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Featured Application: The proposed navigation system is suitable for UAV navigation in GNSS-
denied environments with spatial grid structures. It can be used for the UAV inventory system
of dry coal sheds in thermal power plants, the UAV detection system for anti-corrosion coating
of truss structures on high-speed railway platforms, the UAV inspection system for large turbine
workshops, and other similar systems.

Abstract: With its fast and accurate position and attitude estimation, the feature-based lidar-inertial
odometer is widely used for UAV navigation in GNSS-denied environments. However, the existing
algorithms cannot accurately extract the required feature points in the spatial grid structure, resulting
in reduced positioning accuracy. To solve this problem, we propose a lidar-inertial navigation system
based on grid and shell features in the environment. In this paper, an algorithm for extracting features
of the grid and shell is proposed. The extracted features are used to complete the pose (position and
orientation) calculation based on the assumption of local collinearity and coplanarity. Compared
with the existing lidar navigation system in practical application scenarios, the proposed navigation
system can achieve fast and accurate pose estimation of UAV in a GNSS-denied environment full of
spatial grid structures.

Keywords: UAV; lidar; navigation system; GNSS-denied environment; spatial grid structure; feature
extraction

1. Introduction

Automated intelligent UAVs, which have the ability to autonomously sense the lo-
cation, have been widely used in inspection, survey, and other tasks in GNSS-denial
environments [1,2]. A reliable navigation system [3] is a fundamental guarantee for the safe
flight of UAV systems in these environments [4]. Therefore, many lidar-inertial navigation
systems have been proposed [5–8], which calculate the pose using line and plane features.
However, the working environment of these navigation systems determines whether they
can achieve high-precision UAV pose estimation [9]. The lack of plane and line features in
the common spatial grid structure of industrial scenes creates significant challenges for the
autonomous navigation system of UAVs.

The critical problem of the autonomous navigation scheme of UAVs based on lidar
is the point cloud registration of lidar. This is the process of obtaining the relative pose
from the changes in the two frame point clouds of the lidar. A typical method used in
this process is the iterative closest point (ICP) method [10]. The ICP method is generally
divided into two steps. The first step is to calculate the matching relationship between
two scans. The second step is to calculate the optimal transfer matrix to minimize the cost
function of the distance between matching points. However, when the point cloud is sparse,
accurate matching points cannot be found, and when the point cloud is dense, the matching
relationship between points is difficult to calculate in real-time. In order to solve these

Appl. Sci. 2023, 13, 414. https://doi.org/10.3390/app13010414 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010414
https://doi.org/10.3390/app13010414
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5100-1332
https://orcid.org/0000-0002-5331-5060
https://orcid.org/0000-0001-6879-5258
https://doi.org/10.3390/app13010414
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010414?type=check_update&version=2


Appl. Sci. 2023, 13, 414 2 of 16

problems, many ICP variants using higher dimensional information in the environment
have been proposed. This method extracts features such as lines, curves, and planes from
point clouds [11,12] and constructs cost functions of point-to-line [13], point-to-plane [14],
and plane-to-plane [15].

A low drift, real-time lidar navigation system LOAM [16] was first proposed. The
front end of this navigation system extracts plane features and corner features. These
features form a feature point set. In the feature point set, the UAV pose change is solved by
minimizing the cost function of the distance from point-to-line and point-to-plane. Due
to this feature-based odometer algorithm, it can be solved in real-time in most airborne
computers. Many subsequent navigation systems have been improved on this basis. LIO-
SAM [17] presents a factor-graph-based, lidar-inertial, loose-coupling method in the front
end. It uses the high-precision position and attitude estimated by the lidar to correct
the measurement bias of IMU. It also uses high-frequency IMU measurement to predict
the lidar’s motion, providing information for point cloud distortion removal and pose
estimation solution. Then F-LOAM [18] improved the lidar navigation system. It constructs
a new cost function of point-to-line and point-to-plane matching, which results in a faster
and more accurate lidar pose estimation solution.

These navigation systems based on plane and corner features are reliable in most
artificial environments. However, there is a significant risk of failure when they work in
an environment lacking a clear plane and straight edge, such as woods [19], the moon
surface [20], etc. Due to the significant difference in resolution between the horizontal and
vertical directions of the surrounding lidar, when the number of feature points is insufficient,
it will lead to large errors in motion estimation and failure of system positioning. Spatial
grid structures are now widely used in industrial and living scenes, mainly including
grid structure and shell structure, because of their light weight, strong shape adaptability,
and high structural strength. The lidar navigation system used for UAVs is faced with
the above problems when it is applied in GNSS-denied environments full of spatial grid
structures [21], such as stadiums, terminals, aircraft hangars, factory workshops, coal
sheds, and warehouses. The spatial grid structures in industrial and living scenes are
shown in Figure 1. When the UAV works in an environment full of hollowed cylindrical
grid structures and curved lattice shell structures above the building, it is difficult for
the traditional lidar navigation system to obtain sufficient and stable plane features and
corner features. This is very challenging to UAVs using a lidar-based navigation system,
which limits the use of UAVs in such an environment. Therefore, seeking to address the
problems in applying lidar navigation systems in GNSS-denied environments with spatial
grid structures, we propose a lidar-inertial navigation system for UAVs based on grid line
features and grid surface features.

The main contributions of this study are summarized below:

(1) Focusing on the spatial grid structure in the GNSS-denied environment, we designed
a grid feature-extraction algorithm and a shell feature-extraction algorithm that only
use logical judgment.

(2) We implemented a lidar-inertial navigation system based on the assumption of local
collinearity of grid features and local coplanarity of reticulated shell features.

(3) We experimented with the navigation system in real application scenarios. Exper-
iments undertaken show that, compared with other recently proposed lidar-based
UAV navigation systems, the proposed system can achieve faster and more accurate
UAV pose estimation in a GNSS-denied environment with spatial grid structures.

The remainder of this paper is organized as follows: The second section introduces
the fast extraction algorithm for grid and shell features and the implementation of the
navigation system. The third section describes the experiments performed on the navigation
system and compares the system with other systems with respect to the following: feature
extraction, localization, and mapping. The last section presents the conclusions.
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Figure 1. The spatial grid structures in industrial and living scenes.

2. Lidar-Inertial Navigation System for UAVs in GNSS-Denied Environment with
Spatial Grid Structures
2.1. System Overview

The overall framework of the UAV lidar-inertial navigation system proposed in this
paper is shown in Figure 2. The system can be divided into three modules: point cloud
extraction and matching, lidar-inertial fusion, and mapping.

Figure 2. The framework of the proposed navigation system.

The point cloud extraction and matching module receive the point cloud data from the
surrounding lidar. Then, the point cloud distortion is removed using the high-frequency
pose prediction data of the lidar-inertial fusion module. After the removal of distortion,
the features are extracted from the point cloud. Finally, the extracted features are used to
match with the local map generated by the mapping module; the high-precision pose is
output at a low frequency of 10 Hz.
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The lidar-inertial fusion module receives the angular velocity and acceleration data
of the IMU and the low-frequency and high-precision pose output by the point cloud
extraction and matching module. It pre-integrates the IMU measurement [22] and fuses
the above data to achieve loose coupling of lidar-inertial and outputs high-frequency pose
prediction. The predicted pose is used for point cloud distortion removal and point cloud
matching.

The mapping module receives the matching results from the point cloud matching
module and the feature points from the corresponding keyframes. This module uses the
above data to build a global map and generates a local map for the point cloud match-
ing module.

2.2. Fast Feature Extraction Algorithm for Spatial Grid Structure

An algorithm is proposed that can quickly and accurately extract grid features and
shell features from point clouds collected by lidar in spatial grid structure environments.

Assuming time ti, a frame of point cloud P̂ is obtained by lidar scanning. Because P̂ is
usually the point cloud collected by the lidar in continuous time [ti−1, ti], it is necessary
to first remove the original point cloud’s motion distortion to unify all the points in the
original point cloud P̂ to time ti. In this way, the measurement error of the sensor can
be reduced when solving the pose at time ti of the navigation system. Since an IMU is
used in the navigation system, the method described in [23] is used instead of making the
assumption of uniform motion when removing motion distortion:

(1) Calculate the pose prediction of IMU in the two point cloud frames time interval
[ti−1, ti].

(2) According to the scanning time of each point in the original point cloud P̂, interpolate
the pose transformation of the point to the lidar frame Li at time ti.

(3) The points are projected to the lidar frame Li at time ti through their pose transfor-
mation. The lidar point cloud is recorded from which motion distortion has been
removed as PLi .

Next, the features of the spatial grid structures are extracted from the point cloud after
motion distortion removal. We first introduce the method of grid feature extraction.

When the UAV is working in an environment full of spatial grid structures, the lidar
will detect the environment’s three-dimensional information from the building’s interior.
Generally, the space truss structure is closer to the lidar than the shell structure. In the same
line of lidar scanning, the points falling on the grid structure and the adjacent points falling
on the shell structure produce a “V” shape, as shown in Figure 3.

Figure 3. Schematic diagram of the grid feature extraction algorithm. It is a horizontal section view
of a spatial grid structure containing vertical truss sections. The blue dotted lines are the lights from
the lidar scan points. The yellow lines are an illustration of the “V” shape.
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The “V” shape is used to screen the features of the grid on the single-line scanning of
the lidar. Denote PL

k,j as the position of the jth point in the lidar frame L of the kth line scan
point of a certain frame of lidar. The distance from the point to the center of the lidar is
measured as rk,j. The characteristic diameter of the steel frame of the spatial grid structure
is set as d. The horizontal angular resolution of the lidar is α. For each scan point PL

k,j, the
criteria to be extracted as grid features are shown in Equation (1).{

Le_th ≤ rk,j+m − rk,j ≤ Ue_th
Le_th ≤ rk,j−m − rk,j ≤ Ue_th

(1)

where Le_th, Ue_th, and m are all threshold values related to the environment. The expression
of m is shown in Equation (2).

m = groudup

(
d

αrk,j

)
(2)

where groudup is an operator for upward forensic notation. It is ensured by m that the scan
points used to extract the grid features have wholly contained the grid structure and have
been irradiated on the shell structure behind.

The shell feature extraction algorithm component in this paper is the same as the
extraction method of plane features in the LOAM [16] algorithm. Calculate the average
distance kL

k,j from five points before and after a point PL
k,j on each scan line to this point, as

shown in Equation (3).

kL
k,j =

1

10 ·
∥∥∥PL

k,j

∥∥∥ ∑
q∈[−5,5],q∈Z,q 6=0

∥∥∥PL
k,j − PL

k,j+q

∥∥∥ (3)

where
∥∥∥PL

k,j

∥∥∥ is the distance from point PL
k,j on the line to the center of the lidar, and∥∥∥PL

k,j−PL
k,j+q

∥∥∥ is the distance between point PL
k,j and the nearby points PL

k,j+q. When kL
k,j is

less than the set threshold, it is determined as a plane feature. However, in an environment
with space grid structures, multiple consecutive scanning points of the same line of the lidar
may fall on the grid simultaneously. In this case, the algorithm will erroneously extract it
as a plane feature point. Therefore, we propose a removal algorithm for the false extraction
of shell features for space grid structures to turn the plane feature into a shell feature. Its
schematic diagram is shown in Figure 4.

Figure 4a shows a common situation. In the kth line scan of the lidar, n consecutive
scan points before and after the jth scan point fall on the grid. In this case, the point PL

k,j will
be judged as a plane feature according to the above single judgment condition. Compared
to the LOAM algorithm that only uses a single line scan to extract features, we add the
relationship between different line scans to eliminate this erroneous feature extraction. As
shown in Figure 4b, the extracted face feature point PL

k,j is compared with the points PL
k−1,j

and PL
k+1,j of the same number in the adjacent k − 1 and k + 1 lines. If the condition of

Equation (4) is satisfied, then PL
k,j is considered to be a point on the shell, which does not

need to be eliminated and is recorded as a shell feature. Otherwise, the point is considered
to be wrongly extracted and it is eliminated from the plane feature points. In Equation (4),
Ls_th and Us_th are corresponding thresholds.{

Ls_th ≤ rk+1,j − rk,j ≤ Us_th
Ls_th ≤ rk−1,j − rk,j ≤ Us_th

(4)

An example of the extraction of grid and shell features using the proposed method is
shown in Figure 5.
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(a) (b)

Figure 4. Schematic diagram of the shell feature extraction algorithm. (a) is a horizontal section view
of a spatial grid structure containing vertical horizontal sections. (b) is a vertical section view of a
spatial grid structure containing vertical horizontal sections. The blue dotted lines are the lights from
the lidar scan points.

(a)

(b)

Figure 5. Cont.
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(c)

Figure 5. Example of extracting grid features and shell features. (a) shows a GNSS-denied environ-
ment with space grid structures, where we operated a UAV with a lidar navigation system flown
in. The photo was taken facing north. (b) shows the real-time point cloud collected by the lidar,
where the color of the point represents the reflection intensity. (c) shows the grid features and shell
features extracted from the point cloud; the grid features are painted in green and the shell features
are painted in purple.

2.3. Implementation of the Lidar Navigation System

The proposed lidar-inertial navigation system uses the same fusion framework as
LIO-SAM in the front end. The main difference is the design of the lidar odometer part of
the navigation system.

To solve the motion of the lidar in a GNSS-denied environment with spatial grid
structures, we make certain assumptions about the relationship of the extracted features.
The shell feature is assumed to be locally flat. The grid features are assumed to be lo-
cally collinear. Then the cost functions of point-to-line and point-to-plane distances are
constructed. Compared to the cost function expressions used in LIO-SAM, the proposed
methods are compact and easy to construct to solve on SE(3) manifolds.

For the grid feature PL
e , find the five nearest neighbor points corresponding to the

feature in the local map MN
e,local composed of grid features. Assume that the five points are

collinear. Compute their geometric centers P̂N
e and the direction vector n̂N

e of the target
line composed of them. The distance de

(
PL

e
)

from the feature point PL
e to the target line is

shown in Equation (5).

de

(
PL

e

)
= α ·

[(
TN

L PL
e − P̂N

e

)
× n̂N

e

]
(5)

where TN
L is the pose transformation matrix representing the lidar in the navigation frame.

α is the unit vector of the direction vector from the feature point to the target line. The
expression of α is shown in Equation (6).

α =

(
TN

L PL
e − P̂N

e
)
× n̂N

e∥∥(TN
L PL

e − P̂N
e
)
× n̂N

e
∥∥ (6)

Similarly, the distance ds
(

PL
s
)

from the shell feature PL
s to the target plane is shown in

Equation (7).

ds

(
PL

s

)
=
(

TN
L PL

s − P̂N
s

)
× n̂N

s (7)

where P̂N
s is the geometric center of the nearest-neighbor points, which are assumed to be

coplanar, corresponding to the shell feature PL
s in the local map MN

s,local composed of shell
features, and n̂N

s is the normal vector of the target plane.
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For all the features, the particular UAV pose at the current moment can be obtained by
minimizing the sum of the above cost functions. The output frequency of this pose result is
10 Hz. It is then fused with the IMU using factor graph optimization [24], which is solved
by iSAM2 [25].

3. Experiment
3.1. Experimental System Construction

The hardware used in the navigation system experiment included a surround lidar, a
six-axis inertial measurement unit, and an onboard computing unit. The surround lidar
was VLP-16, with a maximum detection distance of 100 m and an accuracy of 3 cm. It has
a field of view angle of 360° horizontally and 30° vertically. During the experiment, the
rotational speed was set to 600 rpm, the corresponding horizontal resolution was 0.2°, and
the angle between adjacent lines of the 16 scan lines was 2°.

The proposed navigation system is implemented in C++ language. The software was
developed based on the ROS architecture and runs on the Ubuntu18.04 operating system.
The computing unit used was Intel NUC8 and the CPU was i5-8259U. The navigation
system was mounted on a quadrotor UAV and the experiments were carried out in a
GNSS-denied environment with space grid structures. The experimental system equipment
is shown in Figure 6.

Figure 6. The equipment of the experimental system.

3.2. Experiments and Data Analysis

We chose to test the navigation system in a dry coal shed of the Fengcheng Thermal
Power Plant Phase I in Jiangxi Province, China. This is a typical GNSS-denied environment
with a spatial grid structure in industrial production. During the experiment, the UAV
equipped with the navigation system was manually controlled for flight. Various data
were collected and recorded during the experiment. We analyzed the recorded data and
compared the proposed navigation system with other systems in terms of the following:
feature extraction, localization, and mapping.

3.2.1. Analysis of Feature Extraction

The parameter settings of the feature extraction of the navigation system in the experi-
ment are shown in Table 1.
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Table 1. Parameter settings of the feature extraction.

Parameter Le_th Ue_th Ls_th Us_th d

Value /m 0.3 6 0.3 6 0.2

The number and total time consumption of feature extraction in each frame of the
point cloud are shown in Figure 7. From Figure 7, the total time spent extracting feature
points in each point cloud frame showed the same trend as the number of shell features.
This implies that the time consumption when extracting features mainly occurred as a
result of the extraction of the shell features. It also reflects that the proposed grid feature
extraction algorithm, which only uses logical judgment, can perform fast and efficient
operations even with limited airborne resources.

Figure 7. The number and time consumption of feature point extraction.

We analyzed and compared the features extracted by the proposed algorithm and the
LOAM algorithm from the spatial grid structure. The features extracted by each algorithm
in the low-altitude take-off and landing stage and the high-altitude cruise stage of the UAV
are shown in Figure 8. It can be seen from (e) and (f) that, in the low-altitude take-off and
landing stage, the LOAM algorithm incorrectly extracted many points belonging to the
ground as line features. It can also be seen from (g) and (h) that, in the high-altitude cruise
phase, the LOAM algorithm incorrectly extracted the points that fell on the grid as plane
features. The incorrect feature extraction introduced significant errors to the localization.
In contrast, it can be seen from (a), (b), (c), and (d) that the proposed feature extraction
algorithm was able to accurately extract grid and shell features from the surrounding
spatial grid structures, regardless of whether the UAV system worked at low altitude or
high altitude.
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Figure 8. The features extracted by the proposed algorithm and LOAM algorithm. (a,b) are the
features extracted by the proposed algorithm for the low-altitude take-off and landing stage of the
UAV operations. (c,d) are the features extracted by the proposed algorithm for the high-altitude
cruise stage of the UAV operations. In (a–d), we marked the shell feature in pink and the grid feature
in green. (e,f) are the features extracted by the LOAM algorithm for the low-altitude take-off and
landing stage of the UAV operations. (g,h) are the features extracted by the LOAM algorithm for the
high-altitude cruise stage of the UAV operations. In (e–h), we marked plane features in pink and line
features in green.

3.2.2. Analysis of Localization

During the experiment, we manually controlled the UAV to fly a complex trajectory
in the coal shed until it finally returned to the vicinity of the take-off point. The flight
trajectory solved by the proposed navigation system is shown in Figure 9.
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Figure 9. The flight trajectory solved by the proposed navigation system.

The x-axis, y-axis, and z-axis variation curves of the UAV flight trajectory in the coal
shed calculated by LOAM, F-LOAM, LIO-SAM, DJI, and the proposed navigation system
with time are shown in Figure 10. The UAV flight trajectory and the mapping described in
the following subsection are in the navigation frame. We aligned the trajectories computed
by the navigation system above. The navigation frame takes the take-off point as its origin.
The z-axis is opposite to the direction of gravity and points upwards. The x-axis and the
y-axis point to the front and left of the body frame when it is taking off, respectively. In
an analysis, we set the local map resolution to remain the same for all navigation systems
except DJI. DJI is the positioning system that comes with the drone platform. While
working, it fuses data from the IMU, VO, ultrasonic rangefinder, magnetometer, and the
barometer. Since DJI does not use lidar, it is only used as an example of the inability of
traditional sensor fusion to complete navigation in GNSS-denied environments with spatial
grid structures.

(a)

Figure 10. Cont.
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(b)

(c)

Figure 10. The x-axis, y-axis, and z-axis variation curves of the UAV’s flight trajectory. (a–c) are x-axis,
y-axis, and z-axis variation curves with time, respectively.

It can be seen from Figure 10 that the proposed navigation system has higher initial
stability than LIO-SAM in the stationary stage before the take-off of the UAV. Except for
the height direction, DJI is very different from other systems in other directions. Since the
experiment was performed in a GNSS-denied environment, the true value of the UAV pose
could not be obtained. Therefore, we compared the error of the UAV landing point solved
by each system. In an analysis in this section, we use the offline ICP algorithm to obtain the
relative pose between take-off and landing points by matching the point cloud scanned by
the lidar during take-off and landing. We take the landing point of the offline solution as
the true value and compare the landing point error of each algorithm, as shown in Table 2.
It can be seen that the accuracy of the landing point position calculated by the proposed
navigation system is significantly better than for the other navigation systems in the x-axis
and y-axis directions. It is also close to the best-performing system in the z-axis direction.
It should be noted that LIO-SAM uses loop closure detection based on the ICP method in
the backend, which is why it has an advantage in the z-direction. The proposed navigation
system only acts as a lidar-inertial odometry.
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Table 2. Landing point error comparison.

Direction LIO-SAM F-LOAM DJI Proposed
System

X /m −8.6679 2.1266 −11.8198 0.0550
Y /m −1.9806 −7.2650 −7.1752 −0.0454
Z /m 0.0399 1.4190 −0.5295 −0.0880

The processing time of a single-scan lidar point cloud of each algorithm is shown in
Figure 11. The proposed navigation system converges faster than other algorithms due
to the use of better environmental structural constraints in the computation. The average
processing time of the proposed system for a single-scan lidar point cloud is under 50 ms.

Figure 11. The processing time of a single-scan lidar point cloud.

3.2.3. Analysis of Mapping

We also compared the proposed navigation system with LOAM, F-LOAM, and LIO-
SAM in terms of mapping quality. In this subsection, we only show a comparison of the
proposed system with LIO-SAM since F-LOAM and LOAM do not produce meaningful
point cloud maps. The top view of the point cloud map is shown in Figure 12. The side
view of the point cloud map is shown in Figure 13.

In Figure 12, we zoom in on the outline of the lower left building in the top view. A lot
of “ghosting” appeared in the outline of the building constructed by LIO-SAM. These “ghost
images” reflect that LIO-SAM’s estimation of the UAV’s displacement significantly differs
from the true displacement in the horizontal direction. In contrast, the proposed navigation
system builds a clear outline of the lower left building. This reflects that the proposed
navigation system can accurately estimate the displacement in the horizontal direction.

In Figure 13, we zoom in on the bottom support and top of the space grid structure.
Compared to LIO-SAM, the proposed navigation system has a more accurate representation
of buildings in the constructed map. For example, the thickness of the point cloud on the
surface of the shell structure at the top of the coal shed is smaller, and the point cloud at the
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bottom support better reflects the actual shape of the building structure and wall. This also
reflects that the proposed navigation system is very accurate for UAV motion estimation.

(a)

(b)

Figure 12. The top view of the point cloud map. (a,b) are the top views of the point cloud maps built
by LIO-SAM and the proposed navigation system, respectively.

(a)

Figure 13. Cont.
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(b)

Figure 13. The side view of the point cloud map. (a,b) are the top views of the point cloud maps built
by LIO-SAM and the proposed navigation system, respectively.

4. Conclusions

According to the characteristics of the lidar point cloud in the spatial grid structure,
this paper proposes a simple and efficient extraction algorithm for grid features and shell
features that only use logical judgment. The algorithm can quickly and accurately extract
these two features in the spatial grid structure.

Based on the features extracted from the spatial grid structure, reasonable assumptions
are made in this paper. Based on the assumptions, a GNSS-denied environment laser inertial
navigation system that adapts to the spatial grid structure is designed and implemented.
The navigation system achieves accurate estimation of the UAV’s pose.

In response to the requirements of UAVs for navigation in GNSS-denied environments,
we conducted experiments with UAVs equipped with navigation systems in real application
scenarios to verify the system’s real-time accuracy with respect to positioning and mapping.
By comparing the existing navigation system based on lidar, it was found that the proposed
navigation system possesses significant advantages in terms of positioning accuracy, real-
time performance, and mapping quality.
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