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Abstract: Hyperspectral image (HSI) classification is an important but challenging topic in the
field of remote sensing and earth observation. By coupling the advantages of convolutional neural
network (CNN) and Transformer model, the CNN–Transformer hybrid model can extract local and
global features simultaneously and has achieved outstanding performance in HSI classification.
However, most of the existing CNN–Transformer hybrid models use artificially specified hybrid
strategies, which have poor generalization ability and are difficult to meet the requirements of
recognizing fine-grained objects in HSI of complex scenes. To overcome this problem, we proposed a
convolution–Transformer adaptive fusion network (CTAFNet) for pixel-wise HSI classification. A
local–global fusion feature extraction unit, called the convolution–Transformer adaptive fusion kernel,
was designed and integrated into the CTAFNet. The kernel captures the local high-frequency features
using a convolution module and extracts the global and sequential low-frequency information using
a Transformer module. We developed an adaptive feature fusion strategy to fuse the local high-
frequency and global low-frequency features to obtain a robust and discriminative representation
of the HSI data. An encoder–decoder structure was adopted in the CTAFNet to improve the flow
of fused local–global information between different stages, thus ensuring the generalization ability
of the model. Experimental results conducted on three large-scale and challenging HSI datasets
demonstrate that the proposed network is superior to nine state-of-the-art approaches. We highlighted
the effectiveness of adaptive CNN–Transformer hybrid strategy in HSI classification.

Keywords: deep learning; hyperspectral image classification; convolutional neural networks; transformer;
hybrid strategy; feature fusion

1. Introduction

Hyperspectral remote sensing integrates imaging and spectral technology [1] to ob-
tain images with rich spectral and spatial information. Hyperspectral image (HSI) has
been widely used in many fields, including agriculture, forestry, mining, and marine re-
search [2–5]. For most of these applications, HSI classification is an important basic step,
which aims to assign a semantic label to each pixel in the image [6]. Even though it has
attracted considerable attention, it remains a challenging problem because of the large
spatial variability of spectral signatures and the limited available training samples versus
the high dimensionality of hyperspectral data [7].

Extracting discriminative and robust spatial–spectral features is the key to a successful
HSI classification [7]. In the early research, spatial–spectral features were designed manu-
ally according to the prior knowledge on the land cover types. Many feature descriptors in
the field of computer vision were adopted for HSI feature extraction. For example, princi-
pal component analysis (PCA) [8], independent component analysis (ICA) [9] and linear
discriminant analysis (LDA) [10] were used to extract spectral features, and scale-invariant
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feature transform (SIFT) [11], local binary patterns (LBP) [12], and extended morphological
profile (EMP) [13] were used to extract spatial features. On the basis of artificially designed
features, traditional machine learning methods, such as support vector machine (SVM) [14],
random forest (RF) [15], and extreme learning machine (ELM) [16] were used to classify
HSI pixels into different types. The performance of these methods largely depends on the
quality of the manually designed features. Generalization and robustness of these methods
are generally poor because the features are designed for specific tasks, and the feature
extraction requires complex processes of parameter tuning.

Different from traditional methods that rely on artificially designed features, deep
learning-based methods can automatically learn multi-level nonlinear features, which
are conducive to analyzing the inherent characteristics of HSI [7]. In recent years, as a
representative deep learning model, the convolutional neural network (CNN) has made
milestone progress in HSI classification. Relevant scholars have proposed a variety of
CNN-based classification models, which can be divided into three categories according to
the types of extracted features: (1) spectral CNN, which uses 1D CNN [17] to extract the
spectral features of HSI; (2) spatial CNN, which uses two-dimensional CNN [18] to extract
the spatial features from HSI after dimension reduction; (3) spectral-spatial CNN, which
uses three-dimensional convolution [19] or dual branch network [20] to simultaneously
extract spectral-spatial joint features of HSI. Although these CNN models have yielded
satisfactory results in specific applications, they generally face the following two challenges:
(1) due to the limited receptive field, they can hardly capture low-frequency signals, which
provide global information (e.g., global shapes and structures) [21]; (2) the quality of the
extracted high-frequency signals (e.g., local edges and texture) needs to be improved [22].
Several studies have attempted to improve the CNN models by directly extending the
receptive field of the convolution kernel, including the use of dilated convolutions [23]
and the construction of multi-scale feature pyramids [24]. Recent studies also introduced
the attentional mechanism to enhance the useful components in the features while sup-
pressing the useless ones, such as the spectral attention [25], spatial attention [26], and
spectral–spatial attention [27]. Nevertheless, the above-mentioned methods do not fully
overcome the limitations of CNNs, as they depend strictly on convolution operations,
which are incapable of modeling long-term dependencies [28].

In recent years, the emergence of the Transformer has provided a new means for HSI
classification. Transformer is a new neural network architecture consisting of a multi-head
self-attention (MSA) module and a feed-forward neural network [29]. By introducing the
MSA module, Transformer can effectively capture long-term dependencies. Qing et al. [30]
proposed a self-attention Transformer network (SATNet) for HSI classification. SATNet
employs Transformer encoders to extract image features and uses a multilevel residual
structure to connect multiple encoder blocks to solve the vanishing gradient and over-
fitting problems. Sun et al. [31] proposed an encoder–decoder network that fuses local-
global spatial attention and spectral attention (FSSANet) for HSI classification. FSSANet
introduces spectral attention into the Swin Transformer encoder [32] to encode the rich
spectral–spatial information of HSI and therefore improves the classification accuracy.
Although the application of Transformer as a backbone network for feature extraction has
a good performance in HSI classification, it still faces two problems. First, Transformer
needs to convert images to low-dimensional patch embeddings, which destroys the internal
structure of the images and increases the requirement of quantity of training data to learn
the unique properties of the images [33]. Secondly, Transformer cannot learn the correlation
between different pixels within a patch, and it is difficult to capture local high-frequency
information [34].

After reviewing the CNN-based and Transformer-based models, it was found that they
complement each other, and combining use of them offers opportunities to enhance the
modeling of both local high-frequency information and global long-term dependencies [35].
Sun et al. [36] proposed a spectral–spatial feature tokenization Transformer (SSFTT), which
uses convolution layers to extract shallow spectral–spatial features and the Transformer
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encoder to capture deep semantic information. The extracted HSI spectral–spatial semantic
features from shallow to deep were fused to improve classification accuracy. Song et al. [37]
proposed a two branch HSI classification framework based on three-dimensional CNN and
bottleneck spatial–spectral Transformer (B2ST). In this framework, both branches use a
combination of shallow CNN and deep Transformer. One branch is used to extract spatial
local–global joint features, and the other is focused on extracting spectral local–global
joint features. The fused spectral–spatial features can express the local global semantic
information, thus achieving outstanding classification performance. Although the existing
CNN–Transformer hybrid models have made progress in HSI classification, they have at
least two disadvantages. First, existing methods integrate convolution and Transformer
through artificially specified strategies, which are empirical and might lead to poor gener-
alization ability. Second, most of these models adopt the image-wise classification network
based on “encoder–label” structure, which make predictions through the features of the
last stage and cannot make full use of the information obtained from the other stages.
As a result, the “encoder–label” structure might yield incorrect results, e.g., omission of
fine-grained objects and confusion between similar objects in HSI of complex scenes [21,38].
It is urgent to develop a new method that can adaptively integrate the features extracted
by convolution and Transformer and effectively capture the information obtained from
multiple stages to overcome the limitations of existing methods.

Studies have noted that the deep learning methods normally suffer from the data-
hungry problem [39]. This problem is particularly acute in HSI classification due to a lack
of high-quality benchmark dataset. Most of the previous studies have used small-scale
datasets, such as Indian Pians, Salinas, and Pavia University [17,20,23,27,30,40], which
comprise only hundreds of rows by hundreds of columns of pixels. It is often the case
that deep learning methods yield nearly perfect classification results on these datasets,
possibly because the overlapping pixels between training data and test data will lead
to information leakage [40,41]. The new data partition method solves the problem of
information leakage to some extent [40–42]. However, the partitioned training data usually
contains only thousands of pixels, which is difficult to support the training of deep learning
models (usually including millions of parameters). At the same time, a small number of
test samples are insufficient to comprehensively evaluate the performance of the model.
Recently, a series of large-scale and challenging datasets have been developed [43,44]. It is
of interest to further test existing deep learning models using these benchmark datasets to
better understand their comprehensive performances.

The main objectives of this study are to: (1) develop a convolution–Transformer adap-
tive fusion network (CTAFNet) using an adaptive hybrid strategy to fuse high-frequency
and low-frequency signals so as to extract more robust and discriminating local–global
fusion representation and improve the performance of HSI classification; (2) to evaluate the
performance of several widely used deep learning models (i.e., FSSANet [31], SS3FCN [42],
UNet [45], etc.) using large-scale and challenging benchmark datasets to provide a fair and
comprehensive comparison between the models.

2. Datasets and Methods
2.1. Datasets
2.1.1. Data Descriptions

This paper uses three large-scale and challenging HSI datasets as benchmarks: the
AeroRIT scene [43], The Data Fusion Contest 2018 (DFC2018) dataset and Xiongan New
Area Matiwan Village (hereinafter referred to as Xiongan) dataset [44].

The AeroRIT scene is a HSI of the Rochester Institute of Technology’s university
campus captured by the Headwall Micro E sensor. The sensor captures a total of 372 spectral
bands. We use HSI of a total of 51 bands obtained by sampling every tenth band from
400 nm to 900 nm. This dataset has a ground sampling distance (GSD) of 0.4 m/px, resulting
in a 1973 × 3975 px image. This dataset is marked with five types of ground objects, as
shown in Figure 1. This dataset has problems, such as small target recognition, effects of



Appl. Sci. 2023, 13, 492 4 of 20

glint, and shadows. Although there are few types of ground objects, accurate classification
is still challenging.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 22 
 

The AeroRIT scene is a HSI of the Rochester Institute of Technology’s university cam-

pus captured by the Headwall Micro E sensor. The sensor captures a total of 372 spectral 

bands. We use HSI of a total of 51 bands obtained by sampling every tenth band from 400 

nm to 900 nm. This dataset has a ground sampling distance (GSD) of 0.4 m/px, resulting 

in a 1973 × 3975 px image. This dataset is marked with five types of ground objects, as 

shown in Figure 1. This dataset has problems, such as small target recognition, effects of 

glint, and shadows. Although there are few types of ground objects, accurate classification 

is still challenging. 

 

Figure 1. The AeroRIT scene. (a) RGB image; (b) Ground-truth classification map. 

The DFC2018 hyperspectral data were acquired over Central Houston, Texas, USA, 

using an ITRES-CASI 1500 airborne sensor. It covers a 380–1050 nm spectral range over 

48 contiguous bands at 1 m GSD, resulting in a 1202 × 4768 px image. This dataset has a 

total of 20 types of labels and contains many fine-grained objects. The number of artificial 

turn, water, and unpaved parking lots classes is too small to be partitioned into the train-

ing set and the test set at the same time. The method adopted in this paper cannot evaluate 

the performance of these three classes, therefore, these three classes are merged into the 

unspecified class. After processing the labels, there are 17 types of ground objects left, as 

shown in Figure 2. 

Figure 1. The AeroRIT scene. (a) RGB image; (b) Ground-truth classification map.

The DFC2018 hyperspectral data were acquired over Central Houston, Texas, USA,
using an ITRES-CASI 1500 airborne sensor. It covers a 380–1050 nm spectral range over
48 contiguous bands at 1 m GSD, resulting in a 1202 × 4768 px image. This dataset has a
total of 20 types of labels and contains many fine-grained objects. The number of artificial
turn, water, and unpaved parking lots classes is too small to be partitioned into the training
set and the test set at the same time. The method adopted in this paper cannot evaluate
the performance of these three classes, therefore, these three classes are merged into the
unspecified class. After processing the labels, there are 17 types of ground objects left, as
shown in Figure 2.

The Xiongan dataset is a HSI of Matiwan Village in Xiongan New Area of China,
which is acquired using the visible and near-infrared imaging spectrometer. The spectral
range is 400~1000 nm with 256 bands, and the spatial resolution is 0.5 m, resulting in a
1580 × 3750 px image. This dataset has a number of fine-grained objects, which are mainly
croplands. For the same reason as DFC2018 dataset, we merged the acacia and sparse



Appl. Sci. 2023, 13, 492 5 of 20

forests into the unspecified class. After merging, there are 18 types of ground objects, as
shown in Figure 3.
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2.1.2. Data Partition Method

The AeroRIT dataset is partitioned to training, validation, and test sets according to
the method in the paper [43], with a patch size of 64 × 64. The number of samples of each
type is shown in Table 1. The DFC2018 dataset and the Xiongan dataset use the same data
partition method as shown in Figure 4. We first crop the image into a number of 64 × 64
non-overlapping patches and then randomly partition these patches into the training set
and test set. The number of samples of the DFC2018 dataset and the Xiongan dataset are
shown in Tables 2 and 3, respectively.

Table 1. Sample size of each class in each set after partitioning the AeroRIT dataset.

Class Train Val Test

Buildings 423,605 141,424 352,788
Vegetation 1,277,105 349,211 1,551,317

Roads 843,770 319,228 781,508
Water 112,946 0 5718
Cars 70,313 19,537 42,243

Total 2,727,739 829,400 2,733,574
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Table 2. Number of samples in train and test sets for the DFC2018 datasets.

Class Train Test

Healthy grass 24,546 14,650
Stressed grass 95,176 34,832

Evergreen trees 42,446 11,876
Deciduous trees 13,973 6199

Bare earth 11,844 6220
Residential buildings 119,456 39,539

Non-residential buildings 616,125 278,644
Roads 129,820 53,463

Sidewalks 94,431 41,604
Crosswalks 3875 2184

Major thoroughfares 134,167 51,271
Highways 29,175 10,263
Railways 18,308 9440

Paved parking lots 31,833 14,099
Cars 19,875 6414

Trains 14,524 6955
Stadium seats 17,074 10,222

Total 1,416,648 597,875
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Table 3. Number of samples in train and test sets for the Xiongan datasets.

Class Train Test

Acer negundo 140,953 84,694
Willow 119,010 61,756

Elm 12,523 2830
Paddy 342,682 109,462

Sophora japonica 305,611 169,980
Fraxinus chinensis 123,224 46,118

Goldenrain tree 19,126 4178
Waters 122,790 42,857

Bare ground 27,526 10,883
Stubble 134,439 59,391

Corn 43,796 15,369
Pyrus 764,745 261,768

Soybean 6682 469
Poplar 62,489 28,583

Vegetable field 20,822 8326
Grass 315,130 106,660
Peach 43,220 22,294

Building 18,452 11,164

Total 2623,220 1,046,782

2.2. Method

We propose a convolution–Transformer adaptive fusion network (CTAFNet) for pixel-
wise HSI classification. CTAFNet uses a novel local–global fusion feature extraction unit,
called the convolution-Transformer adaptive fusion kernel, to capture both the local high-
frequency features and the sequential low-frequency information. An adaptively feature
fusion strategy was designed to obtain a more robust and discriminative representation
of the HSI data. Moreover, CTAFNet adopts an encoder–decoder structure to improve
the flow of fused local–global information between different stages, thus ensuring the
generalization ability of the model.

2.2.1. CTAFNet Architecture Overview

The overall architecture of the proposed CTAFNet for HSI classification is presented
in Figure 5a. CTAFNet has a CNN–Transformer hybrid architecture, which mainly com-
posed of encoder and decoder. The encoder follows the hierarchical pyramid architecture
equipped with a CTAFK in each stage, which is used to capture local–global feature repre-
sentations at different levels. The decoder uses bilinear interpolation for up-sampling to
recover the spatial resolution of the feature map and concatenates the feature map from
the previous and the current stage of encoders. The encoder–decoder framework enables
CTAFNet to effectively utilize the local and global information extracted at each stage to
improve HSI classification accuracy. The output feature size for each stage is shown in the
Table 4.

2.2.2. Convolution–Transformer Adaptive Fusion Kernel

The artificially specified CNN–Transformer hybrid strategy has poor generalization
ability and is difficult to satisfy the recognition requirements of fine-grained objects in
complex scenes. To overcome this challenge, a feature extraction unit called the convolution–
Transformer adaptive fusion kernel (CTAFK) was designed, as shown in Figure 5b.

CTAFK captures the local high-frequency features using a convolution block (Conv
block) and extracts the global and sequential low-frequency information using a Trans-
former block (Trans block). Afterwards, the local high-frequency and global low-frequency
features are adaptively weighted and fused to provide a more generalized and discrimi-
native representation of the HSI data. The details of Conv block, Trans block, and CTAFK
workflow are shown, as follows.
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Table 4. Output feature size for each stage.

Stage Encoder (H ×W × C) Decoder (H ×W × C)

1 64 × 64 × 96 16 × 16 × 96
2 32 × 32 × 96 32 × 32 × 96
3 16 × 16 × 96 64 × 64 × K 1

4 8 × 8 × 96
1 K represents the number of classes.

1. Conv Block

Conv block is the basic module for extracting local features in CTAFK, which is
composed of max pooling and residual block [46], as shown in Figure 5c. Among them,
max pooling is used to halve the resolution of the input feature map, thus capturing multi-
scale information. Note that we did not use the max pooling layer in the first stage of the
encoder to ensure that the output image size is the same as the input image size. Residual
block consists of a Conv 3 × 3, of a batch normalization (BN) [47], of a rectified linear unit
(ReLU) [48] can efficiently encode spatial local information, and solve the degradation
problem of deep network through shortcut connections, thus reducing the difficulty of
model optimization. The number L of residual blocks for each stage is set to {1, 1, 3, 1}. The
calculation formula of residual block is as follows:

y = σ(F (x, {Convi}) + x) (1)

F = B(Conv2(σ(B(Conv1x)))) (2)
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where x and y are input and output vectors, the function F represents the residual mapping
to be learned, σ is the ReLU activation function, and B denotes BN and the biases are
omitted for simplifying notations.

2. Trans Block

Trans block is the basic module for extracting global features in CTAFK, which is
composed of patch embedding and Transformer encoder blocks [29], as shown in Figure 5d.
As with the Conv block, the number L of the Transformer encoder for each of the four
stages is also set to {1, 1, 3, 1}.

Patch embedding can convert two-dimensional images into one-dimensional token se-
quences with the standard Transformer as input, as shown in Figure 6a, and the calculation
formula is as follows:

z0 =
[

x1
pE; x2

pE; · · · xN
p E
]
, E ∈ R(P2·C)×D (3)

where xP ∈ RN×(P2·C) is a sequence of flattened two-dimensional patches. N = HW/P2

is the resulting number of patches, E is a trainable linear projection, which can map the
patches to D dimension, P × P is the resolution of image patches, and the P is set to
{1, 2, 2, 2} for each stage. The Transformer encoder consists of multi-headed self-attention
(MSA), multilayer perceptron (MLP) block, layer normalization (LN) [49], and shortcut
connections. This process is expressed by the following equation:

z′` = MSA(LN(z`−1)) + z`−1, ` = 1 . . . n (4)

z` = MLP
(
LN
(
z′`
))

+ z′`, ` = 1 . . . n (5)
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As shown in Figure 6b, MSA mainly captures the correlation between input patches
through the attention function. An attention function can be described as mapping a query
and a set of key-value pairs to an output, where the query (Q), keys (K), values (V), and
output are all vectors. The output is computed as a weighted sum of the values, where the
weight assigned to each value is computed by a compatibility function of the query with
the corresponding key. This process is expressed by this equation:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (6)

MSA involves multiple groups of the weight matrix in mapping Q, K, and V, using the
same operation process to calculate the attention value. MSA allows the model to jointly
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attend to information from different representation subspaces at different positions. This
process is expressed by this equation:

MultiHead(Q, K, V) = Concat(head1,··· ,headh)WO (7)

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
, WQ

i ∈ Rd×dk , WK
i ∈ Rd×dk , WV

i ∈ Rd×dv ,

and WO
i ∈ Rhdv×d are parameter matrices.

MLP block is used to enhance the non-linear expression ability of Transformer and
consists of two full connection layers. Between the two full connection layers, we use
Gaussian error linear units (GELU) [50] as the activation functions.

3. CTAFK workflow

Overall, CTAFK deals with the input feature map X ∈ RH×W×C via three steps, i.e.,
feature extraction and integration, adaptive weight calculation, and weighted fusion.

Feature extraction and integration: first, Conv block and Trans block are used to extract
the local and global features of the given feature map X, respectively. The two transfor-
mations can be expressed as FConv : X → Ũ ∈ RH×W×C and FTrans : X → Û ∈ RH×W×C .
Then, a convolution layer composed of Conv 1 × 1, BN and ReLU activation function is
used to unify the number of channels of the two branches. Finally, integrate information
from local feature branch and global feature branch via an element-wise addition:

U = Ũ + Û (8)

Adaptive weight calculation: the weights of local and global features are calculated
through a squeeze-and-excitation module [51]. First, a statistic s ∈ RC is generated by
shrinking U through spatial dimensions H ×W:

sc = FGAP(Uc) =
1

H ×W

H

∑
i=1

W

∑
i=1

Uc(i, j) (9)

where sc denotes the c-th element of s. Then, a MLP is used to describe the dependency of
the two branches as g ∈ R2C, so as to guide the adaptive fusion. The used MLP consists of
two full connection layers, its calculation formula is as follows:

g = FMLP(s) = W2(W1s + b1) + b2 (10)

where Wi and bi (i = 1, 2) denote the weights and biases, respectively. Finally, g is divided
into two vectors, i.e., g̃ ∈ RC and ĝ ∈ RC, and the weights are calculated by:

w̃c =
g̃c

g̃c + ĝc
(11)

ŵc =
ĝc

g̃c + ĝc
(12)

Weighted fusion: the fused feature map V ∈ RH×W×C is obtained by weighting Ũ and Û:

Vc = w̃c · Ũc + ŵc · Ûc (13)

where w̃c + ŵc = 1, Vc denotes the c-th channel of V, and Vc ∈ RH×W .
In addition, the output of CTAFK was input to the CTAFK in the next stage to transfer

the inductive bias of convolution and the learned location information.

2.2.3. Comparison Methods

Nine representative deep learning models were selected for comparison. Among
them, four models are the most popular solutions for semantic segmentation tasks in
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the computer vision domain, including UNet [45], Deeplab v3+ [52], SegFormer [53],
and Swin-UNet [54]. The remaining five are the most advanced models in the current
HSI classification tasks, including UNet-m-se(prelu)-gan [44] (hereinafter referred to as
UNet-m), SS3FCN [42], ENLFCN [26], SSDGL [55], and FSSANet [31]. Among them, UNet
and SS3FCN are methods based on two-dimensional and three-dimensional convolution
respectively. Deeplab v3+ belongs to the method of directly expanding the receptive field
of the convolution kernel, UNet-m, ENLFCN, and SSDGL belong to the methods that
introduce the attention mechanism, and SegFormer, Swin-UNet, and FSSANet are methods
based on Transformer. Please refer to the corresponding paper for details and parameter
settings of the model.

3. Experiments and Analysis
3.1. Implementation Details and Metrics

During the training period, all models used the he-normal [56] method to initialize
the weight parameters and the AdamW [57] optimizer to optimize the weight parameters.
The initial learning rate is set to 0.001, and the weight decay is set to 0.0001. A weighted
cross entropy loss function (Equation (14)) was used to handle the unspecific class in the
dataset. Note that we used the same loss function and optimizer for all models to ensure
a fair comparison. All models were implemented under the Pytorch 1.10 deep learning
open-source framework using a NVIDIA GeForce RTX 3070 GPU with 8 GB memory.

Loss = −
K

∑
k=1

t0

tk
× yk log(pk) (14)

where K is the number of classes, y and p are the real and the predicted classes, respectively,
t0 is the number of unspecified sample, and tk is the sample size of a single class.

In this paper, the pixel accuracy, the intersection over union (IoU) of each class,
and IoU averaged over all classes (mIoU) are selected as the evaluation metrics for the
quantitative evaluation.

3.2. Experiment Result
3.2.1. Experiment Results on AeroRIT Dataset

Figure 7 shows the visually comparison of different methods on the AeroRIT test
set. Overall, the classification map obtained through CTAFNet is highly consistent with
the ground truth, and there are few misclassification phenomena. The classification map
generated by CTAFNet is the smoothest, while ENLFCN and SS3FCN have more salt and
pepper noise. As can be seen in the enlarged images, the CTAFNet correctly extracted the
racetrack and effectively preserved shapes. The car boundaries obtained from CTAFNet and
SS3FCN are clearer than that from the other methods, whereas the object edges generated
by CTAFNet are the closest to the ground truth.

Table 5 shows the experimental results of different methods in the AeroRIT test set.
The experimental results demonstrate that the proposed CTAFNet method achieves the
best performance, with 95.07% pixel accuracy and 81.41% mIoU. Specifically, CTAFNet
proposed in this paper is 0.36% higher with regards to pixel accuracy and 1.69% mIoU with
regard to the second-best model SS3FCN, while SegFormer has the worst performance,
with 88.51% pixel accuracy and 57.32% mIoU. CTAFNet achieved the best score in four
classes of Buildings, Roads, Water and Cars, which is 1.10%, 0.71%, 1.53%, and 1.20% higher
than the second place, respectively.

3.2.2. Experiment Results on DFC2018 Dataset

Figure 8 shows the visually comparison of different methods on the DFC2018 dataset.
One can observe that CTAFNet obtained more accuracy classification map than the other
methods. Moreover, the classification map generated by CTAFNet is the cleanest, with little
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noise in buildings and roads, while the classification map generated by other methods has
noticeable noises.
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Table 5. Classification results for the AeroRIT test set.

Class UNet DeepLab v3+ SegFormer Swin-UNet UNet-m SS3FCN ENLFCN SSDGL FSSANet CTAFNet

Buildings 85.47 85.53 63.47 82.89 82.64 83.86 85.17 81.66 84.93 86.63
Vegetation 94.87 94.99 93.09 95.94 95.45 95.71 95.25 95.72 95.8 95.72

Roads 81.17 82.09 66.95 81.07 80.04 83.93 80.77 82.01 81.62 84.64
Water 72.11 68.78 30.75 75.52 76.74 74.65 76.89 75.23 75.06 78.42
Cars 48.94 47.74 32.34 38.4 47.17 60.44 47.56 57.38 45.84 61.64

pixel acc. 93.86 94.08 88.51 93.72 93.61 94.71 93.88 94.2 94.09 95.07
mIoU 76.52 75.83 57.32 74.76 76.41 79.72 77.13 78.4 76.65 81.41

Table 6 shows the experimental results of different methods in the DFC2018 test set.
The experimental results demonstrate that the proposed CTAFNet method achieves the
best performance, with 92.59% pixel accuracy and 82.10% mIoU. Specifically, the pixel
accuracy and mIoU of CTAFNet is 1.47% and 2.50% higher than the second-best model
SS3FCN, respectively. SegFormer has the worst performance, achieving only 73.44% pixel
accuracy and 58.11% mIoU. In terms of classification accuracy of each class, CTAFNet
obtained the best score in 12 of the 17 classes. Among them, IoU in residential buildings,
major thoroughfare, and cars was far higher than the second place (7.46%, 10.93% and
8.57% higher, respectively).
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Table 6. Classification results for the DFC2018 test set.

Class UNet DeepLab v3+ SegFormer Swin-UNet UNet-m SS3FCN ENLFCN SSDGL FSSANet CTAFNet

Healthy grass 78.88 74.67 64.39 87.59 82.68 87.01 80.77 84.56 85.36 77.79
Stressed grass 86.36 83.94 69.95 88.68 88.92 90.34 86.86 85.30 87.41 88.08

Evergreen trees 81.53 84.70 78.05 81.47 83.75 87.67 82.83 85.48 80.27 89.47
Deciduous trees 61.14 68.57 36.77 68.18 65.83 75.80 60.05 51.59 61.20 77.39

Bare earth 84.67 93.53 71.37 82.90 86.68 85.84 88.95 70.52 89.12 93.53
Residential buildings 66.30 83.75 64.26 70.33 70.05 81.89 79.40 78.61 72.18 91.21

Non-residential buildings 86.99 89.68 69.82 86.89 86.82 93.09 88.03 85.80 89.92 93.69
Roads 55.15 57.47 32.47 50.39 55.79 65.72 51.22 48.82 53.57 69.71

Sidewalks 50.69 55.47 34.60 47.74 56.89 64.23 53.96 43.93 53.19 62.98
Crosswalks 2.61 12.13 4.20 14.15 23.34 29.23 17.57 8.84 11.31 14.00

Major thoroughfares 38.41 72.58 48.41 47.83 69.96 72.84 66.66 61.08 53.62 83.77
Highways 76.58 80.54 75.60 38.04 86.48 76.20 74.53 82.80 53.67 90.06
Railways 79.06 90.99 59.26 94.60 92.41 96.99 92.36 98.96 93.89 97.17

Paved parking lots 67.52 88.01 69.21 81.18 92.97 92.85 92.46 84.20 91.47 95.96
Cars 69.57 79.15 54.47 54.41 69.04 63.23 84.98 81.62 65.22 93.56

Trains 96.19 94.57 90.42 72.24 96.13 94.80 95.83 98.43 88.52 99.16
Stadium seats 57.83 85.46 64.68 82.01 93.90 95.40 88.87 62.24 81.17 96.52

pixel acc. 84.84 88.66 73.44 83.56 87.56 91.12 87.24 84.72 85.97 92.74
mIoU 68.29 76.19 58.11 67.57 76.57 79.60 75.61 71.34 71.24 83.18
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3.2.3. Experiment Results on Xiongan Dataset

Figure 9 shows the visually comparison of different methods on the Xiongan dataset.
It can be found that the classification map obtained by CTAFNet keeps highly consistent
with the ground truth, and there is little noise in the classification map. Compared with
CTAFNet, the other three transformer models (SegFormer, Swin-UNet and FSSANet)
produce more noises and misclassifications. As can be seen in the enlarged area, CTAFNet
can completely classify the Grass (pink block in the middle) without any omissions or
errors, which indicates that CTAFNet can effectively integrate the advantages of CNN
and Transformer.
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Table 7 shows the experimental results of different methods in the Xiongan test set.
The experimental results demonstrate that the proposed CTAFNet achieves the best per-
formance with 96.17% pixel accuracy and 86.84% mIoU. Specifically, the pixel accuracy
and mIoU of CTAFNet is 1.80% and 3.98% higher than the second-best model ENLFCN,
respectively. SegFormer has the worst performance, achieving only 66.58% pixel accuracy
and 42.37% mIoU. In terms of classification accuracy of each class, CTAFNet obtained the
best score in 10 of the 18 classes. Among them, its IoU scores on the 3th, 12th, 13th, 16th,
and 17th categories of ground objects far exceeded values for the second-best model, which
were 6.43%, 6.93%, 11.04%, 4.29% and 14.70% higher, respectively.
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Table 7. Classification results for the Xiongan test set.

Class UNet DeepLab v3+ SegFormer Swin-UNet UNet-m SS3FCN ENLFCN SSDGL FSSANet CTAFNet

Acer negundo 68.54 52.18 14.18 63.24 72.43 85.71 88.25 20.27 49.43 89.29
Willow 85.62 77.04 56.18 70.77 85.10 91.62 98.05 43.78 72.67 97.74

Elm 79.88 57.30 0.00 62.33 59.82 82.54 86.08 16.71 45.42 92.53
Paddy 94.82 97.62 89.89 93.76 97.05 98.68 98.95 95.53 95.76 99.20

Sophora japonica 73.32 78.77 35.37 70.00 70.31 91.88 90.62 47.58 52.18 91.31
Fraxinus chinensis 80.43 77.90 34.64 49.20 77.37 91.14 93.15 41.71 74.34 85.19

Goldenrain tree 99.59 93.01 7.80 87.24 74.96 97.43 99.86 50.12 97.93 99.52
Waters 96.95 94.97 89.31 88.36 95.54 94.83 94.14 87.16 91.59 95.11

Bare ground 93.60 96.37 76.12 93.02 91.82 98.88 95.36 85.76 85.60 94.39
Stubble 87.53 98.01 82.62 95.13 97.72 99.56 98.17 88.09 97.36 99.96

Corn 58.02 56.89 21.06 34.57 56.34 65.95 77.61 8.97 61.65 80.21
Pyrus 76.00 80.09 58.47 61.74 68.51 86.90 86.94 48.97 65.91 93.86

Soybean 8.52 23.32 0.00 13.01 9.57 19.71 9.85 4.91 9.50 34.36
Poplar 74.69 71.24 28.68 59.29 69.95 72.20 70.30 28.48 48.72 78.53

Vegetable field 31.12 32.62 12.56 15.03 54.24 36.28 44.92 21.25 25.99 53.72
Grass 73.27 68.16 40.42 61.54 67.21 84.69 88.61 39.88 67.36 92.90
Peach 78.26 78.22 39.09 51.83 81.30 80.58 79.71 43.56 49.74 95.99

Building 83.70 83.49 76.26 60.84 88.33 88.25 90.83 67.33 64.61 89.38

pixel acc. 87.29 87.52 66.58 79.63 86.17 93.79 94.37 64.91 79.38 96.17
mIoU 74.66 73.18 42.37 62.83 73.20 81.49 82.86 46.67 64.21 86.84

4. Discussion
4.1. Ablation Study

In order to verify the effectiveness of the proposed adaptive hybrid strategy, we
conducted ablation experiments on CTAFK. Models with different hybrid strategies were
used as backbone networks in CTAFNet. The experimental results on three datasets are
shown in Table 8. Among them, CCTT means two layers of convolution and two layers of
Transformer encoder stacking. Add represents the direct element-wise addition of local and
global feature maps. Cat represents concatenate of local and global feature maps along the
spectral axis. Adapt means the adaptive hybrid strategy proposed in this paper. Comparing
the experimental results, it can be found that the pure CNN model has achieved much
better performance than the pure Transformer model, and a possible explanation is that
Transformer model requires more training data, and the data size of the current HSI open-
source dataset is not enough to train a pure Transformer model with good performance [33].
When using the CNN–Transformer hybrid architecture, selecting an unsuitable hybrid
strategy may cause performance degradation. For example, the hybrid model with the add
strategy performs worse than pure CNN model on the three datasets, the hybrid model
with the CCTT strategy performs poorly on the aerial dataset and DFC2018 dataset, and the
hybrid model with the cat strategy performs worse than pure CNN model on the DFC2018
dataset. The reason for this phenomenon might be that the attention mechanism has mixed
the intra-class and inter-class contexts when extracting the global information [58], and
the artificially specified hybrid strategies cannot distinguish between different contexts,
which leads to poor generalization ability of the model. By contrast, the proposed adaptive
hybrid strategy can enhance the useful context information by adjusting the weight, thus
extracting more generalized and discriminative features and overcoming the limitations of
artificially specified hybrid strategies. The model using adaptive hybrid strategy achieves
the best classification accuracy on three datasets, which proves the effectiveness of the
proposed adaptive hybrid strategy.

4.2. Parameter Sensitivity Analysis

CTAFNet contains two hyperparameters, i.e., the head numbers in MSA and the
number of channels. To understand the sensitivity of CTAFNet to the hyperparameters,
we tested the performance of different configurations in HSI classification. Table 9 shows
the impact of head numbers in MSA on CTAFNet performance. With the increase in head
numbers, the two performance indicators increase first and then decrease. This tendency is
consistent across datasets. Table 10 shows the impact of different channel numbers on the
performance of CTAFNet. The results show that, with the increase in channel numbers, the
performance of the model also increases first and then decreases. This is possibly because
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the complexity of model increases together with the head numbers in MSA and the number
of channels, and overfitting problem may occur when the model becomes too complex.
When the head numbers of MSA is set to 2, and the model channel number is set to 96,
CTAFNet performs best on the three datasets. Since the optimal hyperparameters are
constants and no additional parameter tuning is needed, and the proposed CTAFNet is
highly applicable in different scenes.

Table 8. Backbone network ablation experiment.

Conv Trans
Hybrid
Strategy

Aerial DFC2018 Xiongan

Pixel Acc. mIoU Pixel Acc. mIoU Pixel Acc. mIoU
√

None 94.90 76.54 92.31 81.40 87.86 76.66√
None 93.12 72.70 75.59 56.34 61.27 40.61√ √
CCTT 94.02 75.97 88.46 76.41 90.30 76.75√ √
Add 94.25 76.15 89.45 76.46 88.62 71.32√ √
Cat 94.69 77.79 91.12 80.62 92.36 79.05√ √

Adapt 95.07 81.41 92.74 83.18 96.17 86.84

Table 9. Influence of the number of heads in MSA on the performance of CTAFNet.

Number of Heads
Aerial DFC2018 Xiongan

Pixel Acc. mIoU Pixel Acc. mIoU Pixel Acc. mIoU

1 94.51 77.98 92.08 82.37 94.05 81.79
2 95.07 81.41 92.74 83.18 96.17 86.84
4 94.83 79.25 91.76 82.00 94.49 81.35
8 94.94 80.22 91.96 81.83 93.95 80.20

Table 10. Influence of number of channels on the performance of CTAFNet.

Number of Channels
Aerial DFC2018 Xiongan

Pixel Acc. mIoU Pixel Acc. mIoU Pixel Acc. mIoU

32 94.91 78.02 90.37 78.30 89.80 74.74
64 94.53 77.95 91.81 81.25 93.76 75.97
96 95.07 81.41 92.74 83.18 96.17 86.84
128 94.84 78.78 91.75 82.21 94.19 82.10

4.3. Generalization of CTAFNet on Small Dataset

In order to verify the generalization of CTAFNet on small datasets, this section com-
pares CTAFNet with nine methods on the widely used the Salinas dataset, and the results
are shown in Table 11. The results demonstrate that the proposed CTAFNet method
achieves the best performance, with 94.62% pixel accuracy and 95.70% mIoU, indicating
that CTAFNet generalizes well to small datasets. In addition, Deeplab v3+, which per-
formed well on the three large datasets, performed poorly on the Salinas dataset. It may be
because the Deeplab v3+ has a large number of parameters, and overfitting occurs when
there are fewer training samples.

4.4. Limitations and Future Works

Although the proposed CTAFNet outperforms the other models, there are still some
limitations to overcome in the future. For example, the boundary of ground objects gener-
ated by this method is not as clear as that generated by SS3FCN. This is possibly because
CTAFNet uses max pooling layer to reduce the calculation of the model, resulting in the loss
of boundary information. By comparison, SS3FCN does not involve any downsampling
operation, which helps preserve the shapes and boundaries. Current research in the field
of deep learning shows that introducing post-processing (such as conditional random
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fields [59]) or improving loss functions (such as using Hausdorff distance loss [60]) can
help solve this problem. It is of interest to further improve the CTAFNet through the
above-mentioned methods to better preserve the boundaries.

Table 11. Comparison of generalization performance on the Salinas dataset.

Class UNet DeepLab v3+ SegFormer Swin-UNet UNet-m SS3FCN ENLFCN SSDGL FSSANet CTAFNet

Broccoli green weeds 1 99.14 0.00 16.63 77.59 97.06 100.00 100.00 9.49 100.00 100.00
Broccoli green weeds 2 100.00 74.01 1.33 89.49 99.87 100.00 100.00 4.20 100.00 100.00

Fallow 95.41 11.29 39.90 82.89 100.00 85.28 85.04 17.39 83.23 100.00
Fallow rough plow 86.45 73.03 72.03 98.29 95.02 98.97 91.11 89.13 97.92 98.62

Fallow smooth 95.22 95.72 94.34 94.18 99.48 99.27 98.33 99.58 98.35 99.69
Stubble 100.00 67.84 64.73 94.63 99.56 99.85 100.00 94.87 96.76 100.00
Celery 99.71 99.86 7.71 97.29 100.00 99.28 100.00 23.18 97.57 100.00

Grapes untrained 38.36 37.28 40.66 61.13 65.59 72.46 75.94 18.15 66.20 75.06
Soil vineyard develop 98.82 83.38 83.81 99.88 95.67 99.71 99.88 97.85 97.76 99.51

Corn senesced green weeds 67.75 50.51 51.65 62.56 80.10 79.92 83.03 45.93 81.58 98.66
Lettuce romaine 4 wk 87.41 24.68 38.46 69.05 92.38 86.62 85.62 52.24 84.62 100.00
Lettuce romaine 5 wk 96.45 5.80 13.77 83.41 85.33 97.24 98.60 51.62 98.24 100.00
Lettuce romaine 6 wk 93.64 0.00 4.37 80.88 93.16 89.52 96.09 87.70 77.00 100.00
Lettuce romaine 7 wk 88.19 64.58 70.08 75.21 87.26 77.41 83.72 79.46 69.49 99.13
Vineyard untrained 56.43 0.00 31.97 64.59 67.97 66.49 67.11 17.89 54.25 60.48

Vineyard vertical trellis 18.59 0.00 0.00 82.10 0.00 91.86 88.28 0.00 78.49 100.00

pixel acc. 85.70 63.44 61.24 88.72 90.99 92.95 93.55 59.84 90.44 94.62
mIoU 82.60 43.00 39.47 82.07 84.90 90.24 90.80 49.29 86.34 95.70

Although the proposed CTAFNet achieves the best overall accuracy, the classification
results are relatively poor on the categories with a small number of samples (for example,
vegetation in the aerial dataset, crosswalks in the DFC2018 dataset, and Fraxinus chinensis
in the Xiongan dataset). A possible reason is that the objective of model training is to
optimize the overall accuracy, rather than the accuracy of a specific class. Therefore, the
trained model will bias towards the classes with large numbers of samples and away from
and the classes with small numbers of samples. Future works will be focused on addressing
the problem of sample imbalance through data enhancement and dynamic weighting in
loss function [61].

In this paper, we compared the HSI classification accuracy of nine state-of-the-art
models on three large-scale and challenging datasets to provide an insight into their
performance. In addition to these models, many deep learning-based HSI classification
methods have been developed in recent years [17–20,23–25,27,28,30,35–37]. It is of interest
to conduct a cross-comparison to guide users to select the most suitable methods in specific
applications and assist scholars in designing advanced models. Such a comparison requires
large number of datasets with challenging cases in HSI classification, e.g., images with fine-
grained object, sample imbalance, inter-class variation, and cloud contamination. However,
due to the high cost of HSI acquisition and labeling [62], the amount of samples in the used
datasets is still small as compared with the datasets in the field of computer vision [63,64].
A recent study has developed a high-quality HSI classification benchmark dataset [65],
which provides the starting point to construct a standard dataset. We plan to evaluate
more HSI classification models after this dataset is released for public use so as to further
understand the comprehensive performance differences between models.

5. Conclusions

In this article, a novel CTAFNet is proposed for HSI classification. We designed a
CTAF module to capture the local high-frequency features using a convolution module and
extracts the global and sequential low-frequency information using a Transformer module.
Afterwards, the local high-frequency and global low-frequency features are adaptively
weighted and fused to provide a more robust and discriminative representation of the HSI
data. An encoder–decoder structure was adopted in the CTAFNet to improve the flow of
fused local-global information between different stages, thus ensuring the generalization
ability of the model. Experimental results conducted on three large-scale challenging
HSI datasets demonstrate that the proposed network is superior to nine state-of-the-art
approaches. The developed adaptive feature fusion strategy can effectively overcome the
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limitations of the existing hybrid strategy and improve the accuracy of HSI classification.
Our research provides promising methods for HSI classification and keen insights into the
comprehensive performance differences between models.
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