〈δ(e)〉 〈δH(e)〉
SUEP 906 24,362 19,530 0.0297 27 29 47 1.3

SHOU 2680 222,126 64,958 0.0309 81 41 108 1.7

SUFE 1720 148,188 35,727 0.0501 86 33 62 1.6

USST 2733 230,597 54,437 0.0308 84 36 93 1.8

SISU 3089 478,953 72,100 0.0502 155 46 142 2

SHNU 3557 263,305 93,996 0.0208 74 43 120 1.6

TJU 6150 988,516 131,199 0.0261 161 42 134 1.9

3. Experiments

To evaluate the performance of HNE, we conducted experiments on the seven datasets.
Firstly, to train the model, we took the existing links as positive samples and then obtained
random negative samples according to the number of positive samples. Given a test ratio
(set as 30%) as input, the positive and negative samples were divided into a training set and
a test set. Secondly, the embedding vectors of links were represented by concatenating the
embedding vectors of the corresponding node pairs in the training set and test set for the
unsupervised link prediction. After that, we input the embedding vectors of the samples in
the training set into the random forest to learn the potential relationships among links and
then input the embedding vectors of the samples in the test set into the trained random
forest to predict possible links. Finally, the results of the link prediction were assessed with
the AUC metric.

3.1. Compared Methods

In this paper, we compared the proposed HNE with three categories of baselines:
similarity-based methods–CN [10], Jaccard coefficient [11], random-walk-based methods–
Katz [12] and RWR [13], and deep-learning-based methods–Node2vec [32], GCN [38].
The existence probabilities of links were evaluated by the similarity between two nodes.
Common neighbors (CN) is a link prediction method that is based on evaluating the
overlap or similarity of two nodes by obtaining the number of common neighbors in a
graph. The Jaccard coefficient is defined as the ratio of the common neighbor size of
node i and node j to the size of all their neighbors. Katz centrality is an approach for
summing all paths of nodes i and j, where the weight of paths decays exponentially
according to their length, to evaluate how closely two nodes are related in the graph.
Random walk with restart (RWR) provides a kind of random walk where node i moves to
its neighbor with probability c or it jumps to the original node with probability 1− c. We
set c = 0.2 in this paper. Node2vec learns a mapping of nodes to a low-dimensional space
of features that maximizes the likelihood of preserving network neighborhoods of nodes.
GCN is a classical graph neural network to learn the representation of nodes in graphs
by convolutional networks. For the deep-learning-based methods, we set the embedding
dimension as 64, and for all methods, we randomly ran them 10 times and reported the
average results.
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The training set data selected in this experiment were obtained by random sampling.
In order to more comprehensively evaluate the accuracy and validity of the experimental
results, in this paper, we used a weighted average processing to consider a training sample,
the n classification problem was decomposed into two classification problems, and then the
prediction results of the model were evaluated. Four evaluation indicators, AUC, precision,
recall and F1-score were evaluated in the experimental results of the model to ensure the
reliability and validity of the HNE method.

3.2. Results

To evaluate the performance of the four methods of link prediction, the experiment
was implemented 10 times to compute the average AUC score and the results are shown in
Figure 2. We observe that the AUC scores of HNE were 0.8247, 0.9077, 0.844, 0.8433, 0.8418,
0.8693 and 0.8120, respectively, on the seven datasets, which were better than those of the
other methods on the seven datasets. The AUC scores improved by 26.9%, 16%, 19%, 32%,
1.67% and 7.38% at most compared with the scores of the CN, the Jaccard coefficient, the
Katz centrality, the RWR, Node2vec and GCN, respectively. Based on the above analysis, a
promising performance was achieved for the HNE method. Moreover, the performance of
HNE was very stable on the seven datasets with different sizes.
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Figure 2. The AUC of CN, Jaccard, Katz, RWR, Node2vec, GCN and HNE on seven datasets.

We further evaluate the performance of our method with the precision, recall and
F1-score on the seven datasets. As shown in Tables 2 and 3, the precision, recall and F1-score
of our method achieved the best results on the seven datasets. Specifically, the precision of
HNE was 0.9424 on the SUFE dataset, which was better than the other algorithms. For the
recall and F1-score, our method improved by 2.2% and 28.7% and 7.7% and 19.2% compared
to Node2vec and GCN, respectively. The F1-scores of HNE were superior to the other
methods except on the TJU dataset. The experiment results show that our proposed method
outperformed the CN, the Jaccard coefficient, the Katz centrality, the RWR, Node2vec and
GCN on all datasets except the TJU dataset. Therefore, our algorithm showed a better
performance and effectiveness for link prediction than traditional methods.

From the experiments, we can see that in the seven datasets, our method still main-
tained a relatively stable overall performance.
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Table 2. The experimental results for the precision, recall and F1-Score on the SHOU, SUFE, SUEP.

SHOU SUFE SUEP

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

CN 0.6971 0.6091 0.6499 0.8996 0.6654 0.7650 0.7063 0.5645 0.6275
Jaccard 0.7569 0.6034 0.6715 0.9034 0.6916 0.7834 0.7412 0.5424 0.6263

Katz 0.6705 0.8001 0.7333 0.6722 0.8121 0.7356 0.6663 0.8061 0.7296
RWR 0.5446 0.5456 0.5449 0.5929 0.6250 0.6083 0.5328 0.5366 0.5337

Node2vec 0.8317 0.8037 0.8223 0.9416 0.8566 0.898 0.8401 0.8154 0.8275
GCN 0.7959 0.7675 0.7814 0.9046 0.8372 0.8696 0.7934 0.7734 0.7832
HNE 0.8379 0.8052 0.8212 0.9424 0.8685 0.9040 0.8516 0.8331 0.8422

Table 3. The experimental results for the precision, recall and F1-score on the USST, SISU, SHNU
and TJU.

USST SISU SHNU TJU

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

CN 0.6902 0.6663 0.678 0.6885 0.6161 0.8354 0.7594 0.6821 0.7187 0.8289 0.7467 0.7856
Jaccard 0.7685 0.6271 0.6906 0.7481 0.6246 0.6808 0.8107 0.6800 0.7396 0.8726 0.7596 0.8122

Katz 0.6711 0.8093 0.7337 0.6682 0.8022 0.7291 0.6706 0.8085 0.7331 0.6666 0.7925 0.7241
RWR 0.5438 0.5191 0.5306 0.5603 0.5455 0.5526 0.5457 0.5368 0.5411 0.5718 0.547 0.5588

Node2vec 0.8603 0.805 0.8317 0.866 0.8068 0.6502 0.8706 0.8582 0.8644 0.8668 0.8355 0.8512
GCN 0.8185 0.7738 0.7955 0.8328 0.7798 0.8054 0.8358 0.8229 0.7293 0.7848 0.7375 0.7604
HNE 0.8632 0.8160 0.8389 0.8657 0.8092 0.8365 0.8706 0.8674 0.8691 0.8365 0.7789 0.7972

4. Conclusions and Discussions

In this paper, a link prediction approach with network embedding was proposed
for hypergraphs. The proposed HNE method applied the Deepwalk model to extract
features of nodes according to the hypergraphs constructed from library loan records, then
a classifier was trained to predict the potential links between nodes. The experiment results
on seven datasets showed that our approach outperformed typical link prediction methods.
The comparison of AUC, precision, recall and F1-score with six methods demonstrated the
effectiveness of the proposed approach.

In the future, the idea of combining hypergraphs and network embedding can not
only be applied to link prediction, but also implement more tasks, such as node importance,
community detection and node classification. In addition, our proposed algorithm has wide
practical applications, such as recommendations for online social networks, knowledge
reasoning for knowledge hypergraph construction, drug-target prediction or drug-disease
prediction in the field of bioinformatics and so on. In addition, as more graph neural
network methods [44–47] are proposed, we can explore hyperlink prediction algorithms
and other graph neural network models for preserving more structural and semantic
information of hypergraphs to solve the fundamental problems in hypergraph analysis.
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