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Abstract: Wood used in production processes can be infected by various fungi growing on its surface.
The presence of fungi on the wood surface results from the method of storage, handling and transport
of the wood. However, the presence of fungi on wood carries a high risk to the health of production
operators and users. At the same time, it has a negative impact on the quality and durability of
manufactured products. Because of the risks indicated, an attempt was made to develop an industrial,
automated system for detecting fungal infections. This paper presents a vision method for detecting
fungal infections on the wood surface. A description of the vision system using the laser triangulation
method (LTM) to build a three-dimensional surface image is shown. The paper consists of an
analysis of the imaging resolution and a description of the concept of using laser illuminator power
selection for identifying fungal-infested surfaces. Imaging results for the selected wavelength of
electromagnetic radiation are presented. Measurements and parameters describing the identified
areas are shown. It was found that it is possible to choose imaging method parameters and laser
illumination power allowing identification under industrial conditions of a fungus-infected region
on a wood surface while using the image to determine product measurement parameters.

Keywords: wood surface infections; fungal infections; 3D vision system; laser triangulation method;
image analysis; vision-based surface and contour measurement; industrial quality control

1. Introduction

The industry, which uses wood in various forms, relies on material supplied by
sawmills. One of the critical tasks associated with quality control of the provided material
is the control of defects present in the material. Defects come in many different forms.
One can distinguish between defects related to the machining, which include all kinds of
lack of dimensions required, i.e., faults in boards” width, length and thickness and defects
on milled or drilled surfaces. Natural defects can also be identified, such as the presence
of knots and internal cracks that disqualify the material. The types of defects and their
classification depend on the industry using wood as a material. This paper presents the
results of a study and a system developed for the wood pallet production industry. Material
defects are defined by the quality standards applicable to European Pallet Association
(EPAL) and Commonwealth Handling Equipment Pool (CHEP).

The rapid increase in production efficiency of process lines used in the woodworking
industry is also linked to the automation of the quality control process for materials and
manufactured products [1]. Statistical process control (SPC) is insufficient due to increasing
customer demands. In the age of automation and industry digitalization, quality control
of all products leaving the production line is required. The dynamic development of
cyber-physical systems makes it possible to realize continuous production control and
observation in production management systems of critical parameters describing the quality
of materials and products [2]. Currently, manufacturers of specialized machines are forced
to equip the machines with control systems that carry out selected inspection tasks directly
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at the production stations. For example, studies are carried out to optimize the cutting
of boards in sawmills, to control the surface of the wood in the furniture industry and
monitoring of the absence of structural defects in boards as a construction material [3-7].
In addition, quality control of the finished products just before shipment to the customer is
also realized to improve the companies’ financial performance [8].

Methods for quality control of wood materials have been developed for many years
to evaluate the internal parameters of wood and assess the dimensions and surfaces of
wood. Based on thermal radiation, imaging is used to determine wood damage by fungi
and insects [9,10]. Methods based on ultrasound detection allow the detection of internal
defects in the wood [11]. Similarly, internal defects can be detected using computed
tomography [12,13]. Wood defects visible on the surface are imaged using monochrome or
colour cameras that allow 2D image acquisition. This type of imaging is used to look for
knots, cracks or other surface defects [14].

The development of surface defect classification methods was based on edge analysis,
area segmentation techniques or parameters describing areas in the image [15]. However,
the high variability occurring on the wood surface in terms of changes in surface colour,
changes in defect shape and colour, and variability in the geometric structure of the
wood surface made the construction of a universal defect inspection system significantly
difficult [16,17].

With the development of information technology, imaging and various artificial intelli-
gence algorithms have been applied to wood surface analysis tasks [18,19]. These methods
have completely changed the approach to identifying wood defects. The possibility of
learning with different types of artificial intelligence algorithms from images of real defects
occurring on wood has given great flexibility in their identification on surfaces [20]. The
combination of classical methods of wood image analysis and methods using artificial
intelligence algorithms allows for the realization of a wide range of parameters describing
wood and product surface parameters used in the Smart Industry [13,21-24]. However, the
industrial application of artificial intelligence algorithms for high-resolution images may
prove difficult or impossible in many tasks due to the required time.

Three-dimensional imaging methods are also used in wood quality assessment tasks [25].
Within these methods, one can distinguish ways which require the product to stop during
image registration. Methods that enable the image registration of a product moving on the
processing line can also be identified. Depending on the imaging method, vision systems
will allow the registration of images with different resolutions [26]. The choice of method is
also influenced by the time taken to build a three-dimensional image which, for industrial
applications, is one of the critical parameters determining the choice of vision system type.
Analysis of 3D images allows the assessment of surface defects and knots localization on the
surface of boards regardless of the variation in the color of the observed surface [27]. It also
allows the assessment of the geometric structure of the board and tree bark [28]. 3D imaging
enables the measurement of a much larger number of parameters in terms of spatial and
surface dimensions realized in terms of quality control of the materials used in production.

Industry standards define the quality of wood used in manufacturing wood products.
For the production of wood pallets according to EPAL and CHEP standards [29,30], the
presence of fungal infections is considered a defect in the material, defined as ‘rot’. Our
research and analysis of the literature in this area indicate that blue-green fungi are most
commonly found on the surface of the wood [31]. Depending on the season, up to a dozen
blue stain fungi were identified. For example, one of these is Ceratocystis pinicola, which is
visible as characteristic, with extensive blue-black discoloration often reaching up to several
centimeters deep into the wood. Examples of identified infected surfaces on material
supplied from sawmills are summarized in Figure 1.
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Figure 1. Examples of fungal infections: the fungus Ceratocystis pinicola visible on the surface of
boards delivered from the sawmill.

The research described in this paper aimed to develop a system to identify fungal
infections on a wood surface. In addition, it was assumed that the system would work
under industrial conditions allowing the inspection of all boards entering the production
line. The identification and rejection of infected boards are intended to improve the quality
of the final product. It is also designed to eliminate the cost of repairing a finished product
for which infected material has been used. Due to the production cycle, imaging of the
plank surface should not be longer than 1 s, and the analysis and identification of infected
planks should also be carried out in less than 0.5 s. In addition, it was assumed that it should
be possible to determine the dimensions of the boards on the image during the inspection.

Achieving such an objective required the development of an imaging method that
enables the entire task of inspecting the surface quality of planks to be carried out in
flow-through mode. This means that the object being inspected, a plank, is not stopped
in the production line. The planks are moved on a conveyor belt, and an image of the
surface is captured during their movement. The image is then analyzed, after which a
surface evaluation result is issued. This result is used by the sorting system, allowing
defective boards to be removed from the process. This research was carried out as part
of a project to improve manufacturing quality by eliminating defective materials, such as
fungus-infected boards.

2. Methods of Surface Imaging

This paper presents the subject of the identification of defects associated with the
presence of various surface infections observed as fungi. For this, a 3D image was made
using the LTM with control of the laser illuminator power. As part of the preparatory work,
tests were carried out on material in the form of boards supplied by sawmills. Some of
the boards delivered from sawmills were found to be infected with various fungal species.
Fungal infections on the surface of boards originate and develop both at the stage of wood
storage in the forest and processing in sawmills. Defects may also develop during the
transport of boards from the sawmill to the factory. Studies to identify the type of fungi
that develop most frequently on the surface of boards have found the presence of blue-rot
fungi, rot fungi and mold fungi [31-33].

Both 2D and 3D imaging methods were considered in the process of selecting the
imaging method. Due to the need to image different species of wood (pine and spruce) and
the need to image a product in motion, moved-on conveyors, an imaging method based on
the use of LTM and the construction of a 3D image of the product was selected.
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Recording an image using the LTM involves determining the height profiles of the
object and combining these profiles in a 3D image. Imaging is carried out using a RangerE
area scan camera and laser line illuminator (Figure 2a). The camera is positioned at an
angle to the laser beam. It captures an image of the laser line visible on the surface
of the object (Figure 2a,b). A height profile is then determined based on the geometric
relationships resulting from the camera’s geometry and laser setup. Based on the analysis of
the beam image and knowledge of the camera’s parameters and laser alignment geometry
concerning the object, the height profile in a cross-section perpendicular to the surface is
determined (Figure 2c).

Three-dimensional
surface image

Profile of board height
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Vision system R S a—

geometry

a b

Figure 2. 3D surface image acquisition: (a) vision station model, (b) vision system geometry configu-
ration, (c) height profile and the 3D surface of the board.

By determining a set of height profiles for successive positions of the object moved
with respect to the laser-camera system along the Y-axis, a description of the surface of the
object under study is realized (Figure 2a). A three-dimensional image of the object surface
is built by accumulating profiles in a matrix in its successive rows.

The number of measurement points forming a single height profile corresponds to
the number of columns on the sensor. The number of profiles determined for an object
corresponds to the number of rows in the matrix.

For 3D vision systems using the LTM, the coordinate system is adopted in such a way
that the X-axis is parallel to the laser plane. The Y axis is adopted according to the object’s
direction of movement during the determination of successive height profiles.

The resolution of a 3D vision system is the minimal visible change in the measurement
that can be recorded in a 3D image. For imaging with 3D vision systems, the resolution is
determined in the direction of the three axes of the coordinate system associated with the
measurement and control station. The following designations are used in this paper:

AX—resolution in the X-axis direction, i.e., along the laser line,

AY—resolution towards the Y axis, i.e., the axis perpendicular to the laser line and, at
the same time, the direction of movement of the object under examination,

AZ—resolution in the Z-axis direction of the vision system coordinate system.

When calculating the imaging resolution in the configuration shown in Figure 2b, an
approximation is used in which we assume that the angle « is equal to the angle «1. In
reality, the angle a1 = a — 7. 3D vision systems use resolutions of AX = 0.1 mm or greater.
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Consequently, this simplification does not significantly affect the value of the determined
resolution. The imaging resolution in the Z-axis is determined from the relationship:

AZ = AX 1)
sin
a—the angle between the optical axis of the camera and the optical axis of the laser.
The 3D imaging resolution of the plank surface was calculated considering the di-
mensions of the board subjected to surface inspection (Figure 3). These dimensions were
assumed to be 1200 x 145 x 22. The imaging field of view (FOV) was selected to be larger
than the test object for such a defined test object.

Y
Y /4 /4 Y A

Figure 3. 3D imaging resolution described on the object.

Resolution calculations for each X, Y and Z axis of the measurement system were made
for the 1536 x 512 sensor from the RangerE camera. The 3D image contains 1000 profiles
in the Y direction. The following parameters were assumed for the calculations:

o =30° to 70°,

FOV =160 mm X-axis imaging field expressed in mm (boards = 140-160 mm),

RM = 1400 pixel X-axis imaging field expressed in pixels (usable resolution of the sensor).

AX = 160 mm/1400 pix = 0.11 [mm/pixel] (2)
AY = 1200 mm/1000 profile = 1.2 [mm/profile] (3)
AZ = 0.11 [mm/pix]/sin (45°) = 0.15 [mm/pixel] 4)

The geometry of the vision system and the choice of camera mounting angle and la-
serial illumination were selected based on an analysis of the possible installation conditions
of the triangulation measurement system on the production line. It was assumed that the
angle « could be set between 30° to 70° (Figure 4). For such a selected range, the character-
istics of the variation of resolution in the Z-axis as a function of « angle were determined.

AZ [mm]

—AZ [FOV=140]
—AZ [FOV=150]

—AZ [FOV=160]

o]

30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Figure 4. 3D imaging resolution in Z-axes as a function of « angle.
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For an angle of 30°, the imaging resolution for a FOV = 160 mm is 0.25 mm/pixel, and
for an angle of 70°, it reaches 0.1 mm/pixel. Imaging with this resolution allows from 16 to
100 measurement points to be captured over an area of 1 mm?. For the task of detecting
infection, this resolution is surplus to requirements. Infected regions have significantly
larger surface areas. The use of resolution at the designated level allows the additional task
of assessing the quality of the geometric structure parameters of the board surface and its
dimensions. The focus of this paper is on the selection of image acquisition parameters that
enable the effective identification of infected areas. As a result of the analysis carried out on
the imaging resolution, a resolution of 0.25 mm in the X and Y axes was used as a sufficient
parameter. This means using 16 measurement points to describe an area of 1 mm?. The
reduction in the number of points describing the surface was also intended to reduce the
analysis time of the entire image of the board surface. The reduction in time was required
due to the need to inspect successive boards fed into the production line.

Preliminary imaging was carried out using the comparison method. Two board
surfaces were imaged simultaneously, a board without infection and a board infected with
blue stain fungi (Figure 5). A 658 nm laser with a power of 20 mW was used in the study.

Figure 5. Illumination of the surface of a healthy board and a board infected with blue-veined fungi
using a 658 nm laser and a power of P = 20 mW.

Imaging with an assumed resolution of 0.25 mm in the X and Y axes and using a
20-mW laser allowed the construction of images of both surfaces (Figure 6), even though
one of them is significantly infected. The 3D image of the surface was constructed at a
frequency of 500 profiles per second. Using a laser of sufficiently high power (e.g., 20 mW),
allows the acquisition of a three-dimensional image of the surface regardless of the presence
of infection. The laser beam is visible on the boards. Dispersion and absorption on infected
surfaces do not cause differences in imaging of infected and non-infected areas. This
imaging strategy can be used to measure board dimensions without infection detection. In
order to detect infected areas, the laser power should be reduced so that infected surfaces
change the visibility of the laser beam due to scattering and absorption. In contrast, surfaces
without an infection should still be imaged correctly.
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Figure 6. Three-dimensional image of the surface of both boards recorded at 20 mW laser power. No
occlusion on the infected area can be seen due to excessive illuminator power.

Figure 6 is not intended to indicate which board is infected. Its purpose is to indicate
that with too much laser power we are not able to distinguish which board is infected and
which is not. In order to distinguish between infected and non-infected boards, research
must be carried out and the laser correct power has to be selected according to the method
presented in this paper.

Tests carried out during the image acquisition parameter selection phase indicated
large differences in the reflection of the laser beam in infected and non-infected areas. The
image of the laser beam recorded on the vision system sensor depends on the laser beam’s
interaction with the material’s surface to be illuminated.

The observed differences are, therefore, due to the change in absorption and scattering
of the laser beam projected onto the infected surface relative to the normal wood surface.
The image of the laser line visible on the normal surface is continuous and clearly visible. In
contrast, the laser line image observed in infected areas is characterized by a much smaller
width and lower intensity (Figure 7).

Figure 7. Laser line scattering on the surface of the board with healthy and infected regions.

It was decided to use this observation to differentiate between the right and infected
areas on the 3D image. In the next stage of the study, imaging was performed using reduced
laser power. This study aimed to determine the minimum laser power sufficient to image
infection-free surfaces correctly. For a power of 7 mW, an image was obtained in which
an infection-free area was correctly registered on both boards (Figure 8). On the surface of
the board where the infection is present, the laser beam at 7 mW was absorbed in the areas
covered by the infection, and a full height profile could not be determined. At this power,
the infected areas are not imaged. Only the area of the board that is not infected is visible
on the 3D image. The entire area is correctly imaged for the non-infected board visible in
the lower part of the figure.
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Figure 8. Three-dimensional image of a surface acquired using 7 mW power.

The fungi on the wood surface significantly limit the possibility of observing the
low-power laser beam. The 2D image of the laser beam projected onto the infected surface
is not visible on the camera sensor. The reason for this is the absorption and scattering of a
laser line on the surface.

In order to assess the differences in imaging of healthy and infected surfaces, a series
of comparative studies were performed using laser powers from 1 mW to 20 mW. Selected
images are presented in Figure 9.

Figure 9. Image of a non-infected region area on the board surface recorded with a laser operating at
a power range of 4 to 8 mW.

Only the wood surface without fungal infection is observed in the images shown
above. Too low power does not allow correct imaging of surfaces without infection. Too
high of power, however, enables imaging of the infected surfaces. It is, therefore, necessary
to determine the laser power at which normal surfaces are imaged correctly while infected
surfaces are invisible.
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The infected area was identified by measuring the obtained area on the three-dimensional
image (Figure 10). On both surfaces, i.e., the board without infection and the board with
visible infection, two measuring fields of the same dimensions were defined. On the sur-
face without infection, measurement field P1 was defined, and on the surface containing
infection, measurement field P2 was defined.

Figure 10. Definition of the measurement area P1 and P2 in the uninfected and infected area.

The measuring fields in both cases include the 270,000 measuring points that make
up the surface. If both measuring fields were set up on the non-infected wood surface, the
measurement result should be the same and indicate a value of 270,000 points. However,
as the laser power is reduced and the laser beam is scattered on the infected surface, the
number of points classified as valid surfaces in the P2 area will be lower. Points describing
a non-infected region are marked in green in the P2 field. A decrease in the area score is an
indicator of the presence of infection on the imaged surface.

For an assumed laser power range of 1 mW to 20 mW, 20 images were recorded. The
number of points describing the uninfected area was then determined for each image.
These tests were then repeated for several dozen boards in order to verify and compare the
results obtained.

Single profiles can also be used to assess the presence of infection. In this case, the
construction of a complete image of the surface is dispensed. Only the profile to be analyzed
is recorded. The intervals between recorded profiles must be chosen to the linear speed
of the transported plates. Figure 11a shows an image of an entire infected board taken
at a power of 7 mW. Only one example profile is indicated in this image, which was
analyzed. An image of the profile and its immediate vicinity for different powers is shown
in Figure 11b. In contrast, the shape of the profile as a function of laser beam power is
presented in Figure 11c.

For each profile, the continuity of the profile shape or a measurement of its length
should be carried out to assess the presence of an infected area. The continuity of the
profile can be investigated by determining the number of edges (gaps) present in its extent.
Alternatively, the length of the profile can also be measured. Both indicators make it
possible to determine the presence of infected areas (Figure 11c).

Analysis of the shape of the profiles and their continuity enables the presence of
infected surfaces to be assessed very quickly. Analysis time can be reduced to as little as
1 ms. However, we are not considering the entire image, only selected profiles spaced, for
example, every 100 mm on the board. Therefore, we do not have complete information
about the board’s surface. In applications requiring accurate, i.e., 100% surface analysis, a
whole surface image should be built and analyzed.
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Figure 11. Analysis of the selected height profile on the board surface: (a) 3D image with the selected
profile for surface inspection, (b) image fragment with selected profile recorded at different laser
powers, (c) profile shape for power from 3 to 20 mW.

3. Results

The results of area measurements for infected and non-infected areas are presented in
Figure 12. The curves in the graph show the result of the area measurement as a function of
the laser power used to build the 3D image.

Area [points]

250,000

200,000 [t e - -
——P1 - area (without infection)
150,000 ———P2 - area (without infection)

= = =|maging range
100,000

50,000
Laser power [mW]

0

1 2 _"> L; 5 é 7 é ; 10 1‘1 12 1‘3 1‘4 15 1‘6 17 1‘8 1‘9
Figure 12. Measurement of surface area as a function of the laser power used to build a 3D image of
the surface.

The characterization analysis shows that, with laser power in the range of 1 to 5 mW,
the surface area measured in the measurement field P1 defined on the infected surface is
not constant. Using such a low laser power also results in a scattering of the laser beam
on the non-infected surface that is so strong that it is impossible to determine the height
profile points correctly and to build the 3D image correctly. The surface measurement in
the P1 field stabilizes at a power of 6 mW, close to the maximum value resulting from the
measurement field dimension.

A second range is visible at a power of 6 to 9 mW. The measurement value in the P1
area maintains a maximum over the entire analyzed range. This means that the power
range from 6 to 9 mW ensures image construction and correct classification of all points
belonging to the uninfected area. This is the reference value for the measurement using
the measurement field P2 defined on the infected area. The largest difference between
the measurement value of the non-infected area defined in the P2 field and the maximum
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possible value is visible in this range. Once you are sure that the laser power correctly
identifies the points belonging to the non-infected area, the measurement in the P2 field
indicates how many points in this field are also classified as non-infected. The difference
between the measurement in field P1 and the value measured in field P2 defines the infected
area expressed in the number of infected points.

Images recorded at laser powers of 9 to 20 mW show a reduction in the difference
between the measured value in the infected and non-infected regions. Part of the infected
area is assigned as a non-infected area.

The laser power of 20 mW is already high enough that, despite partial scattering and
partial absorption of the beam on the infected surface, it is possible to reproduce all height
profiles. It is then possible to build up a three-dimensional image of the board surface even
in intense fungal infections (Figure 13).

Figure 13. View of the infected area in a 3D image captured with a laser operating power at 7 mW.

4. Discussion

Both measurement methods—i.e., measurement of the infected area and profile
analysis—use the phenomenon of scattering and absorption of the laser beam in the
infected areas. Measuring the surface area with a resolution of 0.25 mm in the X and Y
axes guarantees the verification of 16 measurement points in an area of 1 mm?. It ensures
an accurate check of the entire board surface. The use of profile analysis does not allow
a detailed assessment of the presence of infection. However, it can only be used as an
indicator in applications where it is impossible to build up a complete surface image of the
board due to the technological line’s design.

The best results for detecting an infected surface were obtained at a power of 6-7 mW.
Imaging can also be performed with laser power specified in the range of 8 to 9 mW.
However, the differences in area measurement in the infected area and in the area without
infection will be smaller. These differences will only be visible on heavily infected surfaces.
Slightly infected areas will be counted as non-infected ones.

During the tests, it was observed that the choice of laser power depends on the
moisture content of the controlled boards. An additional 20-30% increase in humidity
enhances the scattering and absorption of the laser beam, even on non-infected surfaces.
The laser power selected when imaging was realized in such cases increased by about 2 mW.
Depending on the chosen laser power, the recording time for a single height profile and the
operating frequency of the vision system must also be selected. Tests were performed with
frequencies ranging from 100-500 profiles per second.

The research used a laser emitting electromagnetic radiation with a laser wavelength
of 658 nm. The question arises whether the use of a laser emitting other wavelengths
would have altered the scattering and absorption effect of the laser beam on the infected
surfaces used. And if so, would an enhancement of this effect or weakening it be achieved?
However, the choice of a different type of laser and the selection of its power should be
confronted with the safety regulations applicable to production lines. These could be the
subjects of further research carried out on this topic.

Most solutions presented in the literature are based on advanced conventional al-
gorithms or algorithms based on artificial intelligence. However, this requires advanced
parameterization of the vision system or a significant increase in the computing power used
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for such tasks. Making changes to the operation of such algorithms involves modifying
them or repeating the network learning procedure [4,18-20].

Image acquisition is carried out while the board is being transported on a conveyor. It,
therefore, does not require stopping the product for imaging. The image analysis carried
out is based on a fast algorithm for surface area measurement. The time required for
image analysis and display of the analysis result for the board sorting system is no more
than 10 ms.

In addition, the use of laser power control makes it possible to amplify the difference
between infected and non-infected surfaces already at the image acquisition stage. Opera-
tors can quickly calibrate and tune the laser power for a new batch of products. A change
in wood species or a change in wood moisture content allows efficient management of the
product inspection system.

The image construction using LTM enables the differences between the infected area
and the area without infection to be effectively indicated. In addition, these differences
are amplified already at the image acquisition stage. The evaluation of the board area can
be further shortened by considering only a selected height profile for analysis. The tests
and construction of the prototype vision system confirmed the feasibility of realizing the
identification of infected areas with a short analysis time of 10 ms for the area measurement
method and 1 ms for the profile method.
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