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Abstract: Selfish mining is a typical malicious attack targeting the blockchain-based bitcoin system, an
emerging crypto asset. Because of the non-incentive compatibility of the bitcoin mining protocol, the
attackers are able to collect unfair mining rewards by intentionally withholding blocks. The existing
works on selfish mining mostly focused on cryptography design, and malicious behavior detection
based on different approaches, such as machine learning or timestamp. Most defense strategies show
their effectiveness in the perspective of reward reduced. No work has been performed to design a
defense strategy that aims to improve bitcoin dependability and provide a framework for quantitively
evaluating the improvement. In this paper, we contribute by proposing two network-wide defensive
strategies: the dynamic difficulty adjustment algorithm (DDAA) and the acceptance limitation policy
(ALP). The DDAA increases the mining difficulty dynamically once a selfish mining behavior is
detected, while the ALP incorporates a limitation to the acceptance rate when multiple blocks are
broadcast at the same time. Both strategies are designed to disincentivize dishonest selfish miners
and increase the system’s resilience to the selfish mining attack. A continuous-time Markov chain
model is used to quantify the improvement in bitcoin dependability made by the proposed defense
strategies. Statistical analysis is applied to evaluate the feasibility of the proposed strategies. The
proposed DDAA and ALP methods are also compared to an existing timestamp-based defense
strategy, revealing that the DDAA is the most effective in improving bitcoin’s dependability.

Keywords: bitcoin; selfish mining; dynamic difficulty adjustment algorithm (DDAA); acceptance
limitation policy (ALP); statistical analysis

1. Introduction

Blockchain technology has attracted intensive attention from industries, academia,
and governments in the past decade [1–4]. A blockchain is a distributed cryptographic
ledger, which consists of a growing list of data packages called blocks. Each block contains
a timestamp, the transaction record, and the hash value of the previous block [5]. Its
applications span from smart contracts to financial services, from voting to energy trading,
and from supply chains to the Internet of Things [6–10]. In this paper, we focus on bitcoin, a
peer-to-peer decentralized cryptocurrency system based on blockchain technology [11,12],
with a market cap of exceeding USD 1 trillion in October 2021.

Because of being business-critical, bitcoin has become the target of diverse cyber-
attacks, including, for example, Sybil attacks [13], Eclipse attacks [14,15], mining pool at-
tacks [16], re-identification attacks [17], miner attacks [18], CryptoLocker-based attacks [19],
and selfish mining attacks [20]. Correspondingly, considerable studies were expended in
developing mitigation and defense strategies against those attacks. For example, Gervais
et al. examined multiple countermeasures (including dynamic timeouts, updating block
advertisements, and penalizing nodes that do not respond) to enhance the security of
bitcoin [21]. Bamert et al. put forward a hardware token for securing transactions of

Appl. Sci. 2023, 13, 422. https://doi.org/10.3390/app13010422 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010422
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13010422
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010422?type=check_update&version=1


Appl. Sci. 2023, 13, 422 2 of 11

bitcoin [22]. Göbel et al. applied Markov chains to detect block-hiding attacks by monitor-
ing the production rate of orphan blocks [23]. In this work, we aim to develop effective
strategies to defend the selfish mining attacks, also referred to as block withholding attacks.
In such attacks, a selfish miner intentionally keeps the newly mined blocks for building
his/her own branch and publishes the private branch to gain unfair revenue when the
private branch is longer than the main chain by a certain number of blocks.

Considerable research efforts were devoted to the defense against selfish mining
attacks. For example, Heilman proposed a timestamp-based method to examine and
control the acceptance of new blocks [24]. Eyal and Sirer suggested a mitigation strategy
based on the modification of the bitcoin protocol to cope with collusive selfish mining
attacks [20]. Saad et al. developed a network-wide defense mechanism using expected
transaction confirmation height and block publishing height [25]. A notion of the “truth
state” was introduced to detect potential selfish mining behaviors. Wang et al. suggested a
machine learning-based system (ForkDec) for highly accurate selfish mining detection [26].
Bicer et al. proposed a selfish mining mitigation algorithm called Fortis, which does not
require a trusted authority for timestamps and protects the honest miner’s benefit against
any attacker with a computational power of less than 27% [27]. Solat et al. proposed a
solution named ZeroBlock to prevent honest nodes from accepting chains infested with
block withholding; under this solution, miners are forced to release their blocks within an
expected time, otherwise, their mined blocks expire and are rejected by honest miners [28].
Chen et al. proposed a prevention method for the block-withholding attack (PMBWA)
based on a credit-level classification algorithm [29]. The algorithm weighs similarity and
posterior probability to detect malicious behaviors.

In addition to the defense solutions, there are also studies on the analysis of bitcoin
under selfish mining attacks. For example, Wang et al. put forward a mathematical
model to investigate the effectiveness of selfish mining attacks, particularly the relationship
between computational power and extra mining gain [30]. Motlagh et al. suggested an
analytical model to investigate the impacts of selfish mining on the node response time,
connectivity of the bitcoin, block delivery time, and arrival rate [31]. Yang et al. used a
Markov model to assess the mining revenue, as well as the risk of bitcoin under selfish
mining attacks [32]. Xia et al. investigated the influences of multiple miners on selfish
mining and the vulnerability of bitcoin under different orphan rates [33]. Zhou et al.
suggested a continuous-time Markov chain-based method to estimate the dependability
of bitcoin with selfish mining behavior and examined the effects of several attacking and
defending parameters on bitcoin dependability, where the dependability is defined as
the probability that the system can function normally, i.e., the selfish mining attack is not
successful [34].

This work makes contributions by suggesting defense strategies against selfish mining
attacks. Particularly, two strategies, referred to as dynamic difficulty adjustment algorithm
(DDAA) and the acceptance limitation policy (ALP), are proposed. Their performance and
feasibility are investigated and compared through an analytical modeling method and
statistical analysis. The results show the improvement using the proposed strategies is
statistically significant. The proposed DDAA and ALP methods are also compared to an
existing defense strategy to show their effectiveness.

The rest of the paper is arranged as follows. Section 2 presents the state transition
diagram of bitcoin under the selfish mining attack and reviews the continuous-time Markov
chain (CTMC)-based method for the dependability analysis. Section 3 introduces the DDAA
strategy and shows the dependability improvement under this strategy. Optimal parameter
selection is also discussed. Section 4 introduces the ALP strategy. Optimal parameter
selection and strategy comparison are also discussed. Section 5 compares the proposed
DDAA and ALP strategies with an existing timestamp-based method. Section 6 summarizes
our research results and points out future study directions.
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2. CTMC-Based Dependability Analysis

Figure 1 illustrates the main states and transitions among the states for bitcoin subject
to selfish mining under the three-block strategy in the CTMC model.
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Figure 1. State transition diagram (0: initial state, 0′: double branches, 1: one-block lead, 2: two-block
lead, 3: three-block lead, and 4: attack success).

State 0 is the initial state, where only one main chain exists without any branches. The
system may transit from state 0 to state 1 when a malicious miner (MM) finds a block but
keeps it secretly, leading to a private branch that is one block longer than the main chain;
the transition rate is assumed to be λ01. The system stays in state 0 with a rate of µ00 if an
honest miner (HM) mines the block first.

The system may transit from state 1 to state 2 when the MM successfully mines the
next block on his/her private branch; the transition rate is denoted as λ12. The system
transits from state 1 to state 0′ when the HM mines the next block before the MM; the
transition rate is denoted as µ10′ .

The system may transit from state 0′ to state 1 when the MM finds the new block
first making the private branch one block longer than the main chain; the transition rate is
λ0′1. The system goes back to state 0 from state 0′ if the HM finds the new block first; the
transition rate is µ020320.

The system may transit from state 2 to state 3 when the MM discovers the next block
first; the transition rate is λ23. The system transits from state 2 to state 1 if the HM discovers
the next block first; the transition rate is µ21.

The system may transit from state 3 to state 4 when the HM successfully discovers
the next block; the transition rate is λ34. In state 4, the MM broadcasts the private branch
making it the main branch, thus the selfish mining attack succeeds.

Based on the state transition diagram in Figure 1, Equation (1) gives the state equations
of the CTMC with the transition rate matrix and the state probability vector on the left-hand
side and the vector of the state probabilities’ derivative on the right-hand side. Specifically,
Pk(t) in Equation (1) represents the probability that the bitcoin occupies state k (k = 0, 0′, 1,
2, 3, 4), and

.
Pk(t) represents the derivative of Pk(t).
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Applying the Laplace transform-based method using the initial state probabilities
of P0(0) = 1 and Pk(t) = 0 (for k = 0′, 1, 2, 3, 4), as well as the condition of

4
∑

k = 0,0′
Pk(t) = 1, the state probabilities Pk(t) can be obtained. Refer to [34] for a detailed
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solution. The bitcoin dependability is D(t) = 1 − P4(t) since the selfish mining attack
succeeds in state 4. The CTMC-based method presented in this section is applied in
Sections 3 and 4 to evaluate the performance of the proposed defense strategies.

3. Dynamic Difficulty Adjustment Algorithm (DDAA)

In the bitcoin protocol, a difficulty parameter controls the overall mining difficulty.
To counter the selfish mining attack, we propose the DDAA, which increases the mining
difficulty (i.e., requiring higher computing power requirements) by adjusting the difficulty
parameter when a successful selfish mining attack is committed. The increasing cost of the
malicious attack because of the increasing computing power requirement disincentivizes
any future attacks.

Specifically, let K be the difficulty controlling parameter, H be the hash rate that is
determined by the available computing power and the value of K, β be the difficulty
adjustment parameter, and λ be the state transition rate. In the proposed DDAA, H is
negatively correlated with K because an increase in K means a decrease in the hash rate H
(H_new). More specifically, a larger K means that more computation and power resources
are needed to mine a block; given the same available resources, the hash rate decreases. In
other words, to maintain the same hash rate, when K increases, an MM needs to upgrade
their computing hardware, which reduces his/her attack reward, thus disincentivizing the
attack.

Because a too big β will heavily decelerate the new block generation speed, thus
affecting the normal mining process, to control the variance and reduce the impact on
the bitcoin network, in our study we set a range for parameter β as 1 < β < 2 (meaning
that the increase in the computing power requirement cannot exceed the twice of the
original computing power requirement). In the context of the quantitative dependability
analysis, the adjustments in K and H are reflected in the decrease in all the λ transition
rates. Equation (2) gives the updating formula for K, H, and λ.

K_new =β× K, H_new = H/β, andλ_new = λ/β. (2)

To analyze the effectiveness and performance of the suggested DDAA, we evaluate
the bitcoin dependability before and after the difficulty adjustment. Table 1 presents the
transition rates related to the MM’s computing power (λ01, λ0′1, λ12, λ23, λ34) and the
transition rates related to the HM’s recovery capability (µ0′0, µ10′, µ21). The values of those
transition rates are designed based on the statistics and studies from [35]. Specifically,
values in sets a, b, and c are the original values corresponding to the low, medium, and high
computing power of the MM. Using Equation (2) with β = 1.25 (selected for the illustration
purpose), the adjusted values of all λ are presented in sets a′, b′, and c′ in Table 1.

Table 1. State transition rate (per hour) values used for numerical analysis.

Rate Set a Set b Set c Set a′ Set b′ Set c′

λ01 0.03 0.12 0.34 0.024 0.096 0.272
λ0′1 0.11 0.11 0.11 0.088 0.088 0.088
λ12 0.06 0.18 0.56 0.048 0.144 0.448
λ23 0.04 0.04 0.04 0.032 0.032 0.032
λ34 0.36 0.36 0.36 0.288 0.288 0.288
µ0′0 0.24 0.24 0.24 0.24 0.24 0.24
µ10′ 0.12 0.12 0.12 0.12 0.12 0.12
µ21 0.31 0.31 0.31 0.31 0.31 0.31

3.1. Effects of the DDAA on Bitcoin Dependability

Table 2 presents bitcoin dependability at different mission times under the six sets of
parameters (calculated using the CTMC-based method in Section 2) and the difference in the
dependability values for each comparison. Figures 2–4 illustrate the results graphically. It
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is apparent that bitcoin dependability improves after the adjustment and the improvement
becomes more significant as the mission time proceeds.

Table 2. Bitcoin dependability and comparisons.

t (hrs) Set a Set a′ a–a′ Set b Set b′ b–b′ Set c Set c′ c–c′

6 0.9995 0.9998 0.0003 0.9950 0.9977 0.0027 0.9745 0.9868 0.0123
12 0.9964 0.9983 0.0019 0.9705 0.9847 0.0142 0.8887 0.9335 0.0448
18 0.9907 0.9954 0.0047 0.9334 0.9631 0.0297 0.7911 0.8646 0.0735
24 0.9835 0.9915 0.0080 0.8924 0.9379 0.0455 0.7007 0.7961 0.0954
30 0.9755 0.9872 0.0117 0.8515 0.9117 0.0602 0.6202 0.7319 0.1117
36 0.9670 0.9826 0.0156 0.8119 0.8855 0.0736 0.5489 0.6726 0.1237
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We apply the paired t-test to examine the effects of the proposed DDAA algorithm. A
significant result should prove the feasibility of the algorithm. Before each t-test, we run the
F-test to examine the homogeneity of variance of each data pair [36]. Table 3 summarizes
the results of the F-test and t-test for each comparison.

For each comparison, the p-value obtained in the F-test is greater than 0.05. So, we
accept the null hypothesis. The two datasets in each comparison pass the homogeneity
of the variance test. The p-value obtained in the t-test is less than 0.05. So, we reject the
null hypothesis. Thus, the dependability values of the two sets in each comparison are
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significantly different, and the dependability after the adjustment is significantly higher
than that before the adjustment.
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Set a vs. Set a′ Set b vs. Set b′ Set c vs. Set c′

F-test 0.1914 0.3090 0.5277
t-test 0.0164 0.0097 0.0034

3.2. Optimal Parameter Selection for Parameter β

In this section, we examine the optimal value selection for the key parameter β using
set a. In other words, we determine the value of β that can offer the largest degree of
improvement in Bitcoin dependability under the DDAA strategy. We run a series of tests
with different values of β. Among the values tested, the lowest p-value is obtained at
β = 1.43, as shown in Table 4 and Figure 5. Bitcoin dependability under the DDAA with
β = 1.43 at t = 36 h is 0.983.

Table 4. The results of the p-value when β varies from 1.1 to 1.6 under the DDAA.
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4. Acceptance Limitation Policy (ALP)

The traditional bitcoin system adopts the proof-of-work (POW) protocol as its consen-
sus mechanism. The longest chain broadcast is accepted as the valid version of the bitcoin
main chain. The selfish mining attacker takes advantage of this mechanism by intentionally
withholding his/her mined blocks and publishing his/her longer private chain. The ALP
intends to set a limitation to the acceptance ratio when multiple blocks are broadcast at the
same time. Let γ be the limitation ratio. This process is equal to reducing the transition rate
λ34 using Equation (3):

λ34_new = λ34 × γ where 0 < γ ≤ 1 (3)

To investigate the effectiveness of the ALP, we apply Equation (3) to generate the
parameter set a” based on set a, and both are presented in Table 5.

Table 5. State transition rate (per hour) values used for numerical analysis of the ALP.

Rate λ01 λ0′1 λ12 λ23 λ34 µ0’0 µ10’ µ21

Set a 0.03 0.11 0.06 0.04 0.36 0.24 0.12 0.31
Set a” 0.03 0.11 0.06 0.04 0.36 × γ 0.24 0.12 0.31

Figure 6 shows bitcoin dependability for five different values of γ, where γ = 1
corresponds to the case before the adjustment. It is observed that as the value of γ decreases,
the improvement in bitcoin dependability becomes more significant.
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To select the optimal value for the key parameter γ (i.e., the value that provides the
largest degree of dependability improvement), we run a series of tests using different values
of γ and compute the p-value. Among the values of γ tested, the lowest p-value 0.0033 is
obtained at γ = 0.8, as shown in Table 6 and Figure 7.

Table 6. The results of the p-value under the ALP.

γ 0.6 0.7 0.8 0.9
p-value 0.0049 0.0044 0.0033 0.0057
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It can be observed from the above results that the optimal p-value under the ALP
is 0.0033, which is lower than the optimal p-value of 0.0145 obtained under the DDAA
(Section 3.2). Therefore, in terms of the degree of improving dependability, the ALP
performs better than the DDAA in defending selfish mining attacks. However, in terms
of the absolute improvement in dependability, the DDAA is more effective than the ALP
since the DDAA works on λ01, λ0′1, λ12, λ23, and λ34, while the ALP only reduces one of
those transition rates λ34.

5. Comparative Studies

Heilman suggested a timestamp-based method (TM) to defend selfish mining [24].
The TM-based strategy applies an unforgeable timestamp to ensure that a particular block
is mined no later than the timestamp. A random beacon is used as an input to a block. Any
miner can act like a verifier to prove that a block has been mined recently. Thus, any block
without a timestamp or with an out-of-date timestamp is dropped upon detection. This
process is equal to reducing the transition rates µ0′0, µ10′, and µ21 using Equation (4):

µ_new = µ × ω where ω > 1 (4)

To compare the effectiveness of the proposed methods and the existing TM method,
we use Equation (2) with β = 1.2, 1.4, and 1.6 (for the DDAA), Equation (3) with γ = 1/1.2,
1/1.4, and 1/1.6 (for the ALP), and Equation (4) with ω = 1.2, 1.4, and 1.6 (for the TM) to
adjust the parameter set a in Table 1, as summarized in Table 7.

Table 7. State transition rate (per hour) adjustments under the DDAA, ALP, and TM.

Set λ01 λ0′1 λ12 λ23 λ34 µ0’0 µ10’ µ21

DDAA-a 0.03/β 0.11/β 0.06/β 0.04/β 0.36/β 0.24 0.12 0.31
ALP-a 0.03 0.11 0.06 0.04 0.36×γ 0.24 0.12 0.31
TM-a 0.03 0.11 0.06 0.04 0.36 0.24×ω 0.12×ω 0.31×ω

The results in Table 8 and Figure 8 show that for every comparison group (β = ω
= 1/γ = 1.2, 1.4, and 1.6), the bitcoin system under the DDAA always has the highest
dependability among the three defense strategies. Thus, we conclude that the DDAA
has better defense effectiveness than the TM and ALP approaches in terms of absolute
dependability improvement.
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Table 8. Bitcoin dependability under the DDAA, ALP, and TM.

t (hrs) β = 1.2 γ = 1/1.2 ω = 1.2 β = 1.4 γ = 1/1.4 ω = 1.4 β = 1.6 γ = 1/1.6 ω = 1.6
6 0.9997 0.9995 0.9995 0.9998 0.9996 0.9996 0.9999 0.9996 0.9996

12 0.9980 0.9967 0.9969 0.9988 0.9969 0.9972 0.9992 0.9971 0.9976
18 0.9948 0.9912 0.9922 0.9968 0.9917 0.9934 0.9979 0.9921 0.9944
24 0.9905 0.9842 0.9866 0.9940 0.9848 0.9889 0.9960 0.9854 0.9907
30 0.9857 0.9762 0.9804 0.9909 0.9769 0.9840 0.9938 0.9776 0.9868
36 0.9805 0.9678 0.9739 0.9875 0.9678 0.9790 0.9914 0.9693 0.9828
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6. Conclusions and Future Directions

The bitcoin network is developed based on blockchain technology. It is considered one
of the most dependable systems because of its distributed, decentralized, and unchangeable
features. However, there are diverse attacks targeting bitcoin in the past few years (e.g.,
Eclipse attacks, Sybil attacks, and selfish mining attacks), which have caused tremendous
losses. This work focuses on the selfish mining attack, where selfish miners intentionally
withhold the mined block and build their own private chain. The malicious miners then
publish their longer chain at a certain point in time to win all mining rewards. Most of
the existing research on the selfish mining attack focused on adversary risk detection and
cryptography design. There is a lack of studies on strategies that improve bitcoin system
dependability and on the statistical proof of the significance of the effectiveness. Our
research contributes to the state of the art by designing two defense strategies of the DDAA
and ALP and verifying their effectiveness using the CTMC-based dependability analysis,
as well as the t-test-based statistical analysis. The analysis results show that both strategies
can greatly improve bitcoin dependability. Additionally, by comparing the optimal cases,
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it was found that the ALP performs better than the DDAA in the degree of dependability
improvement. The two proposed strategies are also compared with the existing TM-based
strategy. The comparative studies show that the DDAA is the most effective in improving
bitcoin dependability.

In a future study, we will extend the defense strategies designed in this work to
mitigate other types of attacks, such as Eclipse attacks and Sybil attacks. We also plan
to develop a universal defense strategy to improve the resilience of the blockchain-based
digital currency network.
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