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Abstract: The most important component that can express a person’s mental condition is facial
expressions. A human can communicate around 55% of information non-verbally and the remaining
45% audibly. Automatic facial expression recognition (FER) has now become a challenging task in
the surveying of computers. Applications of FER include understanding the behavior of humans
and monitoring moods and psychological states. It even penetrates other domains—namely,
robotics, criminology, smart healthcare systems, entertainment, security systems, holographic
images, stress detection, and education. This study introduces a novel Robust Facial Expression
Recognition using an Evolutionary Algorithm with Deep Learning (RFER-EADL) model. RFER-
EADL aims to determine various kinds of emotions using computer vision and DL models.
Primarily, RFER-EADL performs histogram equalization to normalize the intensity and contrast
levels of the images of identical persons and expressions. Next, the deep convolutional neural
network-based densely connected network (DenseNet-169) model is exploited with the chimp
optimization algorithm (COA) as a hyperparameter-tuning approach. Finally, teaching and
learning-based optimization (TLBO) with a long short-term memory (LSTM) model is employed for
expression recognition and classification. The designs of COA and TLBO algorithms aided in the
optimal parameter selection of the DenseNet and LSTM models, respectively. A brief simulation
analysis of the benchmark dataset portrays the greater performance of the RFER-EADL model
compared to other approaches.

Keywords: image processing; facial expression recognition; computer vision; deep learning;
evolutionary algorithm

1. Introduction

Facial expressions have a significant role in presenting the emotions of humans,
which might affect day-to-day life by changing our memory, attention, and perceptions.
Facial expressions might precisely express the true emotions of others. Humans can learn
the inner thoughts of others via facial expressions [1]. Psychologists reported that facial
expression is prominent in the day-to-day interactions of humans, making up 55%, of
communication, far greater than the written language (7%), speech (38%), etc. [2]. On the
other hand, facial expressions are unaffected by age, race, gender, or cultural background
and follow from facial muscle movements [3]. Consequently, facial expressions are an
effective means of identifying emotions. The study of facial expression detection is vital
for progressing artificial intelligence and other fields, and it is based on computer
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technology that could allow intelligent devices such as robots to identify and better
understand our emotions, accomplish barrier-free communication between machines and
humans, actively judge human emotion, and better serve humans [4].

Currently, automated FER is the most important task in the field of computer science
[5]. An expression could be transported via communication and gestures. It does not
depend on the facial expressions of humans. The authors emphasize that a person could
orally transmit around 7% of data context, whereas 38% are transported via rhythm, voice
tone, and how slowly or speedily a person talks [6]. The applications of facial expressions
cover a wide swatch of functions in our society and are not constrained to this field. In
medical science, FER is useful for bipolar patients. Physicians try to monitor and detect
the behaviors of a patient, like how they behave during their disease and how a bipolar
patient feels [7]. An intelligent FER technique such that face images are provided as input
and could identify the expression of humans. There exist, overall, eight expressions,
including happy, fearful, sad, surprised, angry, neutral, disgusted, and contempt-filled
[8]. FER uses a deep learning (DL)-based techniques to help it extract facial expressions
and features, which greatly improves its performance. However, FER is prone to complex
problems, such as slow recognition speed, trouble extracting facial features, and low
recognition accuracy. The key concept of the DL technique is to construct an artificial
neural network (ANN) by continuous training of enormous quantities of information to
satisfy certain requirements [9]. The goal of a DL algorithm is to retrieve the information
confined in the input hierarchically through the construction of multi-layer neural
networks (MNNSs); this relates to the outlining of hidden layers among the input and
output layers of a single computing layer perceptron as an internal description of “input
mode,” such that it becomes a multilayer perceptron (MLP), and the neurons between
neighboring layers are interconnected with one another. [10]. Applied science in digital
image processing and visualization is now one of the fastest-growing areas of information
technology. It has various applications in medical imaging, remote sensing, industrial
inspection, computer vision and robotics, image editing, and information visualization.
With the rapid growth of multimedia content in social media and smartphone
applications, innovative image processing tools and programs for creating featured
photographs to improve the aesthetics, entertainment, publicity, and security of these
applications are gaining popularity.

We developed the Robust Facial Expression Recognition using an Evolutionary
Algorithm with Deep Learning (RFER-EADL) model. As a preprocessing step, the RFER-
EADL approach employs histogram equalization (HE). In addition, for feature extraction,
the chimp optimization algorithm (COA) with a densely linked network (DenseNet-169)
model is applied. Finally, for expression identification and classification, a teaching and
learning-based optimization (TLBO) model with long short-term memory (LSTM) is used.
A complete experimental assessment of the benchmark dataset portrays the greater
performance of the RFER-EADL model compared to other approaches.

2. Literature Review

Rajan et al. [11] examined a new DL infrastructure that integrates CNN with LSTM
cells for real-time FER. The novel infrastructure comprises three essential features: (1) Two
distinct pre-processed approaches are utilized for handling illumination differences and
for preserving subtle edge data of all the images. (2) The pre-processing images are
inputted into two individual CNN infrastructures that remove the spatial features very
efficiently. (3) The spatial feature maps in two separate CNN layers are fused and
combined with an LSTM layer which that removes temporal connections betwixt the
succeeding frames. In [12], a novel technique for human FER that executes an improved
type of cat swarm optimization (CSO) technique, named improved CSO (ICSO), was
presented. An input image provided to the projected method retrieved the same images
in the dataset and recognizes the person’s emotional state with facial expressions. The
deep features that occurred in the face images were extracted utilizing the DCNN system.
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An ICSO was presented for selecting an optimum feature in the face image which
individually separated the facial expression of persons.

Wang et al. [13] examined suppressing the uncertainty by an easy yet effective self-
cure network (SCN). The SCN suppresses the uncertainty in two distinct features, (i) a
self-attention process on the FER dataset for weighting all the instances from training with
ranking regularization, and (ii) a careful relabeling process for labelling the instances with
the lowest rankings. Li et al. [14] are investigating an end-to-end network with automatic
FER. A novel network infrastructure is made up of reconstruction, attention, feature
extraction, and classifier modules. Using image texture, LBP recognizes facial movements
and improves network performance.

Cheng and Zhou [15] introduced an expression detection method of enhanced VGG-
DCNN. According to the VGG-19; this method improves network infrastructure and
network constraints. Most expression datasets were ineffectual for training the total
networks in the beginning because of the lack of appropriate data. This work utilizes
migration-learning approaches for overcoming the lack of image trained instances. In [16],
We introduce E2-Capsnet, a double-enhanced capsule neural network that takes FER into
account while also being U-aware, in this article. E2-Capsnet advances two enhancement
components that benefit FER through dynamic routing between capsules. In this context,
the CNN is a vital part of the development process because it pays special attention to the
areas of expressions that are actually doing work. The secondary development component
is the Capsnet with several convolutional layers that improve the feature representations.

Kim et al. [17] examined a novel approach for the FER technique that is dependent
upon hierarchical DL. The extracted features are combined with geometric features from
a hierarchical infrastructure in a network based on presence features. The presence-
feature-based 124-node network extracts global facial features from preprocessed LBP
images. The geometric feature-constructed network taught the action units (AUs), the
muscles most actively involved in the creation of facial expressions, to recognize the
coordinate transformation. Zhu et al. [18] presented few-shot learning for developing a
DL method known as the convolutional relation network (CRN) for FER in the field. By
comparing the feature similarity between those instances, this technique allows for the
discovery of novel classes that share some traits with instances of the correct emotion
class. The classifier learns a metric space via distance computation, and the deep
expression features’ ability to discriminate is then used to improve the network’s
predictive capabilities.

According to Shuai Liu [19], multimodal research is currently being used in a variety
of fields. Existing emotion identification algorithms are incapable of resolving modal
conflict and fail to take into account the internal interactions of several modalities. As a
result, resolving modal conflict through the fusion of different modalities is critical to the
development of multimodality. In this study, we introduce an attention mechanism to
fuse many modalities, since attention mechanisms are key in deep learning. A GNN for
FER was proposed by Liu S et al. [20]. The approach divides the human face into six
separate sections, extracts feature key points from each segment evenly using “local visual
cognition,” shows the internal relationships between feature key points using “regional
cooperative recognition,” and lastly constructs a GNN model to realize FER. By
comparing it to similar algorithms, this method proved FER’s effect and increased the
possible uses of neural network models. It also improved the interpretability of GNN’s
cognitive science data. Table 1 shows the objectives and significant results of existing
works.
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Table 1. Objectives and significant results of existing works.

Reference & Year

Objectives Classification Significant Results Accuracy Results

Based on minimum chi-square
feature selection and Support Vector Machine, features, achieved a consistenc .
PP Y Achieved a 94.23

o,
[20], 2021 classification methods for =~ Random Forest and KNN  performance of many controlled accuracy. ’
Facial Expression Recognition algorithms classifiers to determine face
expression.
To propose effective Random forest, Decision Reliever-F technique for function Achieved a 94.93%
[21], 2021 classification Sequence of face Tree, SVM and KNN by focusing on the utilization of a accuracy.-
and Expression collection algorithms small number of attributes.
To propose efficient modality Fuzzy Fusion based neural Imbalanced emotion recognition Achleved’
[22], 2021 . . eNTERFACE’ 05
fusion networks is handled by TSFFCNN o
90.82%
To improve the spontaneous Achieved 67.3%
[23], 2020 detection of facial micro- Convolutional Neural Simple methods and effective ~ for SMIC dataset,
’ expressions by sophisticated Networks algorithms  classification for micro expression Achieved 66.67%
hand extraction model. SAMM dataset

A lot of research has gone into making FER systems reliable because they can be used
in a wide range of fields, such as computer vision, image processing, and pattern
classification. A very hard problem to solve in these is getting the computers to be able to
see human faces and figure out what emotions they are showing, such as anger,
happiness, neutrality, sadness, and disgust.

3. The Proposed Model

During this investigation, a novel RFER-EADL technique was established for
emotion recognition in facial images. First, the presented RFER-EADL technique uses an
HE process. The COA model, along with the DenseNet-169 model, is then used to extract
features. Finally, the TLBO with an LSTM model is used to recognize and categorize
emotional facial expressions. Figure 1 depicts RFER-EADL's block diagram.

Input: Training dataset

E E

i

=
EEEEE)

Histogram Equalization
(Normalize the Brightness and Contrast)

Feature Extraction Teaching and Learning based Optimization

Long Short Term Memory (LSTM) Model
based
Expression Recognition

Chimp Optimization Algorithm

Convolutional Neural Network
based
Densely Connected Network

Performance Evaluation

Figure 1. Block diagram of the RFER-EADL approach.

3.1. Histogram Equalization

Histogram equalization can be used to change the contrast of a digital image. Each
pixel’s individual processing results in the creation of a new image. The image’s
cumulative histogram is used in this modification. Histogram equalization attempts to
“spread out” the histogram in order to achieve a more uniform distribution of intensities
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across all potential value ranges. Equalization is useful for photos with little to no contrast.
The procedure is straightforward, and it is carried out by a computer.

X(i,j) is a representation of the intensity at the coordinates (Ij) that satisfy the
condition. The intensity values of an image are random variables with values ranging
from 0 to L1. Let X signify the input image and L signify the total number of distinct grey
levels in the dynamic range. (I, j) €{X0, X1,..., XL1}. The discrete function that defines the
histogram h for a digital image is given in the equation below h(X«) = nx, where
e  The kn intensity level in the [0, L1] range is represented by the value Xx.

e  Ifn«islarge, the input image has a large number of pixels.

The brightness and contrast are distinct even amongst images of similar people with
similar expressions. The HE processes has been executed for all the images for reducing
this difference [24]. The mean value of normalization images was closer. Normalized Z-
score was also used for these images via Equation (1), for enhancing the contrast.

P _XTH

X =— (1)

in which x’ stands for the value of a novel pixel, x refers the value of the original, u
stands for the average pixel value in all instances of an image, and is the standard
deviation of those pixel values. Pixels are the image’s constituents.

3.2. Feature Extraction

For the optimal derivation of the features related to the facial images, the DenseNet-
169 model is utilized. The CNN is applied to extract useful features from the raw
information [25-29]. The primary layers utilized in the deep convolutional network are
the max-pooling, convolutional, and FC layers. In a single-layer CNN network, feature
extraction can be attained through a convolutional operator using the filter on the input
signal. In CNN, the activation of every unit characterizes the convolved kernel or filter via
an input signal. It is assumed that the filter in the convolutional layer in this network acts
as a feature extractor and progressively highlights certain features in the topmost layer of
the network. While employing a temporal sequence (sensor signal), a 1D kernel is utilized
in temporal convolution [30,31]. Generally, feature extraction can be determined as a 2D
displacement operation in the convolutional layer:

]l
ot = J(Z wl.al,; +bY) )
j=1

Now, the variable a{*' indicates the feature map i to convolution layer ! + 1, and

w* represents the weighted matrices of kernel function in the convolution layer [ that
generates the next input layer via convoluting with the output of the preceding layer, al,;.
The variable b} refers to the bias vector. Another significant layer in the convolutional
network is the pooling layer. These layers perform a kind of nonlinear down-sampling;
hence, they decrease the size of the dataset by integrating the output related to the
adjusted neuron in the convolutional layer. After every convolution layer, a pooling layer
is positioned in a period to summarize the output of the convolutional layer on the
network [32].

This study presented the effect of having any connections between CNN layers. Next,
researchers tried to construct a deep CNN that has the shortest connections between
layers nearer the input and output. The outcome showed that the deep CNN model has
the shortest connections between layers, and is more precise and effective to train
(ResNet). ResNet has skip-connections amongst deep layers that bypass the non-linear
transformation layer. As an alternative to ResNets, researchers introduced DenseNet,
which has a fully connected layer [33].

In DenseNet, layers have direct connections to other succeeding layers. Consequently the
[t" layer attains the function chart of each preceding layer X, to X;_;, as in Equation (3).

l
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X, = H([Xo, X1, X;-1]) 3)

[Xo, X1, X;—1] represents the feature-map spectrum generated in the layers 0,1.1 —
1. Researchers trained the DenseNet model using ImageNet datasets; the test outcome was
from 5.29% to 7.71% errors in prediction [34]. The DenseNet model with ImageNet pre-
trained weights caused the growth rate for each network to be k = 32. The DenseNet
model was used in the study where the global average pooling had shape (1,1664).

3.3. Hyperparameter Tuning

To optimally modify DenseNet’s hyperparameters, the COA was used. COA is
simulated by the hunting nature of chimps [35-38]. The primary two roles in team
hunting, such as chase and driver scenarios, are statistically defined as:

d= |C-xprey(t) —m. xchimp(t)l 4)
xchimp(t +1) = xprey(t) —a-d (5)

t implies the count of present iterations; a, m, and c are co-efficient vectors; Xy,
defines the prey point vector; and xp;m;, stands for the chimp point vector. The vectors
m, and ¢ are computed by Eqations (6)—(8), correspondingly.

a=2-f-n—f (6)
c=2-'1 ()
m = Chaotic — value (8)

f reduces the non-linearly by an iterative procedure in 2.5 to 0 (either exploration or
extraction stages), but r; and r, are arbitrary vectors from the interval of one and zero.
Likewise, m defines the vector which is computed dependent upon a turbulent map
[30,31]. This vector represents the outcome of the chimp’s sexual stimulus on the hunting
procedure.

The stochastic populace generation is a primary stage of the ChOA technique.
Afterward, the chimps are arbitrarily decided into four independent groups—namely
attacker, barrier, driver, and chaser. All the group approaches define the place-upgrading
process of individual chimps by defining the f vector, but every group’s purpose is
estimating the potential prey’s place [39-42]. The ¢ and m vectors were tuned adaptably
and improve the local minimum avoidance and rate of convergence.

Chimps (chaser, driver, and barrier) search for prey and then surround it. The
hunting procedure is commonly implemented by attacking chimps [40]. The chasing
stimuli, obstacles, and chimps at times contribute to the hunting procedure. To
mathematically act out chimps’ performance, it can be considered that the primary
attackers (an optimum solution accessible), the pursuer, the stimulus, and the obstacle are
more aware of the prey’s place [43-45]. Therefore, the four optimum solutions were
achieved, and storage and another chimp were forced to update their places based on
optimum chimp places. This connection is written by Equations (9)—(11).
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Aattacker = [€1%attac — M1 X\, dparrier = |C2XBarrier — M2X|
d =| - |, dpriver = | R | )
Chaser = |1C3Xchaser M3X|, Apriver = |CaXpriver myXx
X1 = Xattacker — @1 (Qattacker)s X2 = Xparrier — A2 (Aparrier) (10)
X3 = Xchaser — 43 (dchaser)'xzt = Xpriver — Q4 (dDriver)
X1 +x, +x3 +x
x(t+1) == 24 3 4 (11)

x1 is the best solution; x2 is the second-best solution; x3 is the third-best solution; x4 is the
fourth-best solution. m mathematically processes chimps’ chaotic performance in the
hunting last step for obtaining further meat, and afterward, further social favors, such as
grooming.

3.4. Facial Expression Classification

To carry out the FER method, the LSTM model was utilized in this study. LSTM is a
kind of network structure that is intended to resolve the RNN problem of an unstable
gradient that limits its use for modeling temporal dependency and long-term activity
sequences with those data gained from a sensor [46—48]. Thereby, the LSTM architecture
could learn long-term dependency that is impossible via RNN. The building block of
LSTM is the cell state. With the grouping of memory cells, the LSTM controls the input
data flow. It can be obtained by the gate structure that could optionally permit data to be
entered. The LSTM comprises three gates for controlling the values of the cell state. Figure
2 depicts the infrastructure of LSTM.

ht‘

Ct-1 @ e Ctb

A

—Q
2 k2 B0

ht-1 ht

Xt

Figure 2. Architecture of LSTM.

The initial gate of LSTM determines which data should be clear from the cell position.
The outcome can be performed using a sigmoid layer named the “forget gate”. The output
of these gates is demonstrated in Equation (12), where u, indicates the input vector at
time t (existing input); h,_; represents the history or memory value from the preceding
time step; w,) and w(,, indicates the weight matrices, correspondingly, associated with
the uand h values; and b denotes the bias vector that determines the transformation of
the specific gate [49]. This gate output 0 or 1 value for all the numbers in the cell state
c;—1 concerning h;_; and u,. The value of 0 signifies “completely forgetting these
states”, whereas the value of 1 signifies completely keeping these states.

fi = af(wufut+wh fheor + b) (12)
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The next gate is intended to decide which novel information needs to be stored in all
the cell states. The procedure has two phases. Initially, there exists a sigmoid layer named
the input gate to determine what value needs to be upgraded. Next, it generates a vector
named g, that is added to the cell state with the help of a hyperbolic tangent layer as
follows:

i = 0;(Wyug + wpibe—y + by) (13)
gr = tanh (wygu, + wygb,_; + b,) (14)
Then, the oldest cell state C;_; is enhanced by the new cell state, g,.

cc=fr -1 ti gt (15)
0 = o(WyoUs + Wpobe_q + b,) (16)

Consequently, the value of output variable b, (novel history) is upgraded in all the
steps based on the value of cell state ¢, and the output value 0,:

bt = Of - tanh (Ct) (17)

To enhance the efficacy of the LSTM model, the TLBO algorithm is exploited for the
hyperparameter tuning process. TLBO technique is a novel metaheuristic algorithm that
enhances the knowledge level by simulating “teaching” and “learning” from people’s
learning procedures [50-52]. TLBO is the feature of some parameters and performs well.
TLBO is well implemented in mechanical-design-optimized, heat-exchanger-optimized,
thermoelectric-cooler-optimized applications.

For facilitating understanding, the subsequent are any basic explanations of the
TLBO technique:

Definition 1: Search space for individual (solution vector) X = (xy,%, , ..., Xp) named learners;
x; (i=12..,D) is the i course for students.

Definition 2: The group of students is termed a class.

Definition 3: Students with the maximum level (fitness) Xxbest = (xjbest, Xybest, ..., Xpbest) are
termed Xteaher In the TLBO technique, the class is equivalent to the population from GA, a
student is equivalent to an individual, and the teacher is an individual with the maximum adaptive
value. The task of teachers is to teach hard and promote the average level of students in the class.
The students enhance their skills by learning from teachers and interconnecting with classmates.
The TLBO technique was separated into two stages: the teaching stage and the learning stage as
shown in below Algorithm 1.

Algorithm 1: Teaching stage.

For each learner X/ = (x{,xg,---,xg)(j =12,---,NP) Do

XMV = xJo trand() x(xP°t — Ty X Mean,),j = 1,2, -+,NP,i = 1,2, -,D
If XImewR T X704 then

xJ = ximew

End if

End for

Here, xlj'(’ld and xlj'new i imply the knowledge level of X/'S i before and after
teaching, correspondingly. Rand () defines the arbitrary sum between zero and one.

The learning technique is as follows:
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NP
1 .
Tz = round[1 + rand()], Mean; = ﬁz x], (18)

Jj=1

NP refers the entire count of students, and D defines the count of courses
(dimensional) as shown in below Algorithm 2.

Algorithm 2: Learning stage.
For each learner X/j =1,2...NP,
Choose a student X* at arbitrary from the class (j # k)
If X/ ishigherto X* then
xjmew = xjold 4 rand1(1, D)x(X’ — X*)

Else
Ximew = xJjold § rand(1,D)x — (X k — X7)
End
if X/ is superior to X/°'4 then
X7 = ximew|
End if
End for

To improve classification results, a fitness function (FF) will be developed using the
TLBO strategy. A positive integer is chosen to denote that the candidate solutions are
superior. For the purposes of this article, the FF will be defined as the reduction in the
classifier’s overall error rate, as demonstrated by Equation (19).

fitness(x;) = ClassifierErrorRate(x;)

_ number of misclassified samples £ 100 (19)

Total number of samples

TLBOis an algorithm that does not require input parameters. TLBO only requires the
parameters of population and generation size. In a reasonable amount of time, the TLBO
algorithm achieves optimal results when solving numerous discrete and continuous
optimization problems [53-55]. We propose the ChOA Algorithm, which was inspired by
TLBO. In TLBO, there are two distinct phases: teaching and learning. The ChOA algorithm
consists of just one step. It is simpler to implement than TLBO. In the first step, candidates
with random values are added to the population, as show in Figure 3. Candidates’ fitness
levels are determined by a fitness function [56]. The optimal candidate among the
candidates is identified (Xbest). Furthermore, the candidate with the poorest fitness is
identified (Xworst)[57]. The candidate solutions in the population are modified based on
the preceding equation.
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Figure 3. RFER-EADL's process.

4. Results and Discussion

The experimental justification of the RFER-EADL technique took place using the CK+
dataset [26], which holds 837 images under seven class labels, as depicted in Table 2.
Figure 4 shows some sample images. The FER-2013 dataset’s training set has 28,000 tagged
images. The development set includes 3500 tagged photos, whereas the test set includes
3500 images. FER-2013 labels each image with one of seven emotions: joyful, sad, angry,

terrified, astonished, disgusted, or neutral.

Happiness is the most prevalent emotion, being present in 24.4% of images. FER-2013
includes both posed and unposed headshots. The photos are all grayscale and 48 x 48
pixels in size. The FER-2013 dataset was created by compiling the results of each emotion’s

Google search and its synonyms.
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S S

Figure 4. Sample images.

Table 2. Dataset details.

Label Description No. of Images

An Anger 45
Co Contempt 18
Di Disgust 59
Fe Fear 25
Ha Happy 69
Nu Neutral 593
Sa Sad 28

Total Number of Images 837

The RFER-EADL confusion matrices produced on the FER process are showcased in
Figure 5. The figure indicates that the RFER-EADL model expertly recognized all seven
different facial expressions under varying TR and TS data.

Training Phase (70%) - Confusion Matrix Testing Phase (30%) - Confusion Matrix
-3 28 o (] o 1 1 o £ 15 (] o o o o o
8- © 6 2 2 ] 3 o 8- © 4 o o o 1 o
a5 1 1 40 ] ] 1 ] - 0 (] 15 o 0 1 o
3 ]
Z 2- © ] o 11 1 7l 1 E & © o o 10 ] 1 o
< <
- 0 o 1 ] 49 4 o £- 0 o o o 14 1 o
2- 1 ] o o ] a11 o 2- o o 1 o o 179 1
E- O o o ] 1 1 17 &- 0 o o o o 1 8
An Co Di Fe Ha Nu sa An Co Di Fe Ha Nu Sa
Predicted Predicted
(a) (b)
Training Phase (80%) - Confusion Matrix Testing Phase (20%) - Confusion Matrix
5 Jas ] o o o 4 o 5 6 o o o o o o
8 o 10 o ] 1 3 1 8 o 3 o o o o o
s- 0 ] 41 ] 1 2 1 s- 0 o 14 o ] o o
3 ]
g & o© o 2 12 ] 2 o 2 & o© o 1 6 1 1 o
< <
= 2 ] o o 52 3 1 £ 0 1 o o 10 o o
ERN ] ] o o 3 469 o 2- o o 1 o o m o
E- R ] 1 o 1 1 21 & o o o o o 2 2
An Co Di Fe Ha Nu sa An Co Di Fe Ha Nu Sa
Predicted Predicted
(c) Cd)

Figure 5. Confusion matrices of the RFER-EADL algorithm: (a) 70% of the TR dataset, (b) 30% of the
TS dataset, (c) 80% of the TR dataset, and (d) 20% of the TS dataset.



Appl. Sci. 2023, 13, 468

12 of 21

Table 3 demonstrates the overall FER outcomes of the RFER-EADL model on 70% of
TR data and 30% of TS data.

Table 3. RFER-EADL algorithm with different class labels for 70:30 of TR and TS datasets.

Labels Accuracy Sensitivity  Specificity = F-Score MCC
Training Validation (70%)

An 99.32 93.33 99.64 93.33 92.97
Co 98.63 46.15 99.83 60.00 62.33
Di 98.97 93.02 99.45 93.02 92.47
Fe 99.15 78.57 99.65 81.48 81.10
Ha 98.63 90.74 99.44 92.45 91.72
Nu 97.95 99.76 93.64 98.56 95.07
Sa 99.49 89.47 99.82 91.89 91.66
Average 98.88 84.44 98.78 87.25 86.76
Testing (30%)

An 100.00 100.00 100.00 100.00 100.00
Co 99.60 80.00 100.00 88.89 89.26
Di 99.21 93.75 99.58 93.75 93.33
Fe 99.60 90.91 100.00 95.24 95.15
Ha 99.60 93.33 100.00 96.55 96.41
Nu 97.22 98.90 92.96 98.08 93.09
Sa 99.21 88.89 99.59 88.89 88.48
Average 99.21 92.25 98.87 94.49 93.67

Figure 6 illustrates the FER results of the RFER-EADL model on 70% of the TR
dataset. The results suggest that the RFER-EADL technique recognized all facial
expressions accurately. For instance, in class A, the RFER-EADL model offered accu,, of
99.32%, sens,, of 93.33%, spec, of 99.64%, an Fysy of 93.33%, and an MCC of 92.97%.
Additionally, for class Co, the RFER-EADL technique rendered accu, of 98.63%, sens,,
of 46.15%, spec, of 99.83%, an Fy.ore 0of 60%, and an MCC of 62.33%. Moreover, for class
Di, the RFER-EADL technique granted accu, of 98.97%, sens, of 93.02%, spec, of
99.45%, an Fy.yre 0of 93.02%, and an MCC of 92.47%.

Training Phase (70%)

100.0 -

97.5

95.0 1

92.5

90.0

Average Values (%)

87.5

-0 = B 01

T T T T
Accuracy Sensitivity  Specificity F-Score MCC

Figure 6. Average analysis of the RFER-EADL algorithm under 70% of TR dataset.

Figure 7 exemplifies the FER results of the RFER-EADL on 30% of the TS dataset. The
outcomes denoted by the RFER-EADL approach recognized all facial expressions
precisely. For example, for class A, the RFER-EADL technique achieved presented accu,,
of 100%, sens, of 100%, spec, of 100%, an Fs,, of 100%, and an MCC of 100%.
Likewise, for class Co, the RFER-EADL technique rendered accu, of 99.60%, sens, of
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80%, spec, of 100%, an Fyyy, of 88.89%, and an MCC of 89.26%. Further, on class Di, the
RFER-EADL technique provided accu, of 99.21%, sens, of 93.75%, spec, of 99.58%, an
Fycore 0f 93.75%, and an MCC of 93.33%.

Testing Phase (30%)

100 -
)
E o8-
0
Q
=
©
> 96
Q
=2
©
o
S 94
<
92 -
90 T
Accuracy

Sensitivity

Specificity

F-Score

MCC

Figure 7. Average analysis of RFER-EADL algorithm under 30% of the TS dataset.

Table 4 establishes the overall FER results of the RFER-EADL approach on 20% of TS
data and 80% of TR data. Figure 8 shows the FER results of the RFER-EADL technique on
80% of TR data. The effects specify that the RFER-EADL algorithm recognized all facial
expressions accurately. For example, for class A, the RFER-EADL methodology provided
accu,, of 99.10%, sens, of 89.74%, spec, of 99.68%, an Fycore of 92.11%, and an MCC of
91.67%. Additionally, for class Di, the RFER-EADL approach provided accu,, of 98.95%,
sens, of 91.11%, spec, of 99.52%, an Fy.qre of 92.13%, and an MCC of 91.58%.

Table 4. Results of the RFER-EADL algorithm for 80:20 of the TR and TS datasets.

Labels Accuracy Sensitivity Specificity F-Score MCC
Training Phase (80%)

An 99.10 89.74 99.68 92.11 91.67
Co 99.25 66.67 100.00 80.00 81.34
Di 98.95 91.11 99.52 92.13 91.58
Fe 99.40 75.00 100.00 85.71 86.34
Ha 98.21 89.66 99.02 89.66 88.67
Nu 97.31 99.36 92.39 98.12 93.50
Sa 99.10 87.50 99.53 87.50 87.03
Average 98.76 85.58 98.59 89.32 88.59
Testing Phase (20%)

An 100.00 100.00 100.00 100.00 100.00
Co 99.40 100.00 99.39 85.71 86.34
Di 98.81 100.00 98.70 93.33 92.93
Fe 98.21 66.67 100.00 80.00 80.89
Ha 98.81 90.91 99.36 90.91 90.27
Nu 97.62 99.17 93.62 98.36 94.06
Sa 98.81 50.00 100.00 66.67 70.28
Average 98.81 86.68 98.73 87.85 87.82




Appl. Sci. 2023, 13, 468 14 of 21

Training Phase (80%)

100 1
98 -
S 96-
2
5 oa;
s
o 921
5 90
z
88 -
86 -
84 -

Accuracy Sensmwty Specificity F-Score
Figure 8. Average analysis of the RFER-EADL algorithm for 80% of the TR dataset.

Figure 9 demonstrates the FER results of the RFER-EADL technique on 20% of the TS
data. The results designate the RFER-EADL approach recognized all facial expressions
accurately. For example, for class A, the RFER-EADL algorithm provided accu, of 100%,
sens, of 100%, spec, of 100%, an Fscore of 100%, and an MCC of 100%. Additionally, for
class Co, the RFER-EADL approach granted accu,, of 99.40%, sens, of 100%, spec, of
99.39%, an Fy.ore Of 85.71%, and an MCC of 86.34%. Additionally, for class Di, the RFER-
EADL approach provided accu, of 98.81%, sens, of 100%, spec, of 98.70%, an Fycore
of 93.33%, and an MCC of 92.93%.

Testing Phase (20%)

100 -

98 -

96-

94 -

92 -

90 -

Average Values (%)

]
84 -

Accuracy Sensitivity Specificity F-Score

Figure 9. Average analysis of the RFER-EADL algorithm for 20% of the TS dataset.

Figure 10 shows the training accuracy (TRA) and validation accuracy (VLA) obtained
by the RFER-EADL approach on the test dataset. The experimental results show that the
RFER-EADL approach obtained higher TRA and VLA values. VLA appears to be greater
than TRA.
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Figure 10. TRA and VLA analysis of the RFER-EADL algorithm.
Figure 11 depicts the training loss (TRL) and validation loss (VLL) obtained by the
RFER-EADL approach on the test dataset. The RFER-EADL approach produced

experimental results with minimal TRL and VLL values. The VLL, in particular, is less
than the TRL.

Training and Validation Loss

—— Training
—— Validation

Loss

Epochs

Figure 11. TRL and VLL analysis of the RFER-EADL algorithm.

Figure 12 depicts a clear precision-recall assessment of the RFER-EADL algorithm
using the test dataset. The RFER-EADL technique, as depicted in the figure, resulted in
high precision-recall values in each class label.

Figure 13 depicts a quick ROC analysis of the RFER-EADL algorithm on the test
dataset. The results demonstrate that the RFER-EADL approach is capable of classifying
various classes.
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Figure 13. ROC curve analysis of the RFER-EADL algorithm.

A comparison of the RFER-EADL model with other DL models is shown in Table 5
and Figure 14 [25]. These outcomes show that the LLDHF-FER and DSA-FER techniques
reach lower accu, values of 88.49% and 89.64%, respectively.

Table 5. Comparative analysis of RFER-EADL and other modern algorithms.

Methods Accuracy (%)
RFER-EADL 99.21
LLDHF-FER 88.49
DSA-FER 89.64
FD-CNN 94.35
LSTM 93.12
Bi-LSTM 93.87
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Figure 14. Accu,, analysis of the RFER-EADL approach and other modern algorithms.

Next, the LSTM and Bi-LSTM models reached closer accu, values of 93.12% and
93.87%, respectively. Though the FD-CNN model resulted in a considerable accu, of
94.35%, the RFER-EADL model provided the maximum accu, of 99.21%. These results
confirm the enhanced FER outcomes of the RFER-EADL model.

Figure 15 displays the training and testing accuracy analysis of the RFER-EADL
technique applied to localization data. In testing and training accuracy, the proposed
RFER-EADL model achieved superior performance. Notable is the fact that after 50
epochs, the accuracy values become saturated. Testing accuracy becomes much smaller
than the training accuracy after the 20th epochs. This means that our proposed model has
higher performance in training and testing accuracy.

Model accuracy

10 A

epoch

Figure 15. RFER-EADL training and testing accuracy.

Figure 16 displays a validation loss analysis of the RFER-EADL technique applied to
localization data. In comparison to training loss, the Faster RCNN-DBMF approach
minimized loss values. Notable is the fact that after 50 epochs, the loss values become
saturated. Training loss becomes much smaller than the validation loss after the 20th
epochs. This means that our model has higher performance on the training dataset.
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Figure 16. Proposed RFER-EADL model validation loss analysis.

5. Conclusions

In this study, the RFER-EADL technique for emotion recognition in facial
photographs was established. The RFER-EADL technique employs the HE process first.
The COA with the DenseNet-169 model is then used to extract features. Finally, the TLBO
with an LSTM model is used to identify and classify facial expressions. The COA and
TLBO algorithms were designed to aid in the optimal parameter selection of the DenseNet
and LSTM models, respectively. A brief simulation examination on the benchmark dataset
showed that the RFER-EADL strategy outperforms alternatives. A thorough comparison
analysis confirmed the RFER-EADL technique’s superiority over contemporary DL
models. When compared to other conventional techniques, the RFER-EADL model
outperformed them all, achieving the maximum accuracy of 99.21%. In the future, the
RFER-EADL model could be used in real-time video surveillance applications.
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