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Abstract: This paper proposes an M-ary amplitude shift keying (MASK) power and information syn-
chronous transmission system based on phase-shifted full-bridge (PSFB) for applications in wireless
power transmission (WPT). The Pulse Width Modulation (PWM) waveform uses different phases to
control the MOSFET in the full-bridge inverter for MASK modulation. The inverter voltage generates
M amplitude transformation, forming a comprehensive power information flow. The demodulation
circuit processes the information transmitted to the secondary side, following the power supply
with a differential amplifier, to realize synchronous transmission of power supply and information.
Compared with conventional amplitude modulation, the system’s volume is significantly reduced,
and the DC-DC modulation circuit has no filtering effect. It transmits comprehensive high-level data
and improves the information transmission rate from the perspective of bit width. In the experiment,
16-bit width data are transmitted, and the bit rate is increased by four times compared to conventional
amplitude modulation. Combined with DSP, the designed demodulation circuit reduces the voltage
amplitude fluctuation at the receiving end to 5% and minimizes the impact of amplitude modulation
voltage fluctuation on the system.

Keywords: wireless power transmission (WPT); information transmission; synchronous; phase-shifted
full-bridge (PSFB); M-ary amplitude shift keying (MASK)

1. Introduction

The application of wireless power transmission (WPT) technology [1–3] is more and
more extensive. Compared with the conventional wired charging method, it avoids the wear
of the joint during the charging of the equipment, as well as the sparks and other safety
hazards generated during the insertion and extraction process. It is safe, reliable, flexible and
convenient. WPT covers many fields [4,5] such as medicine [6], industry and electric vehicles,
but in most application scenarios, higher requirements are proposed for the performance of
wireless transmission systems, such as real-time control, signal transmission, etc. It requires
the system to achieve information interaction while performing wireless power transmission;
that is, power and information synchronous transmission technology [7,8].

At present, the power and information synchronous transmission technology of a wireless
power transmission system can be divided into three types: ratio frequency technologies [9,10],
dual channel transmission technology [11,12] and single-channel transmission technology [13,14].
The ratio frequency technology is a communication method which uses electromagnetic
wave to realize the information transmission and exchange. With the development of
radio frequency communication technology, it has been integrated into every corner of
production and life, such as RFID, BlueTooth, Wi-Fi, Zigbee [15] and so on. However, it
also has many problems, such as the long duration of a ‘handshake’ in communication and
the limitation of application field. The dual-channel transmission technology is used to
establish an additional channel based on the original power transmission channel. Refer-
ence [16] used dual-channel transmission technology, through low-frequency transmission
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power and high-frequency transmission of information, used in the medical field to achieve
simultaneous transmission. Its data transmission rate is fast, but its structure is complex,
and there is interference between signal and power, which makes the bit error rate high.
Compared with the dual-channel technology, the single-channel transmission technology
indicates that the power and the information share a transmission channel. The system
structure is simple and avoids the cross coupling between the two channels in the dual
channel transmission technology. It has become a hotspot in the research of simultaneous
communication. Single-channel transmission technology can be divided into carrier modu-
lation [17] and power modulation. In Reference [18], a double-sided LCC compensation
topology for power transmission is adopted, and the data transmission channel is com-
posed of a four-resonance dual-rejection structure used to realize synchronous transmission
of power and information. There are many methods of power modulation. Reference [19]
realized the synchronous transmission of power and signal by controlling the phase of
current and voltage. Reference [20] used the baseband signal to change the magnitude
of the input voltage amplitude for signal transmission, which is a traditional amplitude
modulation method. This method not only solves the problem of power and information
interference, but also reduces the bit error rate. However, the information transmission rate
is low, and the output voltage is susceptible to fluctuations. At the same time, the addition
of DC-DC modulation circuit makes the system structure more complex, and the system
baud rate is affected.

The existing phase-shift modulation power and information simultaneous transmis-
sion methods [21,22] transmit power through the fundamental wave, changing the third
harmonic amplitude to transmit information, and achieve power and information simulta-
neous transmission. The application of the phase-shifted full-bridge (PSFB) [23–25] means
the system no longer needs to be controlled by an external modulation circuit, and the
switch tube can achieve zero voltage switching (ZVS). The above power and information
transmission technologies can only transmit two-bit signals: ‘0’and ‘1’. Reference [26]
proposed a dual modulation strategy of power and data, which was applied to the DC-DC
power converter to achieve ‘talkative power’. The frequency-hopping differential phase
shift keying (FH-DPSK) modulation strategy is used to overcome the crosstalk between the
selected transmission systems, and the transmission of ‘0’, ‘1’, ‘2’ and ‘3’ four-bit signals
can be realized. However, this method uses cables or lights for information transmission,
so the application field is limited.

The motivation of this work is to solve the problems of low information transmission
rate and output voltage fluctuation in power modulation. A M-ary amplitude shift keying
(MASK) power and information synchronous transmission system based on PSFB is pro-
posed. The PWM variable generated by the pre-transmission modulation signal is directly
superimposed on the control end of the MOSEFT in the full-bridge inverter to control the
phase shift angle of the inverter, thereby changing the voltage amplitude and generating M
amplitude transformations. The power and information are transmitted to the receiving
coil at the same time through the transmitting coil, the power is transmitted to the load
through the circuit, and the information is restored by the demodulation circuit and DSP.

The salient aspects of this paper are that the proposed method reduces the system’s
volume without a DC-DC modulation circuit, reducing the influence of passive devices on the
system and improving the baud rate of the system. At the same time, it transmits data with
higher bit width, as 8-ary and 16-ary data, thereby increasing the information transmission rate
to four times. The MASK modulation is adopted, and the electric power does not interfere with
the signal. The designed demodulation circuit is combined with DSP to control the voltage
amplitude fluctuation at the receiving end at 5% to minimize the influence of fluctuation
on the load. Section 2 analyzes the system topology and mathematical model. In Section 3,
the information modulation and demodulation methods are proposed, and the problems of
power transmission efficiency and power, information transmission rate, and interference
between information and power are analyzed. Section 4 verifies the feasibility of the method
through experiments and simulations. Section 5 concludes the paper.
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2. Structure and Modeling of the Proposed System
2.1. Structure of the Proposed System

The transmission circuit structure of the traditional amplitude modulated signal and
power synchronous transmission system is shown in Figure 1a. The DC-DC modulation
circuit is composed of a voltage source, a switch tube Sd, a diode Dd and an inductor Ld.
MOSFET S1–S4 (S1 and S2 are leading leg, S3 and S4 are lagging leg) and diode D1–D4
form a full-bridge inverter circuit. The primary transmitting circuit and the secondary
receiving circuit are consistent with Figure 1b. The DC-DC circuit Ld has the function of
filtering, limiting the signal transmission baud rate and bit width. The structure of MASK
modulated power and information synchronous transmission system based on PSFB is
shown in Figure 1b. The DC-DC modulation circuit is removed, which makes the whole
system structure simpler. At the same time, the influence of passive devices on the system
is reduced, and the baud rate is improved. Without Ld filtering, higher bit width data can be
transmitted. The transmitting circuit consists of transmitting coil Lp, its parasitic resistance
Rp and compensating capacitance Cp. The receiving circuit includes a power-receiving part
and an information-detecting part. LS, RS and CS are the inductance, internal resistance and
compensation capacitance of the receiving coil of the power-receiving part. The information
detection part demodulates the signal with DSP through demodulation circuit.
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Figure 1. System structure diagram: (a) Traditional amplitude modulation transmission circuit;
(b) structure diagram of MASK modulation power and information synchronous transmission system
based on PSFB.

The output waveform of the full-bridge inverter during normal operation is shown in
Figure 2. The DSP generates four pulse width modulation signals (US1–US4) for MOSFET
drive signals. The dotted lines are US4 and US3, and α is the phase shift angle. Up is the
output voltage waveform of the full bridge inverter. Ip is the primary current waveform.
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The time domain expression of inverter output voltage Up is:

Up(ϕ)


Ud , ϕ ∈ (0, π − α]
0 , ϕ ∈ (π − α, π]
−Ud , ϕ ∈ (π, 2π − α]

0 , ϕ ∈ (2π − α, 2π],

(1)

where Ud is the DC voltage source voltage. The Fourier series expansion of Equation (1)
can be obtained:

Up(ϕ) =
∞

∑
k=1

4Ud
kπ

cos
(

kα

2

)
sin
(

kα +
kα

2

)
. (2)

Therefore, the kth harmonic effective value of the inverter output voltage is:

Upk =
2
√

2
kπ

Uin

∣∣∣∣cos
kα

2

∣∣∣∣, k = 1, 3, 5 . . . . (3)

From Equation (3), it can be seen that when the input voltage is constant, the output
voltage can only consider the fundamental wave due to the addition of the resonant
compensation capacitor Cp at the transmitter. As the phase shift angle increases, the output
fundamental component will continue to decrease to zero. By controlling the phase shift
angle between the leading leg and the lagging leg of the PSFB, the effective value of the
inverter voltage output by the system is changed. The electric power is transmitted to
the receiving coil through the transmitting coil, so as to adjust the power coupled to the
receiving coil and make the receiving voltage change linearly with the phase shift angle.
The changing voltage amplitude corresponds to the transmission information, forming
a comprehensive power information flow, realizing MASK modulation, and achieving the
purpose of simultaneous transmission.

2.2. Equivalent Model Analysis of the System

The equivalent circuit of the system is shown in Figure 3. Up is the output voltage
of the inverter and RL is the load. Ip and IS are the current on the emitting side and the
receiving side, respectively. Lp and LS are the inductances of the transmitting coil and the
receiving coil, respectively. Rp and RS are the internal resistance of the transmitting coil and
the receiving coil, respectively. Cp and CS are the resonant capacitors of the transmitting
side and the receiving side, respectively.
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The circuit equivalent total impedance Zp and the receiver total impedance ZS can be
expressed as: 

Zs = jωLs +
1

jωCs
+ RL + Rs

Zp = jωLp + 1
jωCp

+ Rp +
ω2M2

Zs
.

(4)
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In Equation (4), ω is the operating frequency of the system, and M is the mutual
inductance between the transceiver coils. The current at the transmitter and receiver can be
expressed as: 

.
Ip =

.
Up

Zp

.
Is =

.
Ip · jωM

Zs
.

(5)

The output power can be expressed as:

Pout =

∣∣∣∣ .
I

2
s · RL

∣∣∣∣ = 8U2
inω2M2RL

π2Z2
pZ2

s
cos2 α

2
, (6)

and the output efficiency can be expressed as:

η =
Pout

Pin
=

∣∣∣∣∣∣
.
I

2
s · RL

.
I

2
p · Zp

∣∣∣∣∣∣ = ω2M2RL

Z2
s Zp

. (7)

It can be seen from Equations (6) and (7) that the transmission power of the system
is affected when the phase shift angle is changed, but the transmission efficiency of the
system will not be affected. Therefore, during the simultaneous transmission of power
and information, the output power fluctuation should be minimized while ensuring the
transmission rate and controlling the bit error rate.

3. Synchronous Information Transmission Analysis
3.1. Information Modulation

As the phase shift angle changes, the inverter output voltage is shown in Figure 4, and
the working and resonant frequency of the system is 47.3 kHz. This is consistent with the
phenomenon of Figure 2; changing the phase shift angle to change the inverter voltage
verified the feasibility of MASK modulation based on PSFB.
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When ZS, Zp, ω, RL remain unchanged and the coupling coefficient k = 0.2, the change
trend of the phase shift angle with output voltage and output power is shown in Figure 5.
Experimental and simulation data reference Table 1.
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Table 1. Experimental parameters.

Parameters Symbol Value

Power supply Ud 24 V
Coil resistance Rp, RS 0.1 Ω

Transmitting coil self-inductance Lp 282.04 µH
Resonant capacitor Cp, CS 40 nF

Load RL 35 Ω

Considering the voltage fluctuation problem, the voltage variation range is selected as
5%, and the corresponding α is 0–36.5◦. Using DSP to generate PWM waves with different
phases, 8ASK, 16ASK or higher MASK information modulation is performed to increase the
signal bit width, thereby increasing the signal transmission rate. In the specified α range,
according to Figure 5, the appropriate signal bit width, phase angle and corresponding
voltage change value are selected. This can ensure the rate while reducing the bit error rate
as much as possible. Table 2 shows the modulation parameters of 8-ary and 16-ary signal.

Table 2. Signal modulation parameters.

M-ary Signal Voltage Amplitude Phase Angle Signal

8-ary signal

100% 0◦ 0
99.28% 13.9◦ 1
98.57% 19.4◦ 2
97.85% 23.9◦ 3
97.14% 27.6◦ 4
96.43% 30.8◦ 5
95.71% 33.8◦ 6

95% 36.5◦ 7
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Table 2. Cont.

M-ary Signal Voltage Amplitude Phase Angle Signal

16-ary signal

100% 0◦ 0
99.67% 9.5◦ 1
99.34% 13.3◦ 2
99.01% 16.2◦ 3
98.68% 18.7◦ 4
98.35% 21◦ 5
98.02% 23◦ 6
97.69% 24.8◦ 7
97.36% 26.5◦ 8
97.03% 28.1◦ 9
96.7% 29.6◦ A

96.37% 31.1◦ B
96.04% 32.4◦ C
95.71% 33.8◦ D
95.38% 35.1◦ E

95% 36.5◦ F

3.2. Signal Demodulation

Signal demodulation is realized by a demodulation circuit and DSP together. The
demodulation circuit is shown in Figure 6, including the voltage divider circuit, rectifier
circuit, voltage follower, envelope detection circuit, low-pass filter circuit, differential amplifier
circuit, protection circuit and so on. First, the collected voltage is divided to protect the chip
and device. Through rectifier circuit and voltage follower, the main circuit and subsequent
demodulation circuit are isolated to reduce interference. The amplitude change of the high-
frequency signal is detected via envelope detection, and the selection of time constant RC
of the circuit is very important. After low-pass filtering, the differential amplifier processes
the voltage so that the information characteristics of the voltage are fully displayed. Uref is
available from chip supply voltage Uo. After low-pass filtering, the processed voltage enters
the protection circuit. The circuit selects 2.7 V regulator tube D7. Q1 is not conductive when
the input voltage does not exceed 2.7 V. Voltage drops at both ends of GS of Q2, so Q2 turns
on. The circuit voltage normal output. When the input voltage is greater than 2.7 V and the
excess voltage is greater than the Q1 PN junction conduction voltage, Q1 conduction. The
GS voltage across Q2 is equal, so Q2 does not conduct. At this time, the protection circuit is
broken, which plays a protective role. After ensuring that the voltage is less than 3 V, the ADC
peripheral inside DSP28335 is used to convert the data voltage Udata. The ADC of F28335
meets the demodulation requirements in terms of accuracy and acquisition rate. Finally, the
demodulation process can be completed only by judging the converted information data.
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4. System Performance Analysis
4.1. Subsection

Traditional amplitude modulation by adding a Boost circuit before the inverter circuit
or to be transmitted baseband signal [20] to control the input voltage amplitude to achieve
signal transmission. The voltage fluctuation exceeds 30% of the amplitude during signal
transmission, which limits the application of this method. The MASK modulation simulta-
neous transmission method based on PSFB has the advantages of amplitude modulation:
simple structure and no power interference to the signal. At the same time, the demodula-
tion circuit uses a differential amplifier to amplify the signal characteristics in the integrated
power signal flow, which can reconcile the contradiction between the output voltage fluctua-
tion and the signal distortion rate and reduce the impact of voltage fluctuation on the system.
According to the parameters of Table 2, 8ASK modulation is carried out. For observation
purposes, the system transmits the signal ‘01234567’, when the voltage fluctuation at the
receiver side is shown in Figure 7, with a voltage fluctuation of about 5%.
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4.2. Analysis of Signal Transmission Rate

Signal transmission rate is used to measure the amount of data transmitted per unit
time. The transmission rate is usually expressed by baud rate and bit rate. The numerical
relationship between the two is: C = B·log2N, where C is the bit rate, B is the baud rate and
N is the base. There are two ways to increase the bit rate from the equation. One way is to
increase the baud rate, which can theoretically be up to one-tenth of the carrier frequency.
For wireless power transmission systems, the baud rate is limited by the response time of
the system itself. Passive devices such as inductors and capacitors can affect the response
time of the system. Theoretically, the response speed can only be improved by changing
the system device or structure.

The variation law of resonant circuit voltage amplitude with time is:

Up(t) = Upm · e−
t
τ . (8)

Upm is the inverter output voltage peak. In Figure 1a, τ can be viewed as the Ld
discharge time constant in conventional amplitude modulation

τ =
RpCpLd

Lp
. (9)

The whole signal ‘0’ modulation process t, voltage change is:

Up(t) = Upm

(
1 + e−

t
τ − e−

t−Toff
τ

)
. (10)

Toff is the voltage source disconnection time. It can be seen that the existence of Ld affects
the time constant τ, and the DC-DC modulation circuit increases the system response time. The
MASK modulation simultaneous transmission method based on PSFB improves the system
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response speed because there is no DC-DC modulation circuit. It controls the voltage amplitude
variation at 5% and reduces the amplitude variation, which can reduce the required response
time and improve the baud rate of the system itself. As shown in Figure 8, respectively, the
baud rate is 750, 1500 and 1875 for data transmission. The results show that when the baud rate
is 1875, the rising and falling edges of the signal coincide. After measurement, the response
time of the signal is 280 µs. The overall response time of the rise and fall has exceeded the signal
time period of 533 µs, which is beyond the limit. The final limit baud rate of the experimental
system is about 1500, and the experimental parameters are shown in Table 1.
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Another way to increase the transmission rate is to change the transmission system N.
By increasing the transmission base, the signal is no longer limited to ‘0’ and ‘1’, increasing
the bit width, thereby increasing the signal transmission rate. As shown in Figure 7, using
8ASK signal modulation, compared with the traditional signal transmission method, the
signal transmission rate increased to three times.

5. Experimental Verification

Based on the proposed power and information synchronous transmission method,
an experimental platform is built to verify the MASK modulation power and signal trans-
mission scheme based on PSFB. The experimental platform is shown in Figure 9. The
experimental platform consists of a power supply part, a transmitting part and a receiving
part. The transmitting part includes transmitting coil and resonant capacitor. The receiving
part includes a receiving coil, resonant capacitor, load and signal-extraction part. The
system parameters are shown in Tables 1 and 3.
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Table 3. Demodulation circuit parameters.

Parameters Symbol Value

Resistances R1, R12 2 kΩ
Resistances R2, R3, R4, R13, R14 20 kΩ
Resistances R5, R6, R11 500 Ω

Envelope capacitance C1 10 µF
Smoothing capacitances C2, C3 100 nF

Supply voltage Uo 16 V
Reference voltage Uref 8 V

According to Figure 5 and Table 2, 16ASK modulation is performed. Figure 10 shows the
750 baud rate 16ASK modulation signal transmission. The experiment provided a continuous
signal ‘F20C13B48A5E67D9’. The bit rate of information transmission is 3 kbps. Rectifier
voltage, envelope filter voltage and differential amplifier voltage waveforms are shown in
Figure 10a. R7, R9 is 35 kΩ and R8, R10 is 40 kΩ, so the differential amplifier amplification
factor is 1.14. Voltage transferred through the ADC analog-to-digital conversion signal data
with the use of a 485 communication in the computer serial assistant is displayed. As shown
in Figure 10b, the ADC is a 12-bit precision, and the transmission signal corresponding to the
signal data is marked in the figure. The range of ADC acquisition is 3 V, which corresponds
to the digital quantity of 4095, and the signal data are about 800. The signal can be obtained
by comparing the data or using the algorithm. In the experiment, all the collected data are
stored in the array, and the signals are obtained by comparing and judging the data in the
array. The transmitting communication unit tests the bit error rate of signal transmission,
including 1 bit starting bit, 8 bit data bit and 1 bit stop bit. The method proposed in this
paper belongs to amplitude modulation power and information synchronous transmission
technology. The signal is reflected and transmitted by the change in voltage amplitude, and
the voltage amplitude of the system is affected by many factors, such as the disturbance of the
DC power supply, the change in load and the offset of the coupling coil. These factors also
affect the signal transmission error rate. The premise of the test is that the system maintains
a fixed power output, a fixed load and a fixed position of the two coupling coils. Finally, the
test result demonstrates that the signal transmission error rate is 0, and there is no error code
in the whole test process.
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Figure 11 raises the baud rate to 1500. Signal transmission through 16ASK modulation
increases the bit rate to 6 kbps. It can be seen from the diagram that as the baud rate
increases, the difficulty of data judgment becomes larger, and error bits may occur. A better
data judgment method or algorithm will reduce the bit error rate of the system, which will
be a subsequent improvement direction of the signal transmission method.
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Demodulation in this paper is essentially envelope detection, which belongs to non-
coherent demodulation and is easier to implement than coherent demodulation. Under
this demodulation method, the MASK modulation bit error rate is inversely proportional
to the signal-to-noise ratio SNR, which is:

SNR = 10 log
S
N
= 20 log

VS

VN
, (11)

where S is the signal output power, N is the noise power and vs. and VN are the demodu-
lated signal and noise voltage values, respectively. Under the condition that the voltage
source output is constant and the signal baud rate is constant, the signal-to-noise ratio and
M value affect the bit error rate together. In the experiment, 16ASK modulation is used, and
the voltage fluctuation is 5%. Keeping the same signal-to-noise ratio, 8ASK modulation is
performed, as shown in Figure 12. With the increase in signal bandwidth, the error rate
will be further reduced. If the system continues to increase the signal bit width, that is,
to improve the signal bit rate, while maintaining the signal transmission error rate, this
can be achieved by increasing the amplification factor of the differential amplifier in the
demodulation circuit or adjusting the Uref to improve the signal-to-noise ratio.
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6. Conclusions

This paper proposes a MASK modulation power and signals synchronous transmis-
sion system based on PSFB. The proposed method reduces the system’s volume without
a DC-DC modulation circuit. The proposed method reduces the voltage fluctuation to
5% to minimize the impact of voltage fluctuation on the load. Through the application
of a demodulation circuit combined with DSP, it can transmit multiple signals, which are
not only limited to ‘0’ and ‘1’. Based on this experimental platform, a 16-band signal can
be transmitted, and in different applications, the signal transmission rate may be further
improved using this method. This method covers the general audio range and has the
prospect of popularization and application.
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