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Abstract: Unsupervised domain adaptation involves knowledge transfer from a labeled source to
unlabeled target domains to assist target learning tasks. A critical aspect of unsupervised domain
adaptation is the learning of more transferable and distinct feature representations from different
domains. Although previous investigations, using, for example, CNN-based and auto-encoder-based
methods, have produced remarkable results in domain adaptation, there are still two main problems
that occur with these methods. The first is a training problem for deep neural networks; some
optimization methods are ineffective when applied to unsupervised deep networks for domain
adaptation tasks. The second problem that arises is that redundancy of image data results in
performance degradation in feature learning for domain adaptation. To address these problems, in this
paper, we propose an unsupervised domain adaptation method with a stacked convolutional sparse
autoencoder, which is based on performing layer projection from the original data to obtain higher-
level representations for unsupervised domain adaptation. More specifically, in a convolutional
neural network, lower layers generate more discriminative features whose kernels are learned via a
sparse autoencoder. A reconstruction independent component analysis optimization algorithm was
introduced to perform individual component analysis on the input data. Experiments undertaken
demonstrated superior classification performance of up to 89.3% in terms of accuracy compared to
several state-of-the-art domain adaptation methods, such as SSRLDA and TLMRA.

Keywords: domain adaptation; convolutional autoencoder; sparse autoencoder

1. Introduction

An assumption of traditional machine learning classification methods is that training
and test data have independent and identical distributions [1]. Because different domains
are usually different but related in real-world scenarios, most existing traditional machine
learning methods are not guaranteed to be effective due to the ubiquitous large discrepancy
between different domains [2,3]. To address this problem, in recent decades, domain adap-
tation methods have attracted a great deal of attention and stimulated research studies [4–7],
which have primarily focused on the transfer of knowledge between different domains.
Because the target domain is usually unknown, unsupervised domain adaptation aims to
promote learning tasks in target domains based on knowledge in source domains, which
has far-ranging consequences for practical applications, such as speech emotion recognition
[8], medical image classification [9], and semantic image segmentation [9].

Among domain adaptation methods, including instance-transfer, parameter-transfer,
feature-representation-transfer and relational-knowledge-transfer methods [10], methods
based on feature representation learning can be applied to a broader set of scenarios due
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to loose restrictions on source data [11]. The key issue for feature-representation-transfer
methods is how to learn more discriminative and transferable feature representations to
minimize deviations between different domains [12].

In recent decades, remarkable progress has been made in the use of feature learning
methods based on shallow structure and deep neural networks which have learned how to
transfer representations across domains and have performed well in unsupervised domain
adaptation. Typical shallow learning methods, such as transfer component analysis [13],
aim to reduce domain divergence in new feature space using a kernel function. In com-
parison to shallow structure methods, deep neural networks have been shown to be more
effective by separating the explanatory factors behind different domains [14,15]. Recently,
mainstream deep neural networks, such as the convolutional neural network (CNN) [16],
the recurrent neural network (RNN) [17], the generative adversarial network (GAN) [18],
and Autoencoder [19], have been used to learn more discriminative representations for
unsupervised domain adaptation and have performed well in reducing domain divergence.

Among unsupervised domain adaptation methods that are based on deep neural
networks, the autoencoder-based method has achieved superior performance with respect
to the no label requirement and fast convergence speed. For example, the stacked denoising
autoencoder (SDA) method [20] aims to learn higher-level representations from all available
domains to train a classifier that performs classification on new-featured spaces. Similarly,
to address the issue of high computational cost in SDA, a marginalized stacked denoising
autoencoder method [19] has been proposed based on matrix computation, which is as
effective as SDA in representation learning for domain adaptation and has been shown to
be more efficient. In light of the development of these methods, Wei et al. proposed an
unsupervised domain adaptation method based on non-linear representation learning [21],
which introduced non-linear coding by kernelization into SDA to enable the extraction of
deep features.

While it is possible to explore different domains and learn transferable and discrimi-
native representations using unsupervised domain adaptation methods based on autoen-
coders, most current approaches depend on use of the classical structure of autoencoders
or integration of regularization terms into the objective function [22–24]. For improved
understanding of feature representation learning, here, a method is proposed to achieve
representation learning based on a stacked convolutional sparse autoencoder for unsuper-
vised domain adaptation, which can capture more transferable and distinguishable features
by layer mapping of the raw data and unsupervised domain adaptation. Firstly, we utilize
the reconstruction independent component analysis (RICA) algorithm [4] with whitening to
pre-process the original data in both source and target domains, where “whitening” refers
to a transformation of the original data x to xwhitened, and the covariance matrix of xwhitened
is the identity matrix. A stacked sparse autoencoder is then introduced to extract features
to alleviate domain discrepancy. Secondly, based on the new feature space learned by the
first component, convolution and pooling are applied to maintain local relevance. Finally,
we stack two convolutional sparse autoencoders to achieve more abstract and transferable
representation learning. Compared to other state-of-the-art methods, experimental results
obtained confirm the effectiveness of our proposed framework for unsupervised domain
adaptation.

In summary, this paper makes the following main contributions:

• We explicitly propose a new framework of unsupervised domain adaptation based on
a stacked convolutional sparse autoencoder (short for SCSA). There is an obvious dis-
tinction between this method and the original method [2,14], which relies on applying
the classical structure of the autoencoder to learn representations or integratation of
the regularization term into the objective function.

• Our proposed SCSA has two main components in each layer. In the first component, a
stacked sparse autoencoder with RICA is introduced for recognition feature learning
to reduce the divergence between the source and target domains. In the second
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component, the convolution and pool layer is utilized to preserve the local relevance
of features to achieve enhanced performance.

The remainder of the paper is organized as follows: In Section 2, related work is
described. In Section 3, the SCSA proposal is described in detail. Several real-world datasets
are presented and the experimental results are analyzed in Section 4. The conclusions are
presented in Section 5.

It is worth explaining that we first introduced the unsupervised domain adaptation
method in our conference paper [25], titled “Domain Adaptation with Stacked Convolu-
tional Sparse Autoencoder”, published in the proceedings of the Twenty-Eighth Interna-
tional Conference on Neural Information Processing (ICONIP), Indonesia, 8–12 December
2021. In our conference paper, we focus on a domain adaptation method with an au-
toencoder (SCSA). Here, we propose an unsupervised domain adaptation framework.
Compared with our previous version, we add the following: (1) further discussion and
analysis regarding validation of the proposed method; (2) more detailed description of
the proposed method; (3) a more comprehensive survey of related studies; and (4) further
experimental analysis of the SCSA and the baselines.

2. Background Studies

Due to strong feature representation learning ability, deep neural networks have
attracted considerable attention regarding domain adaptation. For example, Ganin et al.
proposed an unsupervised domain adaptation method with deep architectures [26], which
trained a model with standard back-propagation on large-scale labeled source data and
unlabeled target data. Similarly, Sener et al. proposed a fine-tuned deep neural network
to minimize the discrepancy between different domains [27]. An end-to-end model was
designed to jointly optimize learned features, to cross-domain transform, and target label
prediction. Existing deep domain adaptation methods can be broadly categorized into
three classes: discrepancy-based, adversarial-based and PLM-based methods [28].

Discrepancy-based methods aim to embed data from source and target domains into
a kernel space to alleviate domain discrepancy. For example, Zhang et al. proposed a
deep neural network based on the maximum mean discrepancy (MMD) [29], which was
able to learn a common subspace to simultaneously align both marginal and conditional
distributions. Long et al. proposed a residual transfer network [30], which not only aligned
the feature distributions between different domains, but also transferred the classifier with
a residual function. As well as these deep methods, which mainly focus on cross-feature
learning, many methods have been proposed to transfer the classifier across different
domains. For example, Pinheiro proposed training the classifier with similarity learning
[31]; application of this method demonstrated that feature representation learning together
with similarity learning can improve domain adaptation.

Inspired by the generative adversarial net (GAN) approach, adversarial-based domain
adaptation methods aim to minimize deviations across domains using an adversarial ob-
jective. For example, Long et al. designed a conditional domain adversarial network [32],
which conditions adversarial adaptation models based on the discriminative information
conveyed in the classifier predictions. Kang et al. proposed a contrastive adaptation net-
work for minimizing intra- and inter-class deviations [7], which included an end-to-end
update strategy for model optimization. Pei et al. proposed a multi-adversarial domain
adaptation method [33]. In this method, multiple class-wise domain discriminators are con-
structed to reduce the shift of joint distributions between different domains and to achieve
fine-grained alignment of different class distributions. In this way, each discriminator only
matches samples of source and target data belonging to the same class.

Recently, pre-trained language models (PLMs) have received much attention and
achieved remarkable improvements in a series of tasks. As PLMs can learn syntactic,
semantic and structural information, there has been some effort to apply PLMs to domain
adaptation. For example, Zhang et al. proposed a domain adaptation neural network based
on BERT for multi-modal fake-news detection [34]. The pre-trained BERT and VGG-19
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model were first introduced to learn text and image features, respectively. Then the multi-
modal features were mapped onto the same space by domain adaptation. Finally, a detector
was used to distinguish fake news. Guo et al. proposed the creation of input disturbance
vectors using soft prompt tuning to optimize domain similarity [35], introducing targeted
regularization to minimize domain discrepancy.

Although the deep learning methods described have achieved fairly good results in
domain adaptation, the deep neural network training problem remains. Some efficient
models, such as graph regularization and sparse constraint, cannot be applied directly in
supervised convolutional networks. Moreover, although some optimization methods have
been proposed, they have not been shown to be effective in unsupervised deep networks
for domain adaptation tasks.

3. Related Work

The goal of domain adaptation is to reduce the discrepancy between different domains
and to bridge the chasm among them. Amongst unsupervised domain adaptation methods,
methods based on feature learning have been widely applied in multiple disciplines a a
result of looser limitations on the data in the source domain. According to the technology
used, existing feature-learning-based methods for domain adaptation can be broadly
divided into two categories: shallow-learning and deep-learning methods.

3.1. Shallow Learning Methods

Among unsupervised domain adaptation methods based on shallow structure, the
transfer component analysis (TCA) model [13] is a typical model that attempts to minimize
the distance between source and target domains in a new feature space using the maximum
mean discrepancy (MMD). Chen et al. proposed an unsupervised domain adaptation
method based on an extreme learning machine network to retain the space information
of the target domain [36], which seeks to transfer the source domain for better matching
of the data distribution in the target domain by reducing the MMD distance. He et al.
proposed an unsupervised domain adaptation model for multi-view data [37]; the features
extracted from one view of the data are considered privileged information from another
view. Chen et al. proposed combination of domain-adversarial learning and self-training
with the intention of combining the strengths of both methods [38]. The pseudo-label
prediction and the confusion matrix were learned using self-training and using an adver-
sarial approach, respectively. Wang et al. proposed a symmetric and positive-definite
matrix network for domain adaptation (daSPDnet) [39]. Inspired by Riemannian manifold
methods, daSPDnet aims to enable EEG emotion recognition by overcoming the variability
in the physiological responses of subjects.

Some effort has already been invested in applying unsupervised transfer methods
to heterogeneous domains. For example, Liu et al. proposed a heterogeneous unsuper-
vised domain adaptation model [40], which introduced an n-dimensional metric of fuzzy
geometry to compute the similarity between different vectors. Based on the results, the
fuzzy equivalence relations were explored and the cross-domain clustering categories were
captured. Yan et al. proposed an optimal matrix transport method for heterogeneous
domain adaptation [41], which introduced the entropic Gromov–Wasserstein discrepancy
for learning an optimal transport matrix. Luo et al. proposed a distance metric learning
method for heterogeneous domain adaptation [42]. This method used existing models to
learn the knowledge fragments in the source domain, which can reduce domain divergence.

However, unsupervised domain adaptation methods based on shallow structure have
two main drawbacks. The first is utilization of labeled data information, since a small
amount of labeled data can significantly improve domain adaptation performance. The
second drawback is the capacity for feature learning. How to learn more transferable
representations to alleviate domain discrepancy represents a major challenge.
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3.2. Autoencoder-Based Methods

Among deep neural networks, autoencoder-based unsupervised domain adaptation
methods have performed well with respect to the no label requirement and fast convergence
speed. For example, Glorot et al. proposed a stacked denoising autoencoder (SDA) for
domain adaptation [43]. A marginalized denoising autoencoder (mSDA) method was
proposed for speeding up SDA by two orders of magnitude [19]. Wei et al. introduced
non-linear coding by kernelization into the mSDA for domain adaptation [21]. Zhuang et al.
proposed an unsupervised domain adaptation framework with deep autoencoders [22]. In
this method, the mSDA is utilized to pre-train the whole framework and two encoding and
decoding layers are incorporated to learn more transferable representations between the
source and target domains. Zhu et al. proposed integration of the manifold regularization
term in the objective function [2], involving stacking of two layers of autoencoders to learn
more abstract representations for unsupervised domain adaptation. Yang et al. proposed
a semi-supervised method using dual autoencoders [1], which extracted more powerful
features using two different autoencoders based on mSDA for unsupervised domain
adaptation. Nikisins et al. proposed a face presentation attack detection model using
an autoencoder and a multi-layer perceptron [44], which transferred the knowledge of
facial appearance between different domains. This domain adaptation method reduced
the requirements for large-scale labeled data, which avoided labor-intensive work and
reduced costs when training face recognition systems. Zhu et al. proposed a deep sparse
autoencoder for an imbalanced domain adaptation problem [45], which could adjust the
model automatically according to the degree of imbalance to bridge the gap between
domains. In this method, a self-adaptive imbalanced cross-entropy loss function is used
to highlight minority categories and automatically compensate for training loss bias. In
contrast to autoencoder-based methods that rely on application of the classical structure
of an autoencoder to learn representations or integrate the regularization term into the
objective function, our method introduces convolution and pooling kernels to use local
relevance to learn abstract representations for domain adaptation.

4. Our Proposed Method
4.1. Motivation

For domain adaptation, methods based on feature representation learning can be
applied to a broader set of scenarios because of the loose restrictions on the source data.
Furthermore, among representation-learning-based domain adaptation methods, some
typical supervised and unsupervised deep learning models, such as convolutional neural
networks and the autoencoder, have achieved fairly good performance. However, there are
two main problems that have prevented the further development of these methods. The
first is the training problem associated with deep neural networks. Some efficient models,
such as graph regularization and sparse constraint, cannot be applied directly in supervised
convolutional networks. In addition, although some optimization methods have been
proposed [46–48], they have not been demonstrated to be effective in unsupervised deep
networks for domain adaptation tasks. The second problem is data redundancy of image
data. As the adjacent pixels of an image inside a local area are highly correlated, high-
dimensional features of image data are inevitably affected by performance degradation in
representation learning. For example, in a local receptive field neural network, the local
relationship of replication features leads to a non-uniform distribution of edge detectors.
To address these two problems, we propose a stacked convolutional sparse autoencoder
method for unsupervised domain adaptation. In contrast to previous autoencoder-based
methods that rely on the classical structure or the integration of regularization terms into
the objective function, path-wise training is used to optimize the model of the sparse
autoencoder and then the convolutional kernels are used to reserve the local relevance for
learning abstract representations. Furthermore, the reconstruction independent component
analysis (RICA) algorithm with whitening is introduced to pre-process the original data
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in both the source and target domains to remove correlations inside the local area for
representation learning.

In Figure 1, a stacked convolutional sparse autoencoder is illustrated as the proposed
unsupervised domain adaptation method. The SCSA consists of several levels: for example,
there are two layers in Figure 1; layer 2 is a repeat of layer 1 for more abstract feature
learning; each layer is composed of two components. Firstly, the input data information
is sphered according to the RICA with whitening. The overall goal of this part is to
perform a separate part analysis of the imported data. Then, the transferable features are
learned by training on patches with a sparse autoencoder. Secondly, the CNN feature maps
are generated with the help of practical convolution operations and pooling in different
domains. According to the projection layer, a classifier is built from the final features by
transforming and reshaping them in the overall target domain.

Figure 1. Illustration of our proposed SCSA. Each layer is composed of two main components: a
stacked sparse autoencoder and the convolution and pooling kernels. The whitening layer is first
introduced for recognition feature learning.

4.2. Stacked Sparse Autoencoder

The first component is composed of a sparse autoencoder with a whitening layer
that learns the latent feature representations from the data in the source domain. As the
target domain is unlabeled in unsupervised domain adaptation, the source domain Ds

with labeled data and target domain Dt with unlabeled data is Ds = {x(s)i , y(s)i }|
ns
i=1 with

x(s)i ∈ Rm×1 and Dt = {x(t)i }|
nt
i=1, where x(s)i ∈ Rm×1 and x(t)i ∈ Rm×1 denote the instances

in the source and target domain and ns and nt denote the number of instances in the source
and target domain, respectively; y(s)i ∈ {1, 2, ..., c} denotes the label information in the
source domain, m denotes the feature dimension of the input data and c denotes the number
of labels. In a sparse autoencoder, at the encoder stage, the data from both the source and
the overall target domains are projected onto vectors in the hidden layer, respectively,
expressed as ξ(s) and ξ(t). Then, in the decoder stage, the ξ(s) and ξ(t) are mapped to
the output layer as x̂(s)i and x̂(t)i . To obtain more powerful feature representations for
knowledge transfer, we introduce a softmax encoder weight regularization to apply the
labeled information in the source domain to train the whole model.

First, we introduce the RICA algorithm to perform the independent component analy-
sis from the original data in both source and target domains. We utilize the whitening layer
before the RICA to make the input less redundant. The objective function can be shown as
(1):

JRICA(WR) = λ‖WRX‖1 +
1
m

∥∥∥WT
R WRX− X

∥∥∥2

2
(1)

X denotes the original data in both source and target domains, WR denotes the weight
matrix, and λ are the tuning parameters. To scale the reconstruction item, i.e., the second
item in (1), the L1 regularization expressed as f (x) =

√
(WX)2 + ε is introduced to (1). In

our method, we select ε = 0.1 as a small constant to prevent the L1 regularization item
from being numerically close to zero. Thus, (1) can be expressed as (2):
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JRICA(WR) = λ ∑ (
√
(WRxi)2 + ε)+

1
2n

n
∑

i=1
( 1

m

∥∥WT
R WRxi − xi

∥∥2
2)

(2)

The partial derivatives of JRICA(WR) can be formalized as (3):

∇WR JRICA(WR) =
2
m (WR(WT

R WRX− X)XT

+(WRX)(WT
R WRX− X)T)

+λ((WRX)2 + ε)−
1/2(WRX)XT

(3)

According to the partial derivatives of (3), the output WT
R WRX of the RICA is fed into

the next autoencoder as the input.
After the RICA, we introduce the stacked sparse autoencoder with softmax weight

regression to learn more abstract features across the source and target domains. In the
stacked sparse autoencoder, the desired partial derivatives regrading W and b can be shown
as (4) and (5):

∇W(l) J(W, b) = δ(l+1)(ξ(l))T (4)

∇b(l) J(W, b) = δ(l+1) (5)

W(l), b(l) and ξ(l) are the weight matrix, bias vector and output of the lth hidden level
in the autoencoder, respectively. Taking the added sparsity penalty term in the sparse
autoencoder into consideration, δl can be calculated in (6):

δl =

((
s

∑
r=1

W l
riδ

(l+1)

)
+ β(− p

p̂i
+

1− p
1− p̂i

)

)
f ′(zl

i) (6)

where f ′(zl
i) = W l xi+bl . The output of the sparse autoencoder is represented as W2(W1xi +

b1) + b2. Due to space limitation, more details for (4)–(6) are provided in Appendix A.
To utilize the labeled information in the source domain to alleviate domain discrepancy,

we follow the approach used in [2]; the softmax encoder weight regularization is introduced
into the stacked sparse autoencoder. The objective function is described in (7):

J = J1(x, x̂) + αJ2(ξ, θ) + βJ3(W1, W2, b1, b2) (7)

where α and β are the trade-off parameters, which aim to balance the effectiveness of each
item in (7).

The first term J1(x, x̂) in (7) is the reconstruction error, which can be defined as (8):

J1(x, x̂) =
n

∑
i=1

∥∥∥x(i) − x̂(i)
∥∥∥2

(8)

The second term J2(ξ, θ) in (7) is the cost function of the softmax encoder weight
regularization, which can be formalized as (9):

J2(ξ, θ) = − 1
n

n

∑
i=1

c

∑
j=1

1{y(s)i = j} log
eθT

j ξ
(s)
i

c
∑

l=1
eθT

l ξ
(s)
i

(9)

where θT
j denotes the j-th row of W2, and y(s)i denotes the label xi in the source domain.

The last term J3(W1, W2) in (7) is the total weight regularization, which can be written
as (10):

J3(W1, W2) = ‖W1‖2 + ‖W2‖2 + ‖b1‖2 + ‖b2‖2 (10)
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As the objective function is an unconstrained optimization problem, the minimization
of J with respect to W1, W2, b1, b2 and θj is adopted using the l-bfgs method, which has
been demonstrated to be a more efficient backtracking method [22]. The partial derivatives
of θj can be formalized as (11):

∂J
∂θj

= α(− 1
n

n

∑
i=1

c

∑
j=1

1{yi = j}(1− eθT
j ξi

c
∑

l=1
eθT

l ξi

)ξi) (11)

The alternate optimization method is adopted to derive the solutions as follows:
Wj ← Wj − η ∂J

∂Wj
, bj ← bj − η ∂J

∂bj
, θj ← θj − η ∂J

∂θj
where η is the step length, which

determines the speed of convergence.

4.3. Convolution and Pool Layer

After feature learning via the stacked sparse autoencoder, the convolution and pool
kernel is utilized to preserve the local relevance of features. Given x(l) ∈ Rm1×m2×d are the
whole sample representation of both source and target domain maps of layer l, where m1
and m2 represent the height and width of each input map, respectively, and d represents
the number of channels. The patches P ∈ R(n1×n2×d)×K are extracted from x(l) to compose
the training set for learning latent features, where K denotes the number of patches, n1 and
n2 are the size of patches, respectively, and n1 × n2 × d denotes the convolution kernel size.
Each input is reshaped to the vector of (n1 × n2 × d)× 1 for the convenience of training
the autoencoder. The number of neurons in hidden layer l can be manually designed.

After the convolved features are extracted, we divide the input features into disjoint
n1 × n2 regions, and the mean (or maximum) activation function is utilized to obtain the
pooled convolution feature representations, where n1 and n2 denote the size of patches.
Different pooling methods are selected for different distributed datasets. For example, the
mean pool objective function is (12):

P =
P−mean(P)

std(P)
(12)

In the experiments performed, the parameter ϑ in the objective function J(ϑ) is updated
as (13):

ϑ = ϑ− γ∇ϑ J
(

ϑ; x(i)
)

(13)

where xi is derived from the projection and γ is the learning rate, which is usually much
lower than the corresponding learning rate in batch gradient descent due to larger variance
in the update. In the experiments undertaken, the momentum method is introduced to
rapidly facilitate the objective along the shallow ravine.

v = φv + γ∇ϑ J
(

ϑ; x(i)
)

ϑ = ϑ− v
(14)

where v is the current velocity vector with the same dimension as the parameter vector ϑ.
φ ∈ (0, 1] determines how many iterations from the previous gradients are incorporated
into the current update.

It is of note that the pooling operation can both reduce the representation dimensions
and select more significant features. For example, the pervasive pooling tools, such as
max-pooling [49], mean-pooling [50] and stochastic pooling [51] have achieved promising
performance in feature representation learning. Therefore, in the experiments, two different
pooling tools, max and mean pooling, were used according to the distribution of the
datasets.
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5. Experiments
5.1. Datasets

Corel Data Set http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features, ac-
cessed on. In the experiments, two different top categories in the dataset, such as flower
and traffic, were selected as positive and negative [4]. The source domain was built by ran-
domly choosing a subcategory from flower and traffic and the target domain was built by
choosing another subcategory from flower and traffic. In this way, 144 domain adaptation
classification tasks were constructed.

ImageNet Data Set http://www.image-net.org/, accessed on. In the experiments,
five domains where the ImageNet data information was centralized were selected [52],
including ambulance, taxi, jeep, minivan and scooter. The scooter is considered as a set of
negative cases, randomly divided into four other datasets. To better build the classification,
we randomly selected two domains from the four domains as the source domain and target
domain, respectively. Therefore, 12 domain adaptation classification tasks were constructed
in this way. The number of positive and negative instances in four domains was 1000, and
the number of features was 900. Details of the ImageNet datasets used in the experiments
are listed in Table 1.

Table 1. Details of the ImageNet dataset used in our experiment.

Domain1 Domain2 Domain3 Domain4

Number of Positive Instances 1000 1000 1000 1000

Number of Negative Instances 1000 1000 1000 1000

Feature 900 900 900 900

Leaves Data Set http://www.cse.wustl.edu/mchen/, accessed on. In this dataset, there
are 100 plant species in total, divided into 32 genera, with 16 species for each genus [53].
In the experiments, we selected four different genera from this dataset and four class
classification problems were constructed with 64-margin descriptors. Therefore, 12 domain
adaptation classification tasks were constructed.

5.2. Compared Methods

The following baseline methods were compared with our proposed SCSA:

• The standard classifier without unsupervised domain adaptation technique; we intro-
duced support vector machine (SVM) in the experiments.

• Transfer component analysis (TCA) [13], which aims to project the original data into
the common latent feature space via dimension reduction for unsupervised domain
adaptation.

• Marginalized stacked denoising autoencoders (mSDA) [19], which are elaborated to
learn more abstract and invasive feature representations so that domain integration
can be carried out.

• Transfer learning with deep autoencoders (TLDA) [14]. The dual-level autoencoder is
designed to learn more transferable features for domain adaptation.

• Transfer learning with manifold regularized autoencoders (TLMRA) [2]. To obtain
more abstract representations, the method combines manifold regularization and
softmax weight regression.

• Semi-supervised representation learning framework via dual autoencoders (SSRLDA)
[1]. The mSDA with adaptation distributions and multi-class marginalized denoising
autoencoder are applied to obtain global and local features for unsupervised domain
adaptation.

http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
http://www.image-net.org/
http://www.cse.wustl.edu/ mchen/
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5.3. Experiment Settings

For the trade-off parameters, α = 0.01, β = 0.005 and λ = 0.01 were set for the Corel
and ImageNet datasets, while α = 0.05, β = 0.001 and λ = 0.001 were set for the Leaves
dataset in our experiments. The hyper-parameters in the convolutional layers, such as the
total number of maps, the kernel size, and the pooling type and size, are shown in Table
2. Among the methods compared, the best parameters were measured in the experiments
using the mSDA method http://multitask.cs.berkeley.edu, accessed on; For TCA, the total
number of latent subspace dimensions was intentionally fixed and the best results were
reported. For TLDA, the main parameters of the default settings were reported in [14]. We
implemented the source code of TLMRA and SSRLDA under optimal parameter settings.

Table 2. Main configurations of SCSA on Datasets.

Data Sets Configurations

Corel Data Set

Kernel Size 11 × 11 × 3

Maps Number 1000

Pool Type max

Pool Size 12 × 12

ImageNet Dataset

Kernel Size 10 × 10 × 3

Maps Number 500

Pool Type max

Pool Size 24 × 24

Leaves Dataset

Kernel Size 6 × 6 × 3

Maps Number 800

Pool Type mean

Pool Size 3 × 3

5.4. Experimental Results

All the experimental results for the three datasets are listed in Table 3. Our experiments
were conducted five times and the results presented are the average performances of all
domain adaptation tasks. Figures 2 and 3 show the results for the ImageNet and Leaves
datasets, respectively. The following conclusions are drawn from the experimental results:

• All the domain adaptation methods significantly and consistently outperformed the
standard SVM classifier, demonstrating the advantages of the feature-representation
method in a broader set of scenarios.

• Compared to shallow learning methods, such as TCA, autoencoder-based methods,
such as TLDA, TLMRA, and SSRLDA, all achieved superior results in unsupervised
domain adaptation, indicating the superiority of deep-learning-based methods in
learning transferable and discriminative features across domains. Notably, mSDA
achieved comparable performance to TCA, demonstrating that the traditional structure
of the autoencoder cannot learn sufficient features. This is why other autoencoder-
based methods require improvements in architecture.

• In comparison with mSDA, our SCSA achieved better performance in all tasks for
three different datasets, demonstrating the superiority of our framework for exploring
different domains compared to autoencoder-based domain adaptation methods.

• By comparison to other autoencoder-based deep methods, such as TLDA and TLMRA,
our proposed SCSA achieved better performance for overall tasks in the same target
domains and for the same problems. These methods rely on the classical structure of
autoencoders (i.e., TLMRA) or the integration of regularization terms into the objective
function (i.e., TLDA). The results confirm that our SCSA can explore abstract and
distinctive features for domain adaptation.

http://multitask.cs.berkeley.edu
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• For all three experimental datasets, our method was better than SSRLDA. From
Figures 2 and 3, it can be seen that our method achieved better results for most tasks
in the same target domains and for the same problems. Our SCSA also achieved
comparable performance to SSRLDA in other tasks. As a semi-supervised method,
our method achieved superior performance for all three image datasets, indicating
that the convolution and pooling layer can maintain the local relevance and learn
features better for domain adaptation in image datasets.

• Generally, compared with alternative methods, our SCSA achieved the best results in
all groups for three different datasets, confirming the effectiveness of our proposed
method.

Table 3. Average accuracy on all three datasets (%).

SVM TCA mSDA TLDA TLMRA SSRLDA SCSA
ImageNet Data Set

62.6 ± 0.9 75.6 ± 1.1 77.6 ± 1.2 83.6 ± 1.1 88.9 ± 1.1 89.1 ± 0.7 89.3 ± 0.9
Corel Data Set

52.9 ± 0.8 76.5 ± 0.7 73.4 ± 0.6 80.2 ± 0.6 84.5 ± 0.5 84.9 ± 0.6 85.1 ± 0.4
Leaves Data Set

60.0 ± 0.4 72.0 ± 0.5 70.1 ± 0.4 67.5 ± 0.4 73.6 ± 0.7 75.0 ± 0.5 76.2 ± 0.6

Figure 2. Performances on ImageNet dataset. The y-axis represents the classification accuracy of the
target domain; the x-axis represents the index of the problem sample.

Figure 3. Performances on Leaves dataset. The y-axis represents the classification accuracy of target
domain; the x-axis represents the index of the problem sample.
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5.5. Analysis of Properties in SCSA

SCSA with and without RICA: In our SCSA, the RICA with whitening played a
foundation and optimization role in the experiments. Therefore, we conducted additional
experiments to evaluate its optimizing ability. Table 4 shows the results for the SCSA with
and without RICA for all three datasets. From the results, it can be observed that the pro-
posed SCSA with RICA outperformed SCSA without RICA for all three datasets, indicating
that the RICA can pre-process all the image datasets and make the input less redundant,
which is obviously helpful for more transferable and discriminative feature learning. With
less redundant input data, the cross-domain and invariant feature representations can
improve performance in domain adaptation.

Table 4. Average accuracy of SCSA without or with RICA for three datasets (%).

Without RICA With RICA
ImageNet Data Set

89.0 ± 0.7 89.3 ± 0.9
Corel Data Set

84.8 ± 0.5 85.1 ± 0.4
Leaves Data Set

74.1 ± 0.5 76.2 ± 0.6

Computational Cost: The time complexity of a stacked sparse auto-encoder is O(h1 + h2),
where h1 and h2 are the hidden unit numbers of two layers, respectively. For our method, we
took the labeled information into consideration, given c as the number of classes; the time
complexity is O(h1 + h2 + h2 • c) = O(h1 + h2 • (1 + c)) = O(h1 + h2). For the convolu-
tion and pooling kernels, the time complexity is O(m×m× p× p× d) = O

(
m2 × p2 × d

)
,

where m×m and p× p× d represent the size of the input and the patches, respectively.
The time complexity of our SCSA is O

(
m2 × p2 × d + h1 + h2

)
.

5.6. Transfer Distance

The transfer distance that can be defined as theA-distance is widely used as a similarity
measure between the source and target domains [2,15,54]. The A-distance can be defined
as A−distance = 2(1− 2error), where error is the generalization error of classifiers, such
as the linear SVM trained on the binary classification problem, which is used to distinguish
the source domain from the target domain. If the new features are more suitable for domain
adaptation tasks, the A-distance increases in the new representation space. The results
on the Corel and ImageNet datasets with and without our proposed SCSA are shown in
Figure 4. It can be observed that the distance increases with the new features after the
proposed method is applied. It appears that the representations obtained by SCSA are
more appropriate for transfer learning applications.

(a) Corel Dataset

Figure 4. Cont.
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(b) ImageNet Dataset

(c) Leaves Dataset

Figure 4. A-distance on Corel, ImageNet and Corel datasets. The x-axis and y-axis represent the
A-distance on the raw data and learned features space.

5.7. Parameter Sensitivity

The influence of hyper-parameters is investigated in this section, which includes λ, α
and β in (3) and (7), respectively. In the experiments, when one parameter is changed, the
values of the other parameters are fixed. α is sampled from {1E-04, 5E-04, 0.01, 0.05, 0.1, 0.5,
1}, β is sampled from {1E-04, 5E-04, 1E-03, 5E-03, 0.01, 0.05, 0.1, 0.5, 1}, and λ is sampled
from {1E-04, 1E-03, 0.01, 0.1, 1, 10}, respectively. All the results for the ImageNet datasets
are reported in Figure 5–7. According to the observations, we set α = 0.01, β = 0.005 and
λ = 0.01 to obtain the best and most stable results.

Figure 5. Parameter Influence on α of SCSA on ImageNet dataset. The y-axis represents the classifica-
tion accuracy of the target domain; the x-axis represents the value range of α.
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Figure 6. Parameter influence on β of SCSA on ImageNet dataset. The y-axis represents the classifica-
tion accuracy of the target domain; the x-axis represents the value range of β.

Figure 7. Parameter influence on λ of SCSA on ImageNet dataset. The y-axis represents the classifica-
tion accuracy of the target domain; the x-axis represents the value range of λ.

6. Conclusions

In this paper, we proposed an unsupervised domain adaptation framework based
on a stacked convolution sparse autoencoder, called SCSA. Our method can learn more
transferable and discriminative representations across domains. Firstly, the original data is
pre-processed by the layer-wise RICA with whitening. Then, the labeled data information
in the source domain is encoded via softmax encoder weight regularization in a sparse
autoencoder model. Finally, the convolutional kernels are used to reserve the local relevance
for learning abstract representations. The proposed method was extensively tested on
several datasets and was found to be more effective than state-of-the-art domain adaptation
methods. The proposed method was extensively tested on several datasets and an accuracy
of up to 89.3% was obtained, outperforming other state-of-the-art autoencoder-based
domain adaptation methods, such as SSRLDA.

The designed SCSA is only concerned with the unsupervised domain adaptation of
image data and is not concerned with other types of data, such as text data. In the future,
we intend to focus on learning better feature representations in text data for unsupervised
domain adaptation.
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Appendix A

The aim of the sparse autoencoder is to constrain the neurons in the hidden layers
to be inactive most of the time. Given an input set {x1, ..., xi, ..., xn}, xi ∈ Rm×1, and the
hidden unit set {ξ1, ..., ξr, ..., ξs}, ξi ∈ Rk×1, the average activation of the hidden unit can be
calculated as (A1):

p̂r =
1
n

n

∑
i=1

[ξr(xi)] (A1)

To ensure that the hidden unit’s activation status is inactive, the constraint p̂r = p
is enforced, where p is the sparsity parameter, which is close to zero. The KL divergence
method can be used to penalize p̂r if it deviates significantly from p, as shown in (A2):

s

∑
r=1

KL(p|| p̂r) =
s

∑
r=1

p log
p
p̂r

+ (1− p) log
1− p
1− p̂r

(A2)

The overall cost function of the sparse auto-encoder can be shown as (A3):

Jsparse(W, b) = Jr(W, b) + β
s

∑
r=1

KL(p|| p̂r) (A3)

where Jr(W, b) is defined as (6) and β is the hyper-parameter which controls the weight of
the sparsity penalty term. Since the term p̂r is the average activation of the hidden unit, it
also depends on W and b.
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