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Abstract: Landslide early warning is a key technology for effective landslide prevention and control.
However, the traditional landslide early warning mainly makes decisions through thresholds, and if
the thresholds are not selected properly, it will lead to missing alarms and false alarms frequently. To
resolve this problem, this study proposes a landslide early warning algorithm based on a K-means-
ResNet model. This method uses the K-means method to cluster the landslide deformation state,
and then uses ResNet to classify the landslide rainfall and deformation data, so as to realize the
threshold-free judgment and early warning of landslide deformation state. The model was applied to
the Zhongma landslide, Guangxi Province, China, and the Shangmao landslide, Hunan Province,
China, for validation and evaluation. The results showed that the accuracy, precision and recall of
the proposed model can reach 0.975, 0.938, 0.863 and 0.993, 0.993, 0.925, respectively, for classifying
the deformation states of the two landslides, and the classification results are better than those of
the baseline model. Compared with the threshold-based early warning method, the proposed early
warning method does not require artificial determination of threshold parameters and can effectively
identify landslide deformation states, which can not only reduce false alarms and missing alarms but
also improve the reliability of early warning.

Keywords: landslide warning; ResNet; K-means; classification; cluster

1. Introduction

Landslide disasters are extremely common around the world and are characterized
by their sudden occurrence, wide distribution and being highly destructive [1]. Landslide
disasters cause serious damage to the local residents, as well as natural resources, ecology
and the environment. However, it is difficult to accurately forecast the location, time and
intensity of occurrence. Landslide deformation monitoring and early warning help reduce
the damages caused by landslide disaster. Therefore, related studies are abundant [2,3].

With the development of monitoring technology, such as GPS, InSAR technology and
3D laser scanning, huge amounts of high temporal and spatial resolution data have become
available. Furthermore, automatic landslide identification technology has been developed,
laying the foundation for the development of landslide early warning technology.

A landslide monitoring system mainly includes risk identification, monitoring, early
warning and emergency response measures. Risk identification is mainly carried out by
geological experts to determine whether the slope is at risk by field exploration [4]. Monitor-
ing is an important part of the whole system and the basis of early warning, which consists
of various types of sensors, such as rain gauges [5], inclinometers [6], etc. With the devel-
opment of monitoring technology, the level of landslide monitoring has been significantly
improved [7], and gradually transitioned from low precision and manual monitoring in the
past to high precision and automated monitoring, such as global navigation satellite system
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(GNSS), light detection and ranging (LIDAR) [8], 3D laser scanning [9], etc. Compared
with conventional monitoring means, the new technology will also have more landslide
monitoring data, which lays the foundation for the development of landslide early warning
technology. The emergency response measures are the response methods after the landslide
occurrence warning, and the relevant person in charge is notified by SMS or email. The
early warning part is the key to the whole system, an important means to reduce the loss
caused by landslide, and also the core of this study. At present, landslide warning depends
on traditional empirical threshold warning methods, which use the threshold value as
the discriminating criterion. The threshold value is generally determined according to
the landslide development trend combined with expertise experience. Many scholars use
landslide displacement rate, tangent angle and rainfall as landslide warning criteria [10–15]
for real-time landslide warning. Li et al. [16] set a velocity threshold for early warning
based on the actual creep of large rock landslides. Guzzetti et al. [17] determined the
minimum rainfall intensity and duration as a threshold for landslide warning by analyzing
the relationship between landslides and rainfall. C. Atzeni et al. [18] used ground-based
interferometric synthetic aperture radar (GBInSAR) to monitor landslide deformation and
set displacement rate thresholds for early warning. Ponziani et al. [19] analyzed the rela-
tionship between soil moisture and rainfall (rainfall impact was quantified as the 24, 36
and 48 h maximum cumulative rainfall values) to monitor and warn landslides.

Mass landslide monitoring results show that landslides of different materials (soil,
rock, etc.), sizes and trigger factors have very different deformation thresholds, so we
cannot set one threshold for all landslides. Improper threshold causes false alarm or
missing alarm.

In the era of big data, data analysis, such as numerical simulation and machine
learning, has been used for landslide early warning [20–22]. Some efforts have been made
to analyze landslide deformation data to extract the deformation characteristics and obtain
the relationship among trigger factors. Data analysis was employed to select appropriate
thresholds for landslide warning. Valletta A et al. [23] identified the beginning of the
landslide acceleration process by using a multi-criteria approach to analyze monitoring
displacement data, so as to reduce the false alarms caused by minor landslide acceleration.
Xu et al. [24] proposed a phase division method to explore the tangent angle characteristics
of the displacement time curve and proposed an early warning method based on the
improved tangent angle. However, the improved tangent angle requires the average
velocity during the constant deformation phase of the landslide, which is difficult to
obtain at the beginning of monitoring. Bai et al. [25] combined the conventional warning
method based on the threshold of cumulative displacement, velocity and acceleration,
with the method on the basis of normalized tangent angle. They used the time window
method to analyze the monitoring data and calculate the warning parameters. They
proposed a warning method that divides the warning into normal level and dangerous
level. This method improves the warning accuracy, but the parameter determination still
depends on experience. Dai et al. [26] proposed a landslide warning method on the basis
of displacement back-analysis based on long short-term memory networks (DBA-LSTM)
and numerical simulation algorithm. The method was verified in the Shangtan landslide,
Guangxi Province, China. However, the prediction ability of DBA-LSTM calculation
depends on the correct choice of the model parameter setting.

The above methods effectively improve the accuracy of landslide warning, but they
all need some a priori parameters, which determine the accuracy of the algorithms. The
selection of these parameters relies on experience, which is not robust. The clustering
and classification algorithms, such as K-means method and ResNet method, do not set
thresholds for early warning, but classify the warning according to landslide deformation
state. The K-means method is an unsupervised clustering method, which is widely used for
landslide deformation state classification, due to its simple principle, convenient calculation
and rapid convergence [27]. The ResNet method is a supervised classification method that
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uses a residual structure to improve the accuracy of deep network training. It has been
widely used in landslide early warning [28].

This study proposes a landslide early warning model based on the K-means-ResNet
fast classification algorithm, which does not require setting a priori parameters. Firstly,
considering the velocity changes in landslide deformation, we use the K-means algorithm
to cluster the deformation states of landslides and define the dangerous categories. Then,
the features obtained by gray correlation analysis are used as input features. Based on the
ResNet algorithm, we establish a classifier that can automatically recognize the landslide
deformation state by adaptively searching for suitable features. In order to verify the
performance of the model, the Zhongma landslide in Guangxi Province and Shangmao
landslide, in Hunan Province, China, are selected as the study cases, because they are
relatively representative landslides in their regions, and there are signs of sliding. They
will continue to slide for some time in the future, and the landslide instability will cause
more serious economic losses and casualties. Analyzing the data of these two landslides is
beneficial to the subsequent early warning. The proposed method is also compared with
models such as MLP and LeNet and traditional threshold warning.

2. Methodology
2.1. Time Series Decomposition

Landslide displacement data and rainfall data are all time series data, and can be
written as T = (t1, t2, . . . , tt_length).

Landslide time series decomposition can obtain multiple unlabeled subsequences,
providing a data basis for landslide data clustering. The landslide time series data are
generally processed by the sliding window. Specifically, the time series is divided into
multiple equal-length subsequences by a window with the length of w sliding sequentially
over the series with a step of d.

2.2. Landslide State Clustering and Dataset Production

The K-means algorithm is an unsupervised clustering algorithm [29]. Using Euclidean
distance for evaluating data similarity, the method adds classification labels to the land-
slide data, adaptively classifies the landslide temporal data and produces a dataset for
subsequent classification by the ResNet algorithm.

Its basic idea is to initialize K cluster class centers and classify the samples of each
cluster according to their distance to the cluster centroid at first. Then, iterate to achieve
the minimum distance between the sample and the cluster center.

The loss function is Equation (1).

J(C) =
K

∑
k=1

∑
x(i)∈Ck

∥∥∥x(i) − µ(k)
∥∥∥2

2
(1)

where x(i) denotes the data point, Ck denotes the dataset of class k and µ(k) = 1
|Ck | ∑

x(i)∈Ck

x(i)

is the center of cluster Ck.
The K-means clustering algorithm consists of the following steps:

(1) Initialize the centers of K clusters, µ(1), µ(2), . . . , µ(k).

(2) Calculate the distance from a data point to all cluster centers, and take the label of the
closest one (Equation (2)) as the label of that data point.

arg min
k

∥∥∥x(i) − µ(k)
∥∥∥2

2
(2)

(3) Update the K clustering center according to the results of step 2.
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µ(k) =
1
|Ck| ∑

x(i)∈Ck

x(i) (3)

(4) Repeat steps 2 and 3 until convergence, i.e., the K clustering centers do not change.

The K-means algorithm divides the data into K clusters, and the effect of the algorithm
vary greatly with the K value, which is determined by the elbow method.

The core metric of the elbow method is the sum of the squared errors (SSE).

SSE =
k

∑
i=1

∑
p∈Ci

|p−mi|2 (4)

where Ci is the i-th cluster, p is the sample point in Ci, mi is the centroid of Ci (the mean of
all samples in Ci) and SSE is the clustering error of all samples, which reflects the clustering
effectiveness.

As the number of categories increases, the decline in SSE slows down abruptly, then
levels off as the value of k continues increasing. The elbow method selects the inflection
point as the K.

2.3. Deep Residual Networks

ResNet is a neural network structure [30]. In theory, the deeper the layers of the
network, the more complex the feature the network can extract. So, the deeper network
should perform better than the shallow network. However, in practice, deeper networks
did not achieve better results. For a model with many layers, the training accuracy of the
model layers decreases with the depth, so deeper layers may perform worse than shallow
ones. Besides, the deeper layers have gradient disappearance and gradient explosion
problems. ResNet solves such problems by introducing a residual network (Figure 1). The
residual network replaces the learning target H(x) with the difference between H(x) and
input x, expressed as F(x) = H(x)− x. Therefore, the later training goal is to make residual
F(x) converge to 0.

Figure 1. Residual network.

When the input x is convolved, if the dimensionality does not change, the output F(x)
and x have the same dimensionality. The output of the residual block is the sum of F(x)
and x.

H(x) = F(x) + x (5)

If the dimensionality changes, the output F(x) has a different dimension from x. It is
necessary to adjust the dimensionality of x by convolving it with 1× 1 and then adding it
to F(x).

H(x) = F(x) + W(x) (6)
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ResNet consists of 5 convolutional layers and 1 integrated module. All convolutional
layers consist of different numbers of stacked residual modules, and the integrated module
consists of fully connected layers, pooling layers and classification modules. Each residual
module has some hidden layers. Therefore, ResNet has different numbers of layers, such
as 18, 34, 50, 101 and 152 layers. The ResNet with different layers has different number of
residual blocks and different parameters in the residual blocks for each convolutional layer.

As Figure 2 shows, ResNet has two residual structures. The residual structure on the
left is for networks with fewer layers, such as ResNet-18 and ResNet-34, and the one on
the right can effectively reduce the network parameters and operations for networks with
more layers, such as ResNet-101 and ResNet-152.

Figure 2. Residual structures of the ResNet. The left panel is for the networks with fewer layers, such
as ResNet-18 and ResNet-34. The right one is for the networks with more layers, such as ResNet-101
and ResNet-152.

ResNet resolves the degeneracy problem of the network, making the network better
trained and easier to optimize. It deepens the network and achieves a better classification
effect and better application in the field of computer vision.

2.4. The Proposed Model

In order to improve the accuracy of landslide warning and reduce the false and missing
alarms caused by the wrong thresholds, we propose a landslide warning model based on
the K-means-ResNet algorithm.

The proposed model has four parts: constructing landslide displacement subsequence,
extracting features and K-means clustering, obtaining input features by gray correlation
analysis [31] and ResNet classification (Figure 3).

(1) Construct landslide displacement subseries

Landslide displacement is a non-smooth time series that varies with time. The dis-
placement time series data are used to generate more equal-length time series for data
analysis by the sliding window.

(2) Extract features and perform K-means clustering

Traditional clustering methods cannot be applied to time series data directly, so we
extract features of the time series subsequences for analysis.

Deformation velocity can directly reflect the landslide status. The extracted velocity
has a different order of magnitude, so it is normalized, that is, mapped to an interval of
[0, 1], to ensure the accuracy and validity of the clustering results. The K-means algorithm
is used to cluster the velocity and acceleration. Based on the clustering results, a dataset
with labels is constructed to identify the categories prone to landslides, and take them as
the basis for landslide warning.

(3) Obtain input features by grey correlation analysis
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The deformation of landslide is caused by a combination of factors. Therefore, a dataset
consisting of landslide triggering factors and monitored displacement is constructed to
select the deformation characteristics factors by gray correlation analysis.

(4) ResNet classification

The classification dataset is constructed based on the feature factors using clustering
results as labels, and it is divided into a training set and a test set. The ResNet classification
model is applied to the datasets, and the results are compared with those of the MLP model,
the LeNet model and the traditional threshold warning method.

Figure 3. Flowchart of the proposed method.
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2.5. Evaluation Indicators

The effectiveness of the K-means-ResNet model is assessed by accuracy, precision and
recall. In the multi-category problem, each category is considered as “positive” and the rest
are considered as “negative”.

Accuracy: The ratio of the correctly classified samples to the total samples. It is the
most commonly used metric in classification.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

where TP denotes the number of the correctly classified positive samples, TN is the number
of the correctly classified negative samples, FP is the number of the negative samples
that are misclassified as positive and FN is the number of the positive samples that are
misclassified as negative.

Precision: The ratio of the correctly classified positive samples to all positive samples.

Precision =
TP

TP + FP
(8)

Recall: The ratio of the correctly classified positive samples to all positive samples.

Recall =
TP

TP + FN
(9)

3. Case Study: Zhongma Landslide
3.1. Landslide Overview

The Zhongma landslide locates in Pingtian Village, Guangxi Province, China (Figure 4).
The volume of the whole landslide is about 212 m (vertical length) × 111 m (horizontal
length) × 24.5 m (thickness), which is large. The main sliding direction of the landslide
is 270◦. The slope failed after the rainy season in 2007. In 2013, the landslide was reacti-
vated by the continuous heavy rainfall brought by two typhoons, “Yut” and “Tammy”.
A 300 m long section showed more obvious deformation displacement. On-site inves-
tigation reported that the landslide body is mainly muddy siltstone, gravel and clay
containing gravel.

Figure 4. A photograph of the Zhongma landslide (left) and the location of the study area in China (right).

The upper layer of the landslide is the Quaternary overburden, and the lower layer
is bedrock. The upper soil layer of the landslide is affected by rainfall infiltration. On the
one hand, the soil capacity increases and the sliding force increases. On the other hand,
the soil shear strength and other parameters decrease; in particular, the friction at the
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soil–rock interface decreases sharply, leading to a decrease in the landslide resistance. The
combined effect of the two factors causes the landslide to start deformation acceleration. It
can be found that rainfall is the main triggering factor of the landslide, so we must consider
the rainfall factor when conducting early warning, which fully considers the landslide
deformation mechanism and can improve the accuracy of early warning.

3.2. Landslide Monitoring Data

Eight GNSS stations and one rainfall station (Figure 4) were deployed on the landslide.
The GNSS stations were installed on the main deformation area of the landslide. The GNSS
data were collected every hour, and the rainfall data were collected every 24 h.

As Figure 5 shows, the deformation of the Zhongma landslide has obvious acceleration
steps, temporally coincident with the periods of continuous rainfall or after a large rainfall.
So, the landslide deformation is closely related to the amount of rainfall.

Figure 5. Deformation data and rainfall data of the Zhongma landslide.

3.3. K-Means Clustering

The GNSS-4 with more obvious deformation and less noisy data and the rainfall station
was selected for the study. From 23 April 2019 to 7 December 2021, 13,670 monitoring data
were collected, including 12,724 GNSS-4 data and 946 daily rainfall data.

Notably, in real landslide displacement monitoring, missing values may be caused
by various factors, so they may appear at any time. Before being used for training and
classification, the displacement data are processed by methods such as one-time sample
difference to obtain an isochronous order. We used the slide window with the size of 48
and step size of 2 to construct the landslide displacement subseries, so each subseries has a
time span of 2 days and a data length of 48 items. Finally, 23,050 data items were generated.

The velocity feature was extracted from each subseries using least squares fitting. The
max–min normalization was applied to the two features, see Equation (10).

Xnorm =
X− Xmin

Xmax − Xmin
(10)

K-means clustering was performed and the K values were determined by the elbow
method. In Figure 6, the K value is 4.
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Figure 6. Elbow method results.

We select K = 4 for K-means clustering. The clustering centroids are shown in Table 1,
and the clustering results are shown in Figure 7. We divide the warning into three levels.
Level 1: The medium speed state. At this level, the deformation speeds up. The landslide
has the possibility of occurrence. Level 2: The high speed state. In this state, the deformation
velocity is high. The landslide is in a more dangerous state. Level 3: The super high speed
state, in which the displacement velocity is large. In this state, the landslide is likely to fail.

Table 1. Clustering centroids of the Zhongma landslide.

Status Speed (mm/d)

Low Speed State 1.2685
Medium Speed State 12.7481

High Speed State 53.7578
Super High Speed State 113.9813

Figure 7. Clustering results.

3.4. Feature Factors Selection for Landslide Data

The effectiveness of a deep learning model is closely related to the input features.
Therefore, it is necessary to select the features which have impacts on landslide deformation.

Landslide deformation is usually related to rainfall, so rainfall intensity and duration
are often used for predicting landslides [5]. Therefore, we consider the rainfall data in
the model. The cumulative rainfall of the first 1–7 days Pn

cumulative(n = 1, 2, . . . , 7) and the
maximum continuous effective rainfall of the 7 days Pα

valid (the effective rainfall factors
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are 1.0, 0.8, 0.6, 0.4, respectively) are selected as the influencing factors for landslide
displacement. Among them, the maximum continuous rainfall is calculated as follows.

Pα
valid = P0 + αP1 + α2P2 + . . . + αnPn (11)

where Pα
valid is the maximum continuous rainfall, Pi is the amount of rainfall before the i-th

day, i = 0, 1, . . . , n, α is the effective rainfall coefficient and n is the maximum continuous
rainy days.

The landslide displacement change affects the landslide deformation state. So, the first
18 relative changes in the landslide displacement subseries Dn

relative(n = 1, 2, . . . , 18) were
selected as supplements to the rainfall factor.

The correlation between these factors and landslide deformation was calculated by
gray correlation analysis, using the discrimination coefficient of 0.5, and the mean normal-
ization method. Factors with the gray correlation greater than 0.6 can be used as input
features for the model. In Figure 8, all factors have a gray correlation greater than 0.9, so
they can be used as input features of the classification model. A total of 29 parameters were
selected to construct a dataset for classification.

Figure 8. Results of gray correlation analysis for the Zhongma landslide.

3.5. Model Training

The constructed dataset was divided into training and testing sets by the ratio of 7:3.
The ResNet model was constructed for classification training. The model architecture is
shown in Figure 9.

The random search algorithm is applied to find the best optimal hyperparameters of
the model. The iteration is 20 times. The result is validated by a fivefold cross-validation
technique. The number of residual blocks ranges between 1 and 6. The initial learning rate
is set to be one of 0.1, 0.01, 0.001 or 0.0001. The batch size selection parameters range from
16 to 128 with a step size of 2, and the optimization function selection parameters are SGD,
Adagrad, RMSprop and Adam.

By the random search algorithm, we obtained the optimal hyperparameters of the
model: four residual blocks, Adam optimizer, loss function of the categorical cross-entropy,
batch size of 32, the initial iteration number of 1500 and the initial learning rate of 0.01. To
speed up the training, a learning rate dynamic decay strategy was employed to accelerate
convergence and the EarlyStopping method was used to stop the iteration before overfitting
and terminate training (i.e., stop training when the accuracy is not increasing within
100 iterations).
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The computer configuration for this work was Intel(R) Core (TM) i5-9400F CPU
@ 2.90 GHz CPU processor, OS Windows 10 Professional, 16 GB RAM and NVIDIA GeForce
GTX 1660 SUPER graphics card.

The training results show that the accuracy, precision and recall of the algorithm
are 0.981, 0.971 and 0.871, respectively. The trained ResNet algorithm was applied to the
landslide deformation dataset, and the deformation state classification results are shown
in Figure 10.

Figure 9. ResNet model structure.

Figure 10. ResNet warning results of the Zhongma landslide.

The above results show that the K-means-ResNet method can identify the deformation
state of landslide accurately on the whole. According to the deformation state, we can carry
out landslide warning.

3.6. Validation

To evaluate the reliability of the proposed model, we also processed the dataset by
two neural networks, MLP and LeNet, and compared their results with our results.
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They also use the random search algorithm to determine the optimal hyperparameters.
The iteration is 20 times and the result is validated by a fivefold cross-validation technique.
The numbers of hidden layers are 1, 2, 3, 4 and 5. The initial learning rate parameters are
0.1, 0.01, 0.001 and 0.0001. The batch size selection parameters ranged from 16 to 128 with a
step size of 2, and the optimization function selection parameters included SGD, Adagrad,
RMSprop and Adam.

The MLP model uses three hidden layers. We set the dropout as 0.5. Adam optimizer
was used to optimize the network. The Relu function was chosen for the activation function,
and categorical cross-entropy was used for the loss function. The batch size was 32, the
initial learning rate was 0.01 and the initial iteration number was 1500.

The LeNet model uses five hidden layers and the Adam optimizer to optimize the
network. The loss function is categorical cross-entropy. The batch size is 32, the initial
learning rate is 0.001 and the initial number of iterations is 1500.

To speed up model training, the learning rate dynamic decay strategy and EarlyStop-
ping (i.e., stop training when the accuracy is not increasing within 100 iterations) were used
to stop iterations before overfitting and terminate training.

The evaluation of the training results in Table 2 shows that the ResNet algorithm
outperformed the MLP and LeNet algorithms.

Table 2. Comparison of the results obtained by the three models for the Zhongma landslide.

Methods Accuracy Precision Recall

MLP 0.954 0.781 0.412
LeNet 0.975 0.921 0.798
ResNet 0.981 0.971 0.871

The early warning results of MLP and LeNet algorithms are shown in Figure 11. The
results show that the ResNet method performed better in early warning than MLP and
LeNet methods.

Figure 11. Cont.
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Figure 11. Results of (a) MLP methods and (b) LeNet methods.

We also compare the K-means-ResNet model-based warning with the warning method
in [23], and the thresholds are listed in Table 3.

Table 3. Thresholds of the Zhongma landslide.

Parameters Value Parameters Value

Sia(mm) 15 Ska(mm) 30
v21(mm/d) 10 v22(mm/d) 15
v31(mm/d) 10 v32(mm/d) 15
v33(mm/d) 20 v34(mm/d) 40

Notes: S denotes the displacement threshold and v denotes the velocity threshold.

The early warning results are shown in Figure 12. Between 14 and 29 May 2019 and
20 September 2020 and 14 March 2021, the landslide deformation velocity fluctuated in
a small range, so the landslide state did not change. However, the early warning system
generated some false warnings.

Figure 12. Threshold warning results of the Zhongma landslide.
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The early warning method based on the K-means-ResNet model proposed in this
paper can effectively reflect the deformation state of landslides and reduce false alarms. In
addition, this method does not need to determine the threshold value or dynamically adjust
the threshold value based on experience, which is necessary for the traditional threshold
warning method.

4. Case Study: Shangmao Landslide
4.1. Landslide Overview

The Shangmao landslide locates in Chihu Village, Hunan Province, China (Figure 13),
which has an armchair shape. The front edge is about 45 m (vertical length) × 62 m (hori-
zontal length) × 45 m (thickness), and the back edge is about 45 m (vertical length) × 35 m
(horizontal length) × 60 m (thickness). This is a small soil landslide. The main sliding
direction is 225◦. The slope started sliding in June 2017 after a strong rainfall. The landslide
experienced the second failure in the 2019 flood season, the original crack formed a scarp,
and the front edge of the retaining wall was displaced. The landslide body is mainly muddy
siltstone, gravel and clay containing gravel.

Figure 13. Location of the study area (left) and a photo of the Shangmao landslide (right).

Similar to the Zhongma landslide, the upper soil layer of the landslide is affected by
the infiltration of rainfall, which causes the landslide to start deformation acceleration.
Rainfall is the main precipitating factor of landslide, so we must consider the rainfall factor
when conducting early warning.

4.2. Landslide Monitoring Data

Two GNSS monitoring stations were installed on the deformation area of the landslide.
The GNSS data were collected every hour, and the rainfall data were collected from the
deployed rainfall station every 24 h.

As Figure 14 shows, the deformation of the Shangmao landslide has obvious step
accelerations, temporally coincident with the periods of continuous rainfall or after a large
rainfall. So, the landslide deformation is closely related to the rainfall.

4.3. K-Means Clustering

The GNSS-2 with more obvious deformation and rainfall data was selected for the
study. From 22 April 2021 to 7 November 2022, 20,739 monitoring data were collected,
including 20,152 GNSS-2 data and 587 daily rainfall data.

As in the case of the Zhongma landslide, the displacement data were processed by
one-time sample difference to attain an isochronous order. We used the slide window with
the size of 48 and step size of 2 to construct the landslide displacement subseries. Finally,
14,080 data were obtained.
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The velocity feature was extracted from each subseries using least squares fitting. The
max–min normalization was applied to the velocity feature (see Equation (10)).

K-means clustering was performed and the K value, 4, was also determined by the
elbow method.

The clustering centroids are shown in Table 4, and the clustering results are shown
in Figure 15.

Table 4. Clustering centroids of the Shangmao landslide.

Status Speed (mm/d)

Low Speed State 0.5307
Medium Speed State 11.8607

High Speed State 22.6508
Super High Speed State 95.9713

Figure 14. Deformation data and rainfall data of Shangmao landslide.

Figure 15. Clustering results of Shangmao landslide.

4.4. Feature Factors Selection for Landslide Data

Similar to the Zhongma landslide experiment, rainfall features and relative displace-
ment features were selected and analyzed by the gray correlation method.
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As Figure 16 shows, we can find that the gray correlation of all factors is greater than
0.9, so these factors can be used as input features of the classification model. A total of
29 parameters were selected to construct a dataset for classification.

Figure 16. Results of gray correlation analysis for the Shangmao landslide.

4.5. Model Training

The constructed dataset was divided into training and testing sets by the ratio of 7:3.
The ResNet model was constructed for classification training.

The hyperparameters were also determined by the random search algorithm as follows:
the model uses four residual blocks, and is optimized using the Adam optimizer. The loss
function is the categorical cross-entropy, the batch size is 32, the initial iteration number is
set as 1500 and the initial learning rate is set as 0.01. To speed up the training, a learning rate
dynamic decay strategy was employed to accelerate convergence and the EarlyStopping
method was used to stop the iterations before overfitting and terminate training (i.e., stop
training when the accuracy is not increasing within 100 iterations).

The training results show that the accuracy, precision and recall of the algorithm are
0.993, 0.993 and 0.925, respectively. The trained ResNet algorithm was applied to the slide
deformation dataset, and the deformation state classification results are shown in Figure 17.

Figure 17. ResNet warning results of the Shangmao landslide.



Appl. Sci. 2023, 13, 459 17 of 21

The above results show that the K-means-ResNet method can identify the deforma-
tion state of a landslide accurately. According to the deformation state, we can make
a landslide warning.

4.6. Validation

To evaluate the reliability of the proposed model, we processed the dataset by two
neural networks, MLP and LeNet, and compared their results with our results.

The hyperparameter search process was the same as in the previous example.
The MLP model uses three hidden layers. We set the dropout as 0.5. Adam optimizer

was used to optimize the network. The Relu function was chosen for the activation function,
and categorical cross-entropy was used for the loss function. The batch size was 32, the
initial learning rate was 0.01 and the initial iteration number was 1500.

The LeNet model uses five hidden layers and the Adam optimizer to optimize the
network. The loss function is categorical cross-entropy. The batch size is 32, the initial
learning rate is 0.001 and the initial number of iterations is 1500.

To speed up the model training, the learning rate dynamic decay strategy and EarlyStop-
ping (i.e., stop training when the accuracy is not increasing within 100 iterations) were used
to stop iterations before overfitting and terminate training.

The evaluation of the training results in Table 5 shows that the ResNet algorithm
outperformed the MLP and LeNet algorithms.

Table 5. Comparison of the results obtained by the three models for the Shangmao landslide.

Methods Accuracy Precision Recall

MLP 0.957 0.926 0.381
LeNet 0.947 0.940 0.805
ResNet 0.993 0.993 0.825

The early warning results of MLP and LeNet algorithms are shown in Figure 18.
The results show that the ResNet method performs better in early warning than MLP
and LeNet methods.

We also compared the K-means-ResNet model-based warning with the landslide
warnings obtained by the conventional warning method from [17], and the thresholds are
listed in Table 6.

Table 6. Thresholds of the Shangmao landslide.

Parameters Value Parameters Value

Sia(mm) 20 Ska(mm) 40
v21(mm/d) 10 v22(mm/d) 20
v31(mm/d) 10 v32(mm/d) 20
v33(mm/d) 30 v34(mm/d) 40

Notes: S denotes the displacement threshold and v denotes the velocity threshold.

The warning results of the conventional warning method are shown in Figure 19.
There are some false warnings from 16 August 2021 to 28 May 2022. After 28 May 2022, the
landslide deformation rate increased, and intensive warnings were generated. However,
when the landslide deformation slowed down, there were still many missing alarms and
false alarms.

The proposed early warning method based on the K-means-ResNet model can effec-
tively reflect the deformation state of landslides and reduce false alarms. In addition, this
method does not need to determine the threshold value or dynamically adjust the threshold
value based on experience, which is necessary for the traditional threshold warning method.
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Figure 18. Results of warning (a) MLP methods and (b) LeNet methods.

Figure 19. Threshold warning results of the Shangmao landslide.
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5. Discussion

Traditional landslide warnings are usually decided by thresholds. However, the
complex landslide generation factors, slope internal structure and physical properties
lead to great difficulty in determining an appropriate threshold. Besides, the threshold
requires dynamic adjustment during the monitoring process. These warning algorithms
are semi-empirical. Improper thresholds will lead to missing alarms and false alarms.

In this study, a landslide warning algorithm based on K-means-ResNet is proposed
for rapid and automatic identification of landslide acceleration. This method includes the
steps of subsequence construction, feature extraction, data clustering, feature screening
and landslide state classification. The method was validated on the Zhongma landslide in
Guangxi Province and the Shangmao landslide in Hunan Province, China. The results show
that the proposed algorithm can quickly and accurately identify the landslide acceleration
and deformation process, and improve the accuracy and efficiency of early warning.

Compared with the traditional warning methods based on thresholds, the proposed
algorithm has the following two advantages. First, the proposed algorithm determines
the landslide state quantitatively, which is more objective and reliable than traditional
threshold-based methods. Second, traditional early warning methods only rely on displace-
ment value. However, single sensors are highly susceptible to environmental influence,
leading to serious noise. The proposed algorithm takes both the displacement value and
disaster-causing factors as the input to the model to identify the landslide status, effectively
improving the accuracy and reliability of early warning.

The algorithm also has some limitations. First, the algorithm needs sufficient data for
model training, so it cannot perform early warning in the early stage and cannot cover
the whole monitoring cycle. Second, model training needs to collect data and the model
parameters need to be optimized, increasing the complexity of the algorithm. Finally, the
deep learning model requires training samples. The samples are generated from the original
data through a tedious process. The original data are usually uneven, which reduces the
classification accuracy.

In summary, the proposed early warning method can effectively and reliably identify
the landslide deformation state and realize the landslide warning. The deep learning
technique is the first time used in the field of landslide warning, so further research work is
needed, such as dataset production, feature selection and model interpretability.

6. Conclusions

This study proposes a landslide early warning method based on the K-means-ResNet
classification model. The effectiveness of the model was assessed by applying it to the
Zhongma landslide and Shangmao landslide. The following conclusions are obtained.

The proposed method uses K-means method to categorize and analyze the landslide
deformation data and uses gray correlation analysis to select the corresponding input
features, classify the landslide state by ResNet algorithm and finally achieve the early
warning.

The K-means-ResNet model is applied to the Zhongma landslide and Shangmao
landslide. The results show that the landslide deformation can be classified into four states,
which are low speed state, medium speed state, high speed state and super high speed
state. The accuracy, precision and recall of the early warning are better than those of the
MLP and LeNet models. The method was also compared with the traditional landslide
threshold warning method, and the results show that this method reduces the false alarm
and does not need to rely on the threshold parameters determined by the expert experience.

The proposed K-means-ResNet model uses the K-means algorithm to cluster landslide
states. Future research can take relevant geological and geotechnical information into
consideration to classify the states of landslides, establish more accurate pre-training
datasets and improve the accuracy of landslide warning. In addition, the landslide state
is changing, so analyzing the influence of triggering factors on landslides is difficult.
The model in this study could adaptively learn the relationship between rainfall and
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deformation by deep learning. Future work can be focused on exploring the interpretability
of the features learned by the ResNet algorithm, classifying landslide state and warning
by both internal and external factors and establishing a more accurate landslide warning
method to further improve landslide warning.
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