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Abstract: Flow Energy Harvesters (FEHs), equipped with piezoelectric active layers, are designed
to extract energy from non-pulsating flows. FEHs featuring cantilevers with tip-mounted Vibration
Inducers (VIs) are designed to develop a galloping motion. In this paper, we present the modelling
of a recently introduced VI shape, featuring semitubular-shaped winglets, which do not produce
a wake interacting with the cantilever. Such peculiarity allows (i) to exploit the contribution of the
wake to the formation of the lift, therefore opening to a more compact design; (ii) its performance to
be analyzed by means of simple two-dimensional Computational Fluid Dynamics (CFD) simulations.
By comparison with experimental data, we show that the minimal framework for the modelling of
such new class of VIs needs to account for both the direct action of the fluid onto the cantilever and
the drag on the VI, which are usually negligible for other VI shapes.

Keywords: fluid–structure interaction; flow energy harvester; vibration inducers; bluff body fluid
dynamics; drag and lift

1. Introduction

The recent increase in mechanical reliability, cost reduction, and possible shape cus-
tomization of piezoelectric materials has consistently boosted their employment as active
components embedded in energy harvester devices. The latter are envisaged to extract
electrical energy from countless forms of mechanical one, enacting a deformation of the
piezoelectric material which, in turn, induces a charge displacement and, therefore, an elec-
trical field. Devices extracting energy from the environment encompass domains ranging
from micro [1–5] to large scale [6], most of them being motivated by the need to ensure
autonomous/off grid operation to users. Automatic mechanical adaptation to changes of
the features of the external forcing has also been recently proposed [7].

Since typical applications require harvesting energy as a continuous power flow, most
devices (referred to as Vibration Energy Harvesters) induce cyclic deformations: therefore,
oscillating media are natural candidates as energy sources [8]. However, energy harvesting
from non oscillating media, such as fluid flows featuring either steady or slow varying
motion, can still be achieved by means of Flow Energy Harvesters (FEHs) [9], provided
either the fluid flow is perturbed [10–12] or the FEHs are equipped with Vibration Inducers
(VIs) [13,14]. Many FEHs are cast in the form of cantilevers enclosing the active material,
whose polarization and orientation is designed to best exploit the attainable deformation
of the cantilever [15,16]. FEH efficiency is strongly dependent on the ability of the VI to
maximize amplitude, regularity and frequency of the oscillations. The cantilever-based
FEHs are usually placed counter-flow, i.e., the free end is upstream of the fixed one, the
former being equipped with a VI. Traditionally, VI are bluff bodies featuring various cross-
sections [17], with a vast majority of the available studies focusing on standard (i.e., square,
circular, flat) shapes [18–22] due to the availability of previous fundamental studies [23,24]
concerning the characteristics of flow around them. The oscillations of the VI placed in
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a steady flow mainly stem from two Fluid-Structure Interaction (FSI) phenomena: (i) the
wake oscillation, resulting in the so-called Vortex Induced Vibrations (VIV); (ii) the variation
of lift with the Angle of Attack (AoA), which is at the basis of both galloping and fluttering
dynamics, the latter prevailing on the former if the higher order vibrational modes of the
beam are substantially excited during the oscillations.

To generate large oscillating loads on the tip of the beam, VIs generally have a
span length much larger than the width of the cantilever, namely 10/1 [19,25], 5/1 [22],
3/1 [18]. This may pose some limitations to the applicability of the resulting FEH. Moreover,
so far, only VIs with regular sections (square, triangle, circle) have been envisaged [20].
A new class of VI, shaped as a semitubular cylinder, has been recently proposed [26–28] and
analysed [29–31]. The concave part of the VI faces upstream in the form of a counterflow
C-shape. Such shape has been demonstrated [30] to be able to induce larger amplitude oscil-
lations and therefore an improved harvesting performance compared to the square shape.

In this work, we present the modelling of a new version of the above mentioned
VI shape, whose span is comparable to the width of the cantilever. The VI extends only
laterally with respect to the beam, in the form of two lateral winglets. The rationale behind
the design of these two peculiar features is twofold: (i) the C-shape allows for a consistent
force to be applied on the tip along the direction of the unperturbed flow, promoting beam
inflection especially around the resting position (small AoA) and resulting in an early
(i.e., at low flow velocities) onset of the swaying motion; when the AoA increases, the
aforementioned destabilizing force gives way to a lift force pointing towards the resting
position. (ii) the VI featuring only lateral extension, allows for the fluid flow to impinge
directly onto the beam, preventing its wake to screen it. Such shape has been thoroughly
tested experimentally, and a comprehensive report of the performance will be the object
of a dedicated paper. In this work, we prove that the modelling of such device, due
to its peculiarities, cannot be accomplished by means of previously proposed methods.
Indeed, the direct interaction between the fluid and the beam, usually neglected in other
studies, is here taken into account. By comparison with experimental laboratory data, such
contribution is proven to play a key role in the modelling of the device.

The outline of the paper is the following: firstly, the modelling of both the beam and the
hydrodynamic forcing is presented, followed by a concise description of the experimental
setup; then the comparison with the experimental data is carried out and discussed; finally
some conclusions are drawn together with a few perspectives.

2. Methods

In this section, we describe the structural modelling of the beam subject to the forces
yielded by the FSI model. The latter encompasses the forces exerted by the fluid on both the
VI and the beam. With reference to Figure 1, the VI is composed by a couple of semitubular
wings of 25 mm of span, resulting in a total and effective width-to-span ratio of 1/1 and
1/2, respectively.

Figure 1. Picture of the experimental FEH (a); the red VI in the foreground is mounted on the tip of
the beam, the latter being coated with black paint. Sketch of the FEH (b); all dimensions are in mm.



Appl. Sci. 2023, 13, 416 3 of 13

2.1. CFD Modelling of the FSI for the VI

In the following, we describe the procedure to determine the force exerted by the fluid
on the VI alone.

Such force is calculated numerically by means of a CFD (Computational Fluid Dynam-
ics) analysis as the one acting on the VI at rest at various AoA α and different undisturbed
flow velocities U∞.

The CFD model is a commercially available package [32] solving for RANS on struc-
tured, non uniform grids. The C-shaped section of the VI wings has been placed in a steady,
uniform water flow with its concave side facing upstream. The numerical experiments
covered a range of flow velocity U∞ and AoA α of 0.567 m/s < U∞ < 0.693 m/s and
0 deg < α < 20 deg with increments of ∆U∞ = 0.0315 m/s , ∆α = 5 deg, resulting in a total
of 25 simulations. Although the model has been extensively benchmarked, a further valida-
tion was carried out: the reference drag coefficients of the two-dimensional semitubular
cylinder of diameter D = 16 mm at null AoA, as reported in [33,34], was calculated with a
maximum error of 2%.

With reference to Figure 2, the domain extends 4× D upstream, 7× D downstream,
and 3.5× D cross flow. The same grid, determined through a grid convergence analysis,
was employed for all simulations. The cartesian, non-uniform grid features a spacing
ranging from D/8 at the boundaries, to D/64 around the object, resulting in 4.3× 104

elements. Boundary conditions were of uniform, constant velocity upstream, uniform
and constant pressure downstream and symmetrical conditions crossflow. The turbulence
closure model yielding best results in the validation phase was the k-ω one [35], and
it is then adopted in the simulations. In the analysed flow regimes, characterized by a
Reynolds number Re = U∞D/ν ' 104, ν being the kinematic viscosity, a regularly oscillating
vortex shedding develops in the wake. The simulations were run until the wake attained
a permanent oscillation. Drag and lift time histories acting on the VI were extracted and
their time-averaged values, referred to respectively as FD, FL in the following, passed to the
beam structural model.

Figure 2. 3D and 2D view (lower inset) of the non-uniform grid employed in the CFD code. Upper
inset: example of flow field (velocity magnitude in m/s). The VI is depicted in red.
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2.2. The Beam Model: Modified Euler-Bernoulli Equation

The classical Euler-Bernoulli (EB) beam equation is here modified to account for the
longitudinal forces (i.e., parallel to U∞ and to the beam rest position as in Figure 3) exerted
by the VI mounted on the tip of the beam. Let x be such direction and w(x, t) the beam
displacement at position x and time t.

α

k

i

U∞

ẇL

−ẇL

U∞

Ur

αr

w(x, t)

Figure 3. Sketch of the quantities appearing in the model formulation.

In the following, prime and dot notations stand for space and time differentiation,
respectively. Moreover, bold symbols are used for vector quantities. The standard EB
equation can be written as:

ρ S ẅ(x, t) + E J w′′′′(x, t) = F (x, t), (1)

where ρ and E are, respectively, density and elastic modulus of the beam material, while S
and J are the area and the second moment of area with respect to the neutral axis of the beam
cross-section; F (x, t) is the transverse load distributed along the beam length L. Numerical
values for ρ, S and E are the ones of an homogeneous beam equivalent to the monomorph
piezoelectric beam according to the homogenization procedure described in Appendix A.
The fourth order term in the Equation (1) can be written as E J w′′′′(x, t) = M′′(x, t) where
M(x, t) is the bending moment due to the applied transverse load. A longitudinal force Fl ,
i.e., aligned with the direction of the undisturbed flow velocity, applied to beam’s free end
(x = L) yields a further bending moment Ml(x, t):

Ml(x, t) = −Fl [w(L, t)− w(x, t)]. (2)

As a consequence:
M′′l (x, t) = Fl w′′(x, t). (3)

To tackle the problem through a modal analysis, transverse forces Ft exerted by the
VI and its inertia need to be accounted for as loads on the bulk, by means of standard
Dirac-Delta functions. The resulting modified EB beam equation reads:

[ρ S + m δ(x− L)] ẅ(x, t) + E J w′′′′(x, t) + Fl w′′(x, t) = Ft δ(x− L) +F (x, t), (4)

where m is the mass of the VI.
Standard boundary conditions for a cantilever, together with the following initial

conditions are applied: 
w(0, t) = w′(0, t) = 0,

w′′(L, t) = w′′′(L, t) = 0,

w(x, 0) = w0(x), ẇ(x, 0) = v0(x).

(5)

where w0(x) and v0(x) describe assigned initial position and motion distributions which
can be employed as a perturbation to trigger the subsequent oscillation.
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In Section 2.3, Fl , Ft will be derived from the static ones determined by means of the
CFD modelling in Section 2.1. As stated in the introduction, due to the particular shape of
the employed VI, the distributed load F (x, t), i.e., the direct action of the fluid on the beam,
will be proven to be pivotal for replicating the experimental results.

2.3. The Quasi Steady Forcing

The drag and lift components provided by the CFD model, as described in Section 2.1,
are determined considering the VI at rest, therefore the total force Fstat depends on the
undisturbed upstream flow velocity U∞ and on the VI AoA α, namely:

Fstat(U∞, α) = −FD(U∞, α)i + FL(U∞, α)k, (6)

where i and k are the unit vectors, respectively, of the x and z axes as depicted in Figure 3.
The evaluation of the force acting on the moving VI needs to account for its instantaneous
AoA and velocity. Being the VI mounted on the tip of the oscillating beam, its instantaneous
configuration can be described in terms of the motion and orientation of the tip. With
reference to Figure 3, the quasi steady assumption is here enforced, which states that the
force Fdyn acting on the VI during its motion can be determined from the components of
the static force in Equation (6) as:

Fdyn(Ur, αr) = −FD(Ur, αr)ir + FL(Ur, αr)kr, (7)

where the relative velocity Ur, the relative AoA αr depend on the tip motion and orientation
as follows: 

Ur = −U∞i− ẇ(L, t)k,

αr = arctan
[
w′(L, t)

]︸ ︷︷ ︸
α

− arcsin
(

ẇ(L, t)
Ur

)
. (8)

and the unit vectors ir, kr are respectively aligned and perpendicular to Ur, and depend on
the tip motion as: 

ir ≡
U∞i + ẇ(L, t)k

Ur
,

kr ≡ −sgn(αr)
−ẇ(L, t)i + U∞k

Ur
.

(9)

Fl and Ft appearing in Equation (4) are the longitudinal and transverse components of
Fdyn, that is: {

Fl = Fdyn · i,
Ft = Fdyn · k.

(10)

To compute them, according to Equations (7) and (8), the domain (U∞, α) needs to be
continuously sampled. Therefore, the discrete values of FD and FL as yielded by the CFD
simulations have been suitably interpolated. For a comprehensive discussion on the effect
of such interpolation, the reader is referred to [36] and to the works therein cited.

Quasi steady modelling of the galloping motion of such devices has been extensively
employed 10/1 [15,18,20,36–39], being supported by the difference in peak frequencies
between vortex shedding in the wake of the VI ( fVI) and oscillation of the FEH ( fFEH). In
our case, the two stand in the ratio fVI/ fFEH ' 4 : 1.

The moment Mdyn, as computed from the above described quasi steady assumption,
resulted to be negligible for the case considered (i.e.,

∣∣L Fdyn/Mdyn

∣∣� 1), and it has not been
included in the modelling.



Appl. Sci. 2023, 13, 416 6 of 13

2.4. The Experimental Setup

The performance of the a wide class of C-shaped VIs has been experimentally tested
in a free surface flume by means of experimental FEHs [27,28,40] like the one shown in
Figure 1, where both a picture and a sketch of the FEH employed in this work, along with
its dimensions in mm, are provided.

The cantilever is placed counterflow at the centerline of the channel parallel to its
lateral walls. It is made of a steel foil clamped at one end to form a 10.8 cm long can-
tilever. A ceramic perovskite (PZT) piezoelectric plate of weigth 2.05 g made by Physik
Instrumente [41] is glued on the top face of the lamina. A differential probe connected
to an oscilloscope is employed for the acquisition of the AC electrical voltage produced
by the piezoelectric patch deformation under flow induced oscillations. The experiments
are carried out with an open circuit configuration. For further details on the employed
experimental configuration the reader is referred to [27,28]. Figure 4 shows the transverse
displacement of the tip of the cantilever detected by image analysis for a duration of 45
s. The inset shows the comparison between the measured signal and the sine function
employed to fit the experimental data. Specifically, an amplitude a = 0.0089 m and a
frequency f = 3.6 Hz have been used to obtain the fitting function. It is worth highlighting
that, in force of Equation (8), the maximum rotation of the tip section of the beam during
the employed experimental runs (namley 6 deg) is considerably smaller than the maximum
AoA (namely 20 deg) investigated within the CFD runs in Section 2.1. The above supports
the employment of the linear Euler-Bernoulli model.

Figure 4. Experimental signal: transverse displacement of beam tip. The inset shows the overlapping
of the harmonic fitting function with the experimental recording for the time interval 5 s < t < 9 s.

2.5. Finite Dimensional Approach and Galerkin Expansion

We expand the solution of the partial differential equation Equation (4) into its eigen-
functions series:

w(x, t) =
∞

∑
i=1

Ai(t)zi(x), (11)

where {zi(x)}i=1,2,... are the eigenfunctions of the standard EB equation for the cantilever [42].
Inserting the expansion, Equation (11), into the differential equation Equation (4) and
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retaining only the first mode A1(t)z1(x), after a Galerkin projection, the following nonlinear
second order ordinary differential equation in the unknown A1(t) is obtained:

Ä1(t) +
N12

ζ
Fl A1(t) +

ω2
10

(1 + χ)
A1(t) =

z1(L)
ζ

Ft +
(F , z1(x))

ζ
, (12)

where: 

(4,�) ≡
∫ L

0
4� dx,

N12 ≡
(
z1, z′′1

)
,

N11 ≡ (z1, z1),

χ ≡
m z2

1(L)
ρ SN11

,

ζ ≡ ρ S (1 + χ)N11.

(13)

and ω10 is the natural angular frequency of the first eigenmode of the piezoelectric-beam
system. In Equation (12) Ft and Fl , owing to Equations (10), (7) and (11), are non linear
functions of A1(t), Ȧ1(t). Finally, the term (F ,z1(x))/ζ models the distributed transverse load
along the beam due to the direct fluid dynamic action. The distributed load of the fluid
onto the beam is expected to be extremely complex, resulting from the presence of multiple
eddies generated by the non-stationary wake of the tip of beam. Such dynamics rules out
the employment of simple, yet physically based, formulations. Therefore, the term will be
modeled assuming that it can be expressed at leading order as a linear combination of A1(t)
and Ȧ1(t) according to:

(F , z1(x))/ζ = 2γ ω10 Ȧ1(t) + β

(
ρ f U2

∞

ρ S

)
A1(t), (14)

where γ and β are dimensionless calibration parameters of the model, and ρ f is the fluid
density.

3. Results
3.1. Model Calibration against Experimental Results

The model described by Equation (12) has two free parameters as defined in Equation (14),
namely γ and β. Both terms describe the fluid action exerted directly on the beam, the first one
being proportional to the velocity of the beam, the second to its position. The rationale behind
such modelling choice lies in allowing for both a bidirectional (β−term) and a unidirectional
(γ−term) net power transfer between beam and fluid, in a single cycle, in the limit of harmonic
swaying.

The values of the two free parameters have been determined through a minimization
procedure of a loss function between the experimental and the numerical spectra. The
best set of parameters yields the results in Figure 5, where the leading frequency of the
oscillation can be reproduced with an error of 0.1%. The comparison of time histories of tip
motion, showing a marked match of the amplitude as well, confirms the correctness of the
calibration procedure. The best fit values of γ and β are 0.0626 and 3.11, respectively. As
will be demonstrated in the next section, this implies that in whole oscillation, a net power
transfer takes place directly from the fluid to the beam.
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Figure 5. Comparison between experimental (black line) and numerical results (red line): time history
of the tip motion (a) and frequency spectrum of the tip motion (b).

3.2. Evaluation of the Work Done by Fluid Forces on the VI

A validation of the attained calibration is carried out by comparing the power transfers
between the fluids and the different parts of the FEH, namely the VI and the beam. With
reference to Figure 6, assuming the VI to oscillate only along y direction, the instantaneous
power transfer Pf→VI from fluid to the VI reads:

Pf→VI = Ft ẇ(L, t). (15)

Pf→VI

Pf→b

Pf→VI

Pf→bPb→VI

Figure 6. Power flows between the fluid and the FEH. To assess the accuracy of the modelling of the
power transfer from the fluid to the beam, it is compared to the one transferred from the VI to the
beam, the latter emerging as an internal power flow once the FEH is thought as composed by the VI
and the beam.

Let Pb→VI be the power transferred by the beam tip to VI. Then the change in kinetic
energy dKVI in a time interval dt of the VI reads:

dKVI =
(

Pb→VI + Pf→VI

)
dt. (16)

Assuming the motion to be purely harmonic (as approximately highlighted by experi-
mental measurements and shown by numerical solution of Equation (12)), the variation
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of kinetic energy ∆KVI over an integer number of periods (n T, n = 1, 2, . . .) must vanish,
that is:

∆KVI = 0 =
∫ nT

0
Pb→VIdt +

∫ nT

0
Pf→VIdt. (17)

By dividing Equation (17) by n T, the two terms on the RHS represent the power
transferred to the VI by the beam and by the fluid, averaged over an integer number of
periods. These two mean values of power, referred to as Pb→VI and P f→VI respectively,
must satisfy the following balance:

Pb→VI = −P f→VI . (18)

In the following, Equation (18) will be verified to hold with remarkable accuracy. Such
match will support our thesis that the direct action of the fluid on the beam, as formulated
in Equation (14), must be included in the model, Equations (12), to achieve an accurate
agreement with experimental results as depicted in Figure 5.

Firstly, P f→VI has been estimated through a CFD simulation encompassing a har-
monically moving VI. The simulation has been carried out by means of the same software
employed in Section 2.1. The time history of Pf→VI is shown in Figure 7.

Figure 7. Comparison among power terms. γ and β−terms refer to the instantaneous power linked
to the RHS of Equation (14); mean value γ− term is the power transfer in Equation (19).

As per the term Pb→VI , in the limit of negligible damping occurring in the beam (it
is here worth recalling that the experiments are carried out employing an open circuit
electrical configuration), it is equal to the power that the fluid transfers to the beam, namely
P f→b. As such, it can be readily calculated by solving Equation (12) for A1(t), multiplying
it by Ȧ1(t) and then integrating over an integer number of periods. Owing to Equation (14),
such average power can be calculated as follows:

Pb→VI ≡ P f→b =
ζ

n T

∫ n T

0
2 γ ω10 Ȧ1(t)

2 + β

(
ρ f U2

∞

ρ S

)
A1(t) Ȧ1(t)dt = 2 γ ζ ω10 Ȧ1(t)

2, (19)

where the β−term in Equation (14) does not contribute to the average since the product of
the harmonic functions A1(t)Ȧ1(t) vanishes after integration. The time histories of these
two contributions to the power Pf→b are included in Figure 7.

Finally, Equation (18) reads:

2 γ ζ ω10 Ȧ1(t)
2 = −P f→VI . (20)
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The above calculation allows to verify that Equation (18) holds within a 4% error.
Figure 7 shows the time histories of the power fluxes employed in the above verification.
It is worth highlighting that the commonly employed approach to the modelling of FEH,
which accounts for the VI as the only driver of the beam oscillation, is found by the authors
to yield largely inconsistent results when compared to the experimental data. Indeed,
the investigated shape of the VI requires the inclusion of the two additional terms in
Equation (14), whose omission prevents the correct closure of the power balance within a
cycle motion.

Moreover, the following considerations are in order. The model is forced by the time
averaged values of the time-dependent forces acting on the VI, namely the Fl and Ft in
Equation (12). Therefore, the model cannot be expected to replicate the time modulation
of the Pf→VI term as shown in Figure 7, which is the result of the CFD modelling and
includes all the time-dependent effects induced by the vortex shedding. Nonetheless, the
time-averaged values of the power transfer is reproduced with remarkable accuracy. Such
a match validates the present model as a valuable tool for designing and testing FEHs.
Indeed, such analyses are mainly focused on evaluating the harvestable power over many
oscillating cycles, which the present model is able to capture satisfactorily.

4. Conclusions

In this work, we model the Fluid Structure Interaction (FSI) problem arising from the
behavior of a particular Flow Energy Harvester (FEH) featuring an innovative Vibration
Inducer (VI). The latter is shaped as a semitubular cylinder with the concave side facing
upstream and makes the attached cantilever oscillate regularly in a steady flow. Such
shape of the VI is aimed at: (i) exploiting the longitudinal drag force ii) allowing for the
undisturbed upstream flow to impinge directly on the cantilever. Given such peculiar
dynamics, a novel modelling strategy had to be devised, accounting for i) the additional
bending moment induced by the longitudinal forces acting on the VI; (ii) the direct (i.e.,
not mediated by the VI) action of the fluid on the beam. The latter is modelled as the sum
of a positional and a velocity term, whose governing parameters are calibrated against
experimental results. The action of the fluid on the VI is estimated by means of a numerical
CFD analysis, enforcing the usual quasi-steady assumption. The model is validated by
comparing its outcomes with the ones yielded by further CFD analyses encompassing
the simulated motion of the VI. The match, in terms of average power over a multiple of
the swaying cycle, is remarkable, notwithstanding the adopted minimal modelling of the
complex interaction occurring between the fluid and the beam. The proposed model is
a valuable tool to analyse the dynamic response of such class of Flow Energy Harvester
and significantly aid their design procedure. Future studies will be devoted to a possible
refinement of the form of the terms accounting for direct fluid–beam interaction.
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Abbreviations
The following abbreviations are used in this manuscript:

FEH Flow Energy Harvester
VI Vibration Inducer
AoA Angle of Attack
VIV Vortex-Induced Vibration
CFD Computational Fluid Dynamics
EB Euler-Bernoulli

Appendix A. Equivalent Beam Model

We describe a homogenization procedure to define a continuum with a mechani-
cal response equivalent to the piezoelectric-beam composite employed in this work (see
Figure 1). We formulate a suitable objective function Obj, whose constrained minimization
yields the set of parameters of the equivalent continuum. Denoting by E0, ρ0, h0, respec-
tively, the Young’s modulus, density and thickness of the steel support layer of the beam,
and by E, ρ, h the corresponding parameters of the homogeneous equivalent beam (see
Table A1 for the values), the objective function Obj to be minimized is defined as:

Obj(E, ρ, h) ≡
(

E− E0

E0

)2
+

(
ρ− ρ0

ρ0

)2
+

(
h− h0

h0

)2
. (A1)

The first natural angular frequency is measured ωexp = 157 rad/s by analysing a free
oscillation of the composite beam. Moreover, a static experiment is carried out by placing a
point load pL = 0.565 N at the free end of the cantilever and measuring its displacement
wexp = 7.7 mm. The minimization procedure is then constrained as follows:

1. The first natural angular frequency ω10 of the equivalent beam must match ωexp,
namely:

ω10 = a (1.875/L)2 = ωexp, (A2)

where a(E, ρ, h) ≡
√

EJ/(ρ b h) and b the width of the beam’s section;
2. The tip deflection must match the measured one, namely:

wL = pLL3/(3 E J) = wexp; (A3)

Employing a set of two Lagrange multipliers, λ1 and λ2, we find stationary points of
the Lagrangian Λ:

Λ ≡ Obj(E, ρ, h)+λ1

(
ωexp − a(E, ρ, h)(1.875/L)2

)
+λ2

(
wexp − pL L3/(3 E J(h))

)
, (A4)

considered as a function of E, ρ, h, λ1, λ2.
The set of equivalent parameters are listed in Table A1.

Table A1. Experimental and equivalent beam parameters.

Steel Equivalent Units

ρ0 = 7860 ρ = 7171 kg/m3

E0 = 208 E = 234 GPa
h0 = 0.25 h = 0.316 mm
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