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Abstract: Theoretical methods, such as molecular mechanics and molecular dynamics, are very
useful in understanding differences in interactions at the single molecule level. In the life sciences,
small conformational changes, including substituent modifications, often have a significant impact
on function in vivo. Changes in binding interactions between nucleic acid molecules and binding
proteins are a prime example. In this study, we propose a strategy to predict the complex structure
of DNA-binding proteins with arbitrary DNA and analyze the differences in their interactions. We
tested the utility of our strategy using the anticancer drug trifluoro-thymidine (FTD), which exerts its
pharmacological effect by incorporation into DNA, and confirmed that the binding affinity of the
BCL-2-associated X sequence to the p53 tetramer is increased by FTD incorporation. On the contrary,
in p53-binding sequences extracted from FTD-resistant cells, the binding affinity of DNA containing
FTD was found to be greatly reduced compared to normal DNA. This suggests that thymidine
randomly substituted for FTD in resistant cells may acquire resistance by entering a position that
inhibits binding to DNA-binding proteins. We believe that this is a versatile procedure that can
also take energetics into account and will increase the importance of computational science in the
life sciences.

Keywords: binding affinity; thermodynamical effect; molecular mechanics; molecular dynamics

1. Introduction

In biomolecules, changes in partial structure, such as amino acid mutations in pro-
teins [1,2], methylation or acetylation of nucleic acids [3–5], can significantly alter their
molecular functions. For example, even a single amino acid substitution in a protein se-
quence can significantly change the structure of the protein, and the biological function
may differ accordingly [2]. In addition, it has been shown that the presence or absence
of methylation in microRNAs can change the binding interaction with dicer proteins, re-
sulting in differences in the binding rate to complementary RNAs [5]. Therefore, it is
very important to observe subtle differences in structure at the single molecule level in
biomolecules and to understand their functions. In recent years, it has become possible
to experimentally observe subtle differences within a single molecule by using tunneling
current-based sequencing [6,7] and other techniques [8]. On the contrary, analysis based on
theoretical calculations can predict how changes in substructure will affect intermolecu-
lar interactions before they are observed experimentally. Typical simulation calculations
based on theoretical physics and chemistry, which are widely used in the life sciences, fall
into three main categories. The three methods are the molecular docking method [9,10],
which is used to search for bonding conformations between biomolecules; the molecular
dynamics (MD) method [11,12], which is used to understand the thermodynamic behavior
of molecules; and the molecular orbital (MO) method [13], which can precisely interpret
molecular reactivity and intermolecular interactions at the electronic level. By effectively
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combining these methods, it has become possible to understand various in vivo envi-
ronments. In particular, theoretical simulations are effective because they allow detailed
analysis of how small conformational changes at the single-molecule level cause changes in
interactions with the molecule of interest. However, it is extremely difficult to predict from
scratch how the molecular interactions between DNA and its binding proteins, which have
undergone minute structural changes, will change compared to the original nucleic acid,
using current theoretical calculations. This is because it is difficult to predict the correct
binding conformation of a protein that recognizes the double helical DNA structure by the
conventional molecular docking method alone, because most of the interfaces that come
into contact with DNA are deoxyribose portions. Therefore, we proposed a new strategy,
BC-BEP (Binding Conformation and Binding Energy Prediction), to analyze how subtle
conformational differences in nucleic acids alter the binding interaction and binding energy
between DNA and binding proteins.

BC-BEP uses DNA-protein complex structure data registered in the Protein data bank
(PDB) to predict the complex structure of a DNA-binding protein and its target DNA based
on homology at various binding conformations. The predicted complex structure is then
used as the initial structure, and MD calculations are performed under conditions that
mimic the in vivo environment to sample the thermodynamic behavior. These sampled
conformations will be used to enable binding energy estimation. To show whether BC-BEP
can explain differences in binding changes at the level of a single nucleic acid molecule
incorporated into DNA, we tested it with trifluoro-thymidine (FTD) [14], an anticancer
drug known to exert high antitumor effects when incorporated into DNA. The binding
prediction strategy proposed in this study is strongly expected to be useful in clarifying
in vivo characteristics, such as functional changes due to DNA methylation.

2. Methods
2.1. Conceptual View of Our Procedure for Predicting the Binding Poses and Energies

In this paper, we propose BC-BEP, which is a strategy for analyzing the distribution
of binding energies in in vivo environments by using multiple-target protein-nucleic acid
complex structures to predict complexes with arbitrary sequences of nucleic acids based
on their binding similarities, and then using molecular dynamics to sample the thermody-
namic effects of the binding interactions. This strategy allows theoretical calculations to
predict differences in binding interactions caused by small conformational differences at
the substituent level within nucleic acids. In the present calculations, we will take as an
example the binding interaction between the p53 protein and DNA. The protein has been
reported to play a role as a tumor suppressor [15].

2.1.1. Predicting the Complex of DNA Binding Protein and Each DNA Sequence

To predict the binding conformation of any sequence of DNA to the p53 protein,
as shown in Figure 1, we first collected the complex structures of the p53 protein and
DNA (including partial binding conformations) from the Protein Data Bank (PDB). There
are many crystal structures (including substructures) registered in PDB, and we selected
15 crystal structures (PDB ID: 5MG7 [16], 4MZR [17], etc., as shown in Table 1) that accu-
rately predict the complex structure. It has already been reported in many previous studies
that the binding motif sequence of p53 protein is (5′-C(A/T)(T/A)G-3′) [18]. Therefore,
the DNA structural parts were superposed to minimize the Root Mean Square Deviation
(RMSD) of the backbone structure of the binding motif (ribose and phosphate sites) in each
crystal structure data. The same procedure was used for the p53 protein portion, where
the atomic coordinates forming the protein backbone were superimposed to minimize the
RMSD. After superposition of each substructure, the average coordinates of each atom
were calculated to create a representative binding conformation that serves as the initial
structure for the estimation. Based on this representative binding conformation, a binding
conformation with an arbitrary DNA sequence is created by substituting only DNA bases
such that the binding interaction between the two binding motifs is not changed. If the
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number of bases between two binding motifs in the DNA sequence for which binding is to
be inferred is different from the representative binding conformation, the initial structure
is created by overlapping the two motifs such that the RMSD of the atomic coordinates
of the two motifs is minimized. As the estimated binding conformation to be created
here will be followed by structural relaxation, using the energy minimization method,
and conformational sampling, using molecular dynamics with the relaxed structure as the
initial structure, even a roughly estimated structure will not cause major problems.
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Figure 1. Schematic diagram of the proposed theoretical prediction strategy, BC-BEP, of complex
conformation and binding affinity. (A) After determining the average conformation of the reported
Protein Data Bank crystal structures to binding motif sites, the binding structures were predicted
based on the sequence similarity of the target DNA. (B) Thermodynamic sampling was performed in
a mimicked biological environment for the predicted complex structure. Subsequently, the binding
energies were estimated to account for the difference in the energy between the dissociated and
complex states.

Table 1. Crystal structures used to create representative bonding structures.

PDB ID Year X-mer Title 3

5MCT 2018 Dimer Structure 26: 1237–1250.e6, 2018
5MCU 2018 Dimer Structure 26: 1237–1250.e6, 2018
5MCV 2018 Dimer Structure 26: 1237–1250.e6, 2018
5MCW 2018 Dimer Structure 26: 1237–1250.e6, 2018
5MF7 2018 Dimer Structure 26: 1237–1250.e6, 2018
5MG7 2018 Tetramer Structure 26: 1237–1250.e6, 2018
6FJ5 2018 Dimer Structure 26: 1237–1250.e6, 2018

4MZR 2014 Tetramer J. Mol. Biol. 426: 936–944, 2014
4HJE 2013 Dimer Nucleic Acids Res. 41: 8368–8376, 2013

3KMD 2010 Dimer Structure 18: 246–256, 2010
3KZ8 2010 Dimer Nat. Struct. Mol. Biol. 17: 423–429, 2010
2AC0 2006 Tetramer Mol. Cell 22: 741–753, 2006
2ADY 2006 Tetramer Mol. Cell 22: 741–753, 2006
2AHI 2006 Tetramer Mol. Cell 22: 741–753, 2006
2ATA 2006 Dimer Mol. Cell 22: 741–753, 2006
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2.1.2. Thermodynamical Structural Sampling and Estimation of Energy Distributions
Energy Minimizations and MD Simulations

Energy minimization was performed using the AMBER 18 program package [19]
for each complex structure in ~33,000 water molecules. The AMBER 99 force field [20],
general AMBER force field (GAFF) [21] and transferable intermolecular potential with
3 points (TIP3P) force field [22] were used for complex structures and water molecules. We
used the GAFF for validation of FTD. Following energy minimization calculations, the
MD simulations (canonical ensemble) were performed at 310 K (~37.85 ◦C) with periodic
boundary conditions, using the minimized structure as the initial structure to sample
conformations in the biological environment for each structure. The time step was 0.2 fs,
and the total simulation time was 10 ns (50,000,000 steps).

Estimation of Binding Energies

We extracted 5000 conformations from each complex structure that was sampled
thermodynamically in a mimicked biological environment. We calculated the energies of
p53 alone, DNA alone and their complexes by separating the protein and DNA structures
from the complex structure. The binding energies were estimated based on the difference
in the energy between their complexes from the sum of the energies of the components,
according to the following equation:

∆Ebind =
(
Ep53 + EDNA

)
− EComplex (1)

Estimation of binding energy was performed using the Gaussian 16 program package [23].
For validation, we calculated the MM by loading the Amber 99 force field and GAFF into
Gaussian 16. To convert the program for energy calculation at the ab initio molecular orbital
level, we created a program that discharges in the Gaussian input format.

2.2. Extraction of DNA from Resistant Cells

The colon cancer cell line DLD1 and FTD-resistant DLD1 cells were cultured as de-
scribed in a previous study [24]. DNA was extracted from these cell lines using the QIAamp
DNA mini kit (Qiagen, Cat. No. 51304).

3. Results and Discussion
3.1. Prediction of the Complex of p53 Protein with Each DNA Sequence

Many of the binding interactions of DNA to the p53 protein often occur between the
ribose and phosphate groups of DNA and the protein. Therefore, the difference in binding
ability between different DNA base species is thought to be largely due to the difference
in partial charges caused by the electron-withdrawing and electron-donating properties
of the bases. This background makes it very difficult to search for and determine binding
conformations from scratch using conventional molecular docking methods. In actuality,
Y. Itoh et al. showed that the majority of p53 proteins could not recognize their target
sequences in the slide search after non-specific binding to DNA [25]. This experimental
result means that the difference in binding energy between the recognition motif and any
sequence for p53 protein might be small. On the contrary, our strategy is very efficient
because once a representative binding structure is created for one protein, all that remains
is base substitution. We have registered the representative binding structures to the p53
protein used here in the PDB format for the Supplement data (PDBs S1 and S3).

To show the usefulness of our strategy, BC-BEP, we selected FTD, which possesses
a highly effective anti-tumor potency. The structural difference between FTD and normal
thymidine is a substitution with methyl or trifluoromethyl groups (Figure 2a). The combi-
nation of FTD and tipiracil hydrochloride has already been approved as a cancer treatment
by various regulatory agencies, including the US Food and Drug Administration [14]. FTD
has been reported to induce p53-dependent sustained arrest of the cell cycle in the G2 phase,
thereby leading to changes in the binding affinity of FTD-incorporated DNA to the p53
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protein [4]. From our previous study, it is presumed that thymidine adjacent to adenine and
guanine, which has an electron-rich structure, is likely to replace FTD in DNA replication
(Figure 2b) [4]. This is because the fluorine atoms in the trifluoromethyl group interact
with an electron-rich molecular orbital via halogen bonding. In the validation study, we
used normal and FTD-incorporated BCL-2-associated X (BAX) response element sequences
binding to p53 (Figure 2c,d). The yellow halftone screening in these figures indicates the
area of the p53 recognition motif. Therefore, thymidine in the BAX sequence surrounded by
an electron-rich base was substituted with FTD, as shown in Figure 2d. In the second study,
we validated p53-binding sequences extracted from cancer cell lines that were resistant
to FTDs due to continuous exposure over a long period of time. As shown in Figure 3a,
the resistant cells were disrupted and then captured using a consensus-binding sequence
for p53. The complementary strand was added based on the captured DNA sequence,
as shown in Figure 3b. Based on our previous theoretical predictions, we validated the
sequences with FTD substitutions at thymidine positions adjacent to the electron-rich bases
(Figure 3c).
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Figure 2. Structural features of trifluoro-thymidine (FTD), and test sequences binding to p53.
(A) The structural formula of FTD and (B) examples of adjacent bases that stabilize FTD. The
presence of an electron-rich structure in the adjacent bases stabilizes the coordination through
an attractive interaction with the trifluoromethyl group of FTD. The BAX response element sequences
of (C) normal and (D) FTD-incorporated DNA.

3.2. Thermodynamic Stabilization and Binding Energy Distributions

Based on the predicted binding structures (Supplementary Materials PDBs S1 and S3)
of each DNA, i.e., the BAX sequence, and the p53-binding sequence from FTD-resistant
cells, we predicted the binding structures (Supplementary Materials PDBs S2 and S4) of
the BAX sequence incorporating FTD and the p53-binding sequence from resistant cells
incorporating FTD. For these complexes, the conformational structures were sampled
using the MD method at a biological temperature (310 K [~37 ◦C]) after equilibration for
a sufficient time. Figure 4a,b shows the RMSDs of the DNA positions calculated for these
sampling structures after superposing the p53 protein structures for BAX and binding
sequences from FTD-resistant cells, respectively. The variation for a normal DNA and
an FTD-incorporated DNA are shown as blue and orange lines, respectively. In the BAX
sequence, FTD-incorporated DNA was found to have lower thermal oscillations than
normal DNA, while normal DNA from FTD-resistant cells exhibited increased thermal
stability compared to FTD-incorporated DNA. Due to these differences in thermal stability,
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shown in Figure 5a,b, the difference in the binding energy distributions were fitted to
the Gaussian-type function and that of box plots. In these figures, the blue and orange
lines show the distribution of a normal and FTD-incorporated DNA, respectively. The
p-values using t-test between the two distributions are 3.04 × 10−26 and ~0, respectively.
In these thermal samplings, the average relative distance between each DNA and the p53
is shown in Figure 6. The red circle indicates the position of FTD. Red- and blue-dashed
circles indicate the average position of the FTD incorporated and the normal DNA loop
position, respectively.
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(B) normal and (C) FTD-incorporated DNA used for verification.
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Figure 5. Comparison of binding energies. The distributions of p53-binding energy fitted to the
Gaussian-type function and box plots for the (A) BAX response element sequences and (B) p53-
binding sequences extracted from trifluoro-thymidine (FTD)-resistant cells. The blue and orange
lines indicate the distribution for a normal and FTD-incorporated DNA, respectively. The p-values
between the two distributions are (A) 3.04 × 10−26 and (B) ~0.00, respectively.
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Figure 6. Comparison of the positions of proteins and each DNA. Representative superposition
of binding conformations of the (A) BAX promoter sequences and (B) sequences extracted from
FTD-resistant cells to p53 protein. The red circle indicates the position of trifluoro-thymidine (FTD).
Red-dashed and blue-dashed circles indicate the average position of the FTD-incorporated and
normal DNA loop, respectively.

In our study, the binding energies were calculated using MM with the Amber force
field, which represents qualitative rather than quantitative properties. As the probability of
DNA recognition by p53 has been reported to be very low [25], the difference in the binding
energy caused by sequence differences is also expected to be insignificant. Moreover, we
found a slight increase in binding energy caused by FTD-incorporated DNA. However,
this indicates that FTD-incorporated DNA binds more strongly to DNA-binding proteins
and has higher recognition than normal DNA. In contrast, in p53-binding sequences
extracted from FTD-resistant cells, we found that the binding affinity of FTD-incorporated
DNA was greatly reduced compared to that of normal DNA. Therefore, we suggest that
the random substitution of thymidine in FTD-resistant cells might confer resistance to
FTDs by occupying a position that prevents them from binding to DNA-binding proteins.
Corroborating this result, we observed that the average relative distance between FTD-
incorporated DNA and p53 protein was closer for the BAX promoter sequence than for
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the normal DNA, whereas for the sequence extracted from the resistant strain, the FTD-
incorporated sequence tended to be farther away (Figure 6). This method can be used
to calculate the binding energy for any mutation containing p53. In addition to p53, this
method also facilitates the analysis of the structural and energetic properties of other
DNA-binding molecules, such as NANOG. Furthermore, although the energy distributions
were estimated using the MM method, future studies should analyze the intermolecular
interactions and estimate the binding energies using quantum mechanical methods as
needed. Therefore, this strategy has several applications and great potential for expansion
by modifying the computer specifications.

4. Conclusions

Our study established a novel strategy for predicting p53-binding energies based
on a conformational prediction of the arbitrary DNA complex to p53, using theoretical
methods, such as MM and MD. Validation studies using an anti-tumor drug, FTD, that
exerts its pharmacological effects by incorporating into DNA, exhibited an increased
binding affinity for the p53 tetramer. As estimated from previous studies, the increase
in binding energy was not significant, even in the presence of increased p53 function. In
contrast, the FTD-resistant cell line revealed a substantial decrease in binding energy. Thus,
the proposed strategy enabled the prediction of the functional response of p53 that cannot
be predicted by experiments that consider the difference in the binding energy between
any DNA sequence and a control sequence. As the proposed method was designed as
a general-purpose method, it can be extended to other DNA-binding proteins, and we
believe that it is a method that can be used to discuss the activation status of biological
functions, including cell proliferation and inhibition in vivo. We have already applied this
method to the NANOG protein and predicted that the binding strength changes between
methylated and unmethylated DNA, and we have also been able to experimentally and
theoretically explain the functional changes between the two cases; the paper is currently
under submission. Therefore, we believe that this proposed method is highly versatile
and applicable for calculating the binding energies of not only p53 protein, but also other
DNA-binding proteins and biomolecules, and it highlights the importance of computational
science in life sciences.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13010510/s1, PDB S1: BAX-normal type DNA; PDB S2: BAX-
DNA incorporating FTD; PDB S3: Resistant Cell-normal type DNA; PDB S4: Resistant Cell-DNA
incorporating FTD.
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