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Abstract: Due to the high importance of viscoelastic materials in modern industrial applications,
besides the intensive popularity of piezoelectric smart structures, analyzing their thermoelastic
response in extreme temperature conditions inevitably becomes very important. Accordingly, this
research explores the thermoviscoelastic response of sandwich plates made of a functionally-graded
Boltzmann viscoelastic core and two surrounding piezoelectric face-layers subjected to electrothermal
load in the platform of three-dimensional elasticity theory. The relaxation modulus of the FG
viscoelastic layer across the thickness follows the power law model. the plate’s governing equations
are expressed in the Laplace domain to handle mathematical complications corresponding to the
sandwich plate with a viscoelastic core. Then, the state-space method, combined with Fourier
expansion, is utilized to extract the plate response precisely. Finally, the obtained solution is converted
to the time domain using the inverse Laplace technique. Verification of the present formulation is
compared with those reported in the published papers. Finally, the influences of plate dimension,
temperature gradient, and relaxation time constant on the bending response of the above-mentioned
sandwich plate are examined. As an interesting finding, it is revealed that increasing the length-to-
thickness ratio leads to a decrease in deflections and an increase in stresses.

Keywords: viscoelastic; FGM; thermoelastic; piezoelectric; sandwich plate

1. Introduction

Rectangular plates at various engineering structures are subjected to thermomechani-
cal loads, which may involve unwanted deformations and stresses. In addition, functionally
graded (FG) materials are novel composite materials in which all features regularly differ
in one, two, or three directions and can be fitted to decrease deformations and stresses in
structures built from FGMs. Numerous studies have been performed on the behavior of
FGM structures over the last years. Based on higher shear deformation theory (HSDT),
Jagtap et al. [1] studied the nonlinear bending behavior of FG plates with random prop-
erties in a thermal medium. Alibeigloo and Emtehani [2] investigated the static and free
vibration behaviors of functionally graded carbon-nanotube-reinforced composite (FG-
CNTRC) plates using the differential quadrature method (DQM). Based on the theory of
elasticity, thermoelastic analysis of cylindrical panels reinforced with graphene platelets
was presented by Alibeigloo [3] utilizing the state-space Fourier series method (SS-FSM).
Phung-Van et al. [4] studied the optimal design of FG sandwich nanoplates within the
framework of refined plate theory with four variables using size-dependent isogeometric
analysis. Based on an efficient layerwise theory, Beg and Yasin [5] analyzed the bending and
vibration of FG curved beams with temperature-dependent material properties in a thermal
environment. DQM was used by Wang et al. [6] to obtain the nonlinear bending response
of a FG graphene-platelet-reinforced (FG-GPLR) composite plate, considering the dielectric
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properties within the framework of FSDT and von Karman strain relations. Brischetto and
Torre [7] proposed an innovative method based on a three-dimensional (3D) deformation
field to analyze the bending response of FG plates and various types of shells subjected to
moisture load. It should be noted that FG materials can be classified into various types due
to the function considered for defining the distribution of the material’s properties. One
of the main groups of FGM is composed of those for which their properties are defined
based on the power law variation model [8,9]. Additionally, double-diffusion convection in
nanofluids [10,11], the effect of magnetic loads on the thermoelastic response of nanofluid
transmission systems [12,13], and nanomaterial effects on an induced magnetic field [14,15]
are the most recent topics relating different fields of engineering to each other to investigate
the effect of temperature difference on various systems and materials.

Several studies are presented in the literature concerning the response of structures
with embedded piezoelectric layers. In particular, Alibeigloo [16] studied the bending of
an FGM beam attached to sensor and actuator layers under thermomechanical load within
the framework of 3D elasticity theory and using SS-FSM. Alibeigloo and Chen [17] studied
the bending of FGM cylindrical panels bonded with the sensor and actuator using the
state-space differential quadrature method (SS-DQM). Kiani et al. [18] investigated the
buckling and instability problem of the FG piezoelectric Timoshenko beam under thermal
and electric loads. Employing refined multifield two-dimensional models, Brischetto and
Carrera [19] studied quasi-3D thermo-electro-mechanical responses of multilayered simply
supported smart shells with piezoelectric layers subjected to multifield loadings using
the Navier method. Alibeigloo [20] modeled the FGM plate embedded in piezoelectric
layers subjected to electro-thermal load and solved the governing equations using SS-FSM.
Three-dimensional thermo-piezo-elastic analysis of the FG cylindrical shell was carried
out analytically by Alibeigloo [21] utilizing SS-FSM. The static behavior and free vibration
characteristics of cross-ply laminated composite rectangular plates surrounded by piezo-
electric layers at various boundary conditions were obtained by Frei et al. [22] based on 3D
elasticity theory and applying DQM. Utilizing the sampling surfaces approach, Kulikov
and Plotnikova [23] investigated the 3D coupled steady-state thermomechanical behavior
of a simply supported FG piezoelectric laminated plate under thermal loading analytically.
Based on the Lord–Shulman formulation and utilizing DQM and a multi-step time integra-
tion scheme, the thermoelastic response of FG cylindrical panels bonded with piezoelectric
layers and subjected to thermal shock was investigated by Heydarpour et al. [24]. Using the
meshless methods and third-order shear deformation theory, Moradi-Dastjerdi and Behdi-
nan [25] analyzed thermo-electro-mechanic behaviors of the sandwich FG plate attached
to piezoelectric layers in the framework of HSDT. Using a sandwich nanobeam model,
the electromechanical response of a piezoelectric energy harvester under compressive
axial load was considered by Zeng et al. [26] for both prebuckling and postbuckling states,
utilizing the Galerkin technique and the harmonic balance method. Xiang and Shi [27]
investigated the thermo-viscoelastic behavior of beams made of FG piezoelectric material
(FGPM) using the Airy stress function based on elasticity theory. Koutsawa et al. [28]
considered the effect of viscoelastics at the interface on the damping and thermomechanical
response of composite rectangular plates. The thermo-viscoelastic response of 3D woven
composite was investigated by Cai and Sun [29] using the finite element method and
the Prony series. Norouzi and Alibeigloo also investigated the bending of viscoelastic
cylindrical panels under uniform pressure within the framework of 3D elasticity theory
and using SS-DQM [30]. Malikan et al. [31] used Navier’s approach to study the damped
vibration response of the viscoelastic corrugated nanoplates within the framework of FSDT
and utilizing the Kelvin–Voigt model. The time-dependent response of FG sandwich plates
with a viscoelastic core was presented analytically by Yang et al. [32] using the standard
linear solid model of viscoelasticity and using the Laplace transformation technique. Utiliz-
ing a meshless local Petrov–Galerkin technique and considering thermo-mechanical loads,
an exact solution for thermo-viscoelastic behaviors of fiber-reinforced polymer composites
was performed by Liu and Shi [33] using viscoelastic constitutive equations. The exact
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solution for active control performance, vibration dampening, and aeroelastic behavior of
simply supported FG-GPLR composite plates bonded with piezoelectric patches as sensors
and actuators under supersonic airflow was examined by Chen et al. [34].

The above-mentioned survey found that the bending of rectangular FG viscoelastic
plates embedded in piezoelectric layers subjected to electro-thermal loading has not been
reported in the literature. To this end, this article is dedicated to the analysis of the thermo-
viscoelastic response of the sandwich plate with a viscoelastic core and two surrounding
piezoelectric face-layers simultaneously exposed to electro-thermal loading based on 3D
elasticity theory to determine the results with the highest level of accuracy. Mechanical
properties of the FGM viscoelastic layer are assumed to obey the transverse coordinate
power law function. The constitutive equations of viscoelastic material are stated by means
of the Boltzmann superposition principle. Then, based on the theory of elasticity, the
governing equations in three dimensions are solved analytically in the Laplace domain
by means of SS-FSM. Finally, the solution in the time domain is derived by applying the
inverse Laplace to the obtained equations. After validation of the present formulation, the
effects of geometric dimension, electro-thermal loads, boundary conditions, and viscoelastic
parameters on the thermo-elastic response of this smart structure are studied.

2. Governing Equations

A rectangular FGM sandwich plate with an FG viscoelastic core bonded to sensor and
actuator layers is considered in the Cartesian coordinate system, according to Figure 1.
The dimensions of the plate along the x, y, and z direction are a, b, and h, respectively.
The thickness of each piezoelectric layer is hp, and the core thickness is h f . The surfaces
temperature and applied voltage are as follows:

T = T0, σz = 0, τxz = τyz = 0, ψ = V0 at z = h
T = Ti, σz = 0, τxz = τyz = 0, ψ = 0 at z = 0

(1)

where the electric potential is denoted by ψ. In addition, the thermal edges boundary
conditions are:

Ti(0, y, z) = Ti(a, y, z) = 0, Ti(x, 0, z) = Ti(x, b, z) = 0, i = a, f , s (2)Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 36 
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Heat balance and continuity of temperature at the interfaces are defined by the follow-
ing relations, respectively:

λzs
∂Ts
∂z
(

x, y, hp
)
= λ f

∂Tf
∂z
(
x, y, hp

)
,

λ f
∂Tf
∂z
(

x, y, h− hp
)
= λza

∂Ta
∂z
(

x, y, h− hp
)
,

Ts
(

x, y, hp
)
= Tf

(
x, y, hp

)
, Tf

(
x, y, h− hp

)
= Ta

(
x, y, h− hp

)
.

(3)

2.1. Temperature Field

The three-dimensional steady-state heat conduction equation for the FGM and piezo-
electric layers are, respectively [35]:

λ f
∂2Tf

∂x2 + λ f
∂2Tf

∂y2 +
∂λ f

∂z
∂Tf

∂z
+ λ f

∂2Tf

∂z2 = 0 (4)

λxp
∂2Tp

∂x2 + λyp
∂2Tp

∂y2 + λzp
∂2Tp

∂z2 = 0 (5)

2.2. FGM Layer

The three-dimensional equilibrium equations are [36]:

σx,x + τxy,y + τxz,z = 0,
τxy,x + σy,y + τyz,z = 0,
τxz,x + τyz,y + σz,z = 0

(6)

The strain–displacement relations are [36]:

εx = ∂u
∂x , εy = ∂v

∂y , εz =
∂w
∂z

γzx = ∂u
∂z + ∂w

∂x , γzy = ∂v
∂z +

∂w
∂x , γxy = ∂u

∂y + ∂v
∂x

(7)

Since certain materials exhibit viscoelastic behavior at elevated temperatures, it is
essential to account for viscoelasticity to predict the actual response of the materials in such
environments. According to the Boltzmann superposition principle, constitutive relations
of linear viscoelastic materials are introduced as follows [37]:

σi =

t∫
−∞

Cij(t− τ)
d
(
ε j(τ)− αjT(τ)

)
dτ

dτ (8)

in which Cij(i, j = 1, 2, . . . , 6) are the relaxation moduli (see Equation (A1) in the Appendix A).
Additionally, σi (i = 1, 2, 3) represent normal stresses σx, σy and σz while σi (i = 4, 5, 6) are
shear stresses τxy, τxz, and τyz. Likewise, εi (i = 1, 2, 3) represent normal strains, εx, εy, and
εz while εi (i = 4, 5, 6) are the shear strains γxy, γxz, and γyz. Before solving the equations,
it is convenient to transform Equation (8) into the Laplace domain:

σ̂i(s) = sĈij(s)
(
ε̂ j(s)− αjT̂(s)

)
(9)

The Laplace transform of a variable is shown by the caret over it. Substitution of
Equation (7) into Equation (9) results in the following stress–displacement relations for the
FGM layer.
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σ̂f x = sÊ(z,s)
(1+ν)(1−2ν)

[
(1− ν)û f ,x + νv̂ f ,y + νŵ f ,z

]
− α(z)sÊ(z,s)

1−2ν T̂f

σ̂f y = sÊ(z,s)
(1+ν)(1−2ν)

[
νû f ,x + (1− ν)v̂ f ,y + νŵ f ,z

]
− α(z)sÊ(z,s)

1−2ν T̂f

σ̂f z =
sÊ(z,s)

(1+ν)(1−2ν)

[
νû f ,x + νv̂ f ,y + (1− ν)ŵ f ,z

]
− α(z)sÊ(z,s)

1−2ν T̂f

τ̂f xy = sÊ(z,s)
2(1+ν)

(
û f ,y + v̂ f ,x

)
, τ̂f xz =

sÊ(z,s)
2(1+ν)

(
û f ,z + ŵ f ,x

)
, τ̂f yz =

sÊ(z,s)
2(1+ν)

(
v̂ f ,z + ŵ f ,y

)
(10)

The subscript f stands for the FGM layer. By assuming a Prony series for the time-
dependence of relaxation modulus E and power law function for the thermal expansion α

and thermal conductivity coefficients k, we can write for hp ≤ z ≤
(

hp + h f

)
:

E(z, t) = E1m(
z

hp
)m1 + E2m(

z
hp
)m2 e(−

t
τ ), α(z) = αm(

z
hp
)m3 , k(z) = km(

z
hp
)m4

m1 =
ln
(

E1c
E1m

)
ln
(

h f +hp
hp

) ; m2 =
ln
(

E2c
E2m

)
ln
(

h f +hp
hp

) ; m3 =
ln( αc

αm )

ln
(

h f +hp
hp

) ; m4 =
ln( λc

λm )

ln
(

h f +hp
hp

) (11)

E1i and E2i(i = m, c) are the Prony series parameters for the relaxation modulus; the
subscripts m and c denote the metal and ceramic constituents in the FGM layer. ki and
αi represent the thermal conductivity and expansion coefficients of the two constituents,
respectively. Two constituents are assumed to have the same relaxation time constant, τ.

State-space differential equations in matrix form are derived from Equations (6) and (10):

d
dz

δ f = G f δ f + B f T̂f (12)

where G f and B f are coefficient matrices (see Equations (A2) and (A3) in the Appendix A),
and δ f =

[
σ̂z, û, v̂, ŵ, τ̂xz, τ̂yz

]
is the state vector. In-plane stresses are determined using the

state variable as:

σ̂f x = 1
(1−ν)

[
νσ̂f z +

sÊ(z,s)
1+ν û f ,x +

sÊ(z,s)
1+ν v̂ f ,y

]
− sÊ(z,s)α(z)

1−ν T̂f ,

σ̂f y = 1
(1−ν)

[
νσ̂f z +

sÊ(z,s)
1+ν û f ,x +

sÊ(z,s)
1+ν v̂ f ,y

]
− sÊ(z,s)α(z)

1−ν T̂f ,

τ̂f xy = sÊ(z,s)
2(1+ν)

(
û f ,y + û f ,x

) (13)

3. Solution Procedure
3.1. Temperature Gradient

Following the Fourier series expansion satisfies the thermal edge boundary conditions
in Equation (2):

T =
∞

∑
m=1

∞

∑
n=1

Ti(z) sin(pmx) sin(pny), i = a, f , s (14)

where pm = mπ
a ,pn = nπ

b . Additionally, substituting Equation (14) into Equations (4) and (5)
leads to

∂2Ti(z)
∂z2 −

(
λxi
λzi

p2
m +

λyi

λzi
p2

n

)
Ti(z) = 0 (15a)

∂2Tf (z)
∂z2 +

m4

z
∂Tf (z)

∂z
−
(

p2
m + p2

n

)
Tf (z) = 0 (15b)

Substituting Equation (14) into Equation (15a) and solving the obtained equations
leads to the following relations for the sensor and actuator layers, respectively:

Ts(z) = Cs
1eαsz + Cs

2e−αsz (16a)
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Ta(z) = Ca
1eαaz + Ca

2e−αaz (16b)

where αs =

√
λxs p2

m+λys p2
n

λzs
and αa =

√
λxa p2

m+λya p2
n

λza
. In addition, the solution of Equation (15b)

using Equation (14) after some manipulation can be written as

Tf (z) = C f
1

Jα f

(
iβ f z

)
zα f

+ C f
2

Yα f

(
iβ f z

)
zα f

(17)

where α f =
m4
2 −

1
2 , β f =

√
p2

m + p2
n, and i =

√
−1. Additionally, the functions Jα f and Yα f

are Bessel functions of the first and second kind of order α f , respectively.

Here Cs
1, Cs

2, Ca
1, Ca

2, C f
1 , and C f

2 are integration constants that can be computed from
surface boundary conditions (z = 0, h) and the continuity of the temperature and the normal
component of the heat flux at the interfaces (see Equation (A4) in the Appendix A).

3.2. FGM Layer

We consider simply supported edge boundary conditions with the following relations:

σx = 0, v = 0, w = 0, and T = 0 at x = 0, a
σy = 0, u = 0, w = 0, and T = 0 at y = 0, b

(18)

These boundary conditions are identically satisfied by the following Fourier series
expansions for the stresses, displacements, and temperature along the in-plane coordinates

û f =
∞
∑

m=1

∞
∑

n=1
û f
′(z) cos(pmx) sin(pny) v̂ f =

∞
∑

m=1

∞
∑

n=1
v̂ f
′(z) sin(pmx) cos(pny)

ŵ f =
∞
∑

m=1

∞
∑

n=1
ŵ f
′(z) sin(pmx) sin(pny) σ̂f z =

∞
∑

m=1

∞
∑

n=1
σ̂′ f z(z) sin(pmx) sin(pny)

τ̂f yz =
∞
∑

m=1

∞
∑

n=1
τ̂′ f yz(z) sin(pmx) cos(pny) τ̂f xz =

∞
∑

m=1

∞
∑

n=1
τ̂′ f xz(z) cos(pmx) sin(pny)

σ̂f x =
∞
∑

m=1

∞
∑

n=1
σ̂f x
′(z) sin(pmx) sin(pny) σ̂f y =

∞
∑

m=1

∞
∑

n=1
σ̂′ f y(z) sin(pmx) sin(pny)

τ̂f xy =
∞
∑

m=1

∞
∑

n=1
τ̂′ f xy(z) cos(pmx) cos(pny) T̂f =

∞
∑

m=1

∞
∑

n=1
T̂f
′(z) sin(pmx) sin(pny)

(19)

with pm = mπ
a , pn = nπ

b . For convenience, non-dimensional quantities are introduced:

T = α∗T
p ,

(
u f , v f , w f

)
=
(

û′f , v̂′f , ŵ′f
)

1
ph , E = Ê

k∗(
σ f x, σ f y, σ f z, τ f zx, τ f zy, τ f xy

)
=
(

σ̂′ f x, σ̂′ f y, σ̂′ f z, τ̂′ f zx, τ̂′ f zy, τ̂′ f xy

)
1

pk∗

x = x
h , y = y

h , z = z
h , pm = apm, pn = bpn

(20)

Here k∗ = 1 GPa and α∗ = 10−6/K are the scale factors, and p = α∗To.
Using Equations (19) and (20) in Equation (12) results in the following non-dimensional

state-space equation
d
dz

δ f = G f δ f + B f T f (21)

where δ f =
[
σ f z, u f , v f , w f , τ f xz, τ f yz

]T
is the state vector in the FGM core and G f and B f

are a non-dimensional square matrix and a vector of coefficients (see Equations (A5) and (A6)
in the Appendix A). The non-dimensional in-plane stresses can be computed from the
non-dimensional state variables as
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
σ f x
σ f y
τxy

 =
[
F
]

σ f z
u f
v f
T f

 (22)

in which F is a coefficient matrix (see Equation (A7) in the Appendix A).
Since the components of the coefficient matrix G f depend on the thickness coordinate

z, it is not possible to solve Equation (21) analytically. By dividing the FGM layer into N f
fictitious thin layers with a negligible variation of the material properties through their
thickness, the G f matrix is converted to a constant matrix for each of these fictitious layers
and the following solution to Equation (21) is derived for the kth layer, with k = 1, 2, . . . , N f :[

e−G fk
zk−1 δ f0k

+
∫ zk

zk−1

e−G fk
η B fk

(η)T f (η)dη

]
, zk−1 ≤ z ≤ zk (23)

in which

zk−1 = hp +
(k− 1)h f

N f
, zk = hp +

kh f

N f
, δ f0k

= δ fk
(z = zk−1)

Computing Equation (23) at the upper side of the k-th layer with z = zk finds

δ fk
(zk) = Mkδ f0k

+ Ik (24)

where Mk = e
(G fk

h f
Nf

)
and Ik = eG fk

zk
∫ zk

zk−1
e−G fk

η B fk
(η)T f (η)dη, relating the state vector at

the upper side of the layer with the one at the lower side of the layer. From the continuity
of displacements and transverse normal and shear stresses at the interface of each of two
adjacent fictitious layers, it is possible to determine the relation between the state vector at
the top, δ f((hp+h f )/h)

, and bottom, δ f0 , surfaces of the FGM layer:

δ f((hp+h f )/h)
= M f δ f0 + I (25)

where Mk = ∏1
k=N f

e
(G f k

h f
Nf

)
and I =

N f−1

∑
i=1

(
N f

∏
k=i+1

Mk Ii

)
+ IN f .

3.3. Piezoelectric Layer

The constitutive relations for the orthotropic piezoelectric layers are [20]

σp = Cpεp − eTEp − βT̂p (26)

D = eεp + ηEp + P3T̂p (27)

where Cp, η and e are the elasticity matrix, the permittivity matrix, and the piezoelectric co-
efficient matrix; β is the matrix of stress–temperature coefficients; and P3 is the pyroelectric
coefficient matrix. The specific form for the piezoelectric materials under consideration is
given in Equation (A8) in the Appendix A. Stresses σp, strains εp, electric displacements D,
and electric field components Ep are

σp =
[
σ̂x σ̂y σ̂z τ̂xz τ̂yz τ̂xy

]
, εp =

[
ε̂x ε̂y ε̂z γ̂xz γ̂yz γ̂xy

]
D =

[
Dx Dy Dz

]T , Ep =
[
Ex Ey Ez

]T
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Equilibrium equations for the piezoelectric layers are the same as for the FGM layer
(Equation (6)). The charge equation of electrostatics for the non-conducting piezoelectric
layers is [20]

Dx,x + Dy,y + Dz,z = 0 (28)

Moreover, the electric field vector is the negative gradient of the electric poten-
tial as [20]:

Ex = −ψ,x , Ey = −ψ,y , Ez = −ψ,z (29)

The simply supported boundary condition relations for piezoelectric layers are the
same as Equation (18), along with the following relations for electric potential ψ:

ψ = 0, at x = 0, a and y = 0, b (30)

Combining Equations (26)–(29) and Equation (6) results in the following state-space
differential equation in the Laplace domain:

d
dz

δp = Gpδp + BpT̂p (31)

where δP =
{

σ̂pz ûp v̂p ŵp τ̂pzx τ̂pzy D̂z ψ̂
}T ; Gp and Bp represent the coeffi-

cient matrix and vector, respectively (Equations (A9) and (A10) in the Appendix A).
The following dimensionless quantities and those introduced in Equation (20) are

used for the piezoelectric layers:(
Ex, Ey, Ez) = (Ex, Ey, Ez)

|d1|
α∗To

,
(

Dx, Dy, Dz
)
=
(

D̂′x, D̂′y, D̂′z
) 1

pk∗ |d1|

(η1, η2, η3) = (η1, η2, η3)
1

k∗ |d1|2
, (e1, e2, e3, e4, e5) = (e1, e2, e3, e4, e5)

1
k∗ |d1|

ψ̂′ = |d1|ψ
(α∗Toh) ,

(
βx, βy, βz

)
=
(

βx, βy, βz
) 1

k∗α∗ , Cij =
Cij
k∗ , p3 = p3

k∗α∗ |d1|

(32)

The Fourier series expansion, Equation (19), can be utilized for the piezoelectric layers
by changing subscript “f ” to “i” and for the electric potential and electric displacement
they are as the following:

ψ̂i =
∞
∑

m=1

∞
∑

n=1
ψ̂i
′(z) sin(pmx) sin(pny), D̂iz =

∞
∑

m=1

∞
∑

n=1
D̂i
′
z(z) sin(pmx) sin(pny); i = a, s (33)

Dimensionless state-space differential matrix equations are determined via substitu-
tion of Equations (19), (32), and (33) into Equation (31):

d
dz

δP = GPδP + BpTp (34)

where δP =
{

σpz up vp wp τpzx τpzy Dz ψ
}T is the state vector; the matrices

GP and Bp are coefficient matrix and vector, respectively (Equations (A11) and (A12) in the
Appendix A).

Dimensionless in-plane stresses can be determined in terms of state variables


σpx
σpy
τpxy

 =
[
Fp
]


σpz
up
vp
Dz
Tp

 (35)

Here Fp is the coefficient matrix introduced in Equation (A13) in the Appendix A.
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The general solutions for Equation (34) for the sensor and actuator layers are, respectively:

δs(z) = eGsz
[

δ(0) +
∫ z

0
e−Gsη Bp(η)Ts(η)dη

]
, at 0 ≤ z ≤ hp/h (36)

δa(z) = eGaz
[

e−Ga(
hp+h f

h )δa

( hp+h f
h

)
+
∫ z

hp+h f
h

e−Gaη Bp(η)Ta(η)dη

]
,

at
(

hp + h f

)
/h ≤ z ≤ h/h

(37)

At the above surfaces of actuator and sensor layers, Equations (36) and (37) are, respectively,

δa(h/h) = Maδa

((
hp + h f

)
/h
)
+ M′aNa (38)

δs
(
hp
)
= Ms(δs(0) + Ns) (39)

in which

Ma = e[Gahp/h], M′a = e[Gah/h], Na =
∫ h/h

(hp+h f )/h
e−Gaη Ba(η)Ta(η)dη

Ms = e[Gshp/h], Ns =
∫ hp/h

0
e−Gsη Bs(η)Ts(η)dη

Electric displacement at the lower surface of the actuator layer is calculated by using
Equation (38) [38]:

Dz

((
hp + h f

)
/h
)
= 1

ma
87

[
ψ(h/h)−

[
ma

8j

]
δ

m
((

hp + h f

)
/h
)
−
[
m′a8k

]]
,

j = 1, . . . , 6, k = 1, . . . , 8.
(40)

where ma
8j represents the element at the 8th row and jth column of the Ma matrix and

δ
m
((

hp + h f

)
/h
)

is the mechanical part of the state vector of the actuator at its interface

with the viscoelastic layer, δp
m =

{
σpz, up, vp, wp, τpzx, τpzy

}T .

Inserting ψ
((

hp + h f

)
/h
)
= 0 Equation (40), into Equation (38) yields:

δ
m
(h) = Taδ

m
((

hp + h f

)
/h
)
+ Ca + BaNa (41)

where

Ta =
[[

ma
ij

]
−
{

ma
i7
} 1

ma
87

[
ma

8j

]]
, Ca =

{
ma

i7
}ψ(h)

ma
87

,

Ba = [m′aik ]−
{

ma
i7
} 1

ma
87

[
ma

8k
]
, i = 1, 2, . . . , 6, j = 1, 2, . . . , 6, k = 1, 2, . . . , 8.

Using Equation (39), the electric potential ψ at the lower surface of the sensor can be
derived as:

ψ(0) =
1

ms
88

([
ms

8j

]
δ

m
(0) + Ns

)
, j = 1, 2, . . . , 6. (42)

Substitution of Dz = 0 and inserting Equation (42) into Equation (39) results in

δ
m
p (h) = Tsδ

m
p (0) + BsNs, (43)

where

Ts =
[[

ms
ij

]
−
{

ms
i8
} 1

ms
88

[
ms

8j

]]
,

Bs =
[
ms

ij

]
−
{

ms
i8
} 1

ms
88

[
ms

8k
]
, i = 1, 2, . . . , 6, j = 1, 2, . . . , 6, k = 1, 2, . . . , 8
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Since the transverse normal and shear stresses and displacements at the interfaces
of the actuator, FGM, and sensor are continuous, from Equations (25), (41) and (43), the
mechanical state variables at the top surface relate to those at the bottom surface with the
following matrix equation

δ
m
(h) = Sδ

m
(0) + Y (44)

where S = Ta MTs.
Applying surface traction boundary conditions at the bottom and top surfaces to

Equation (44) leads to the following equationss12 s13 s14
s52 s53 s54
s62 s63 s64


u0
v0
w0

 =


Y(1)
Y(5)
Y(6)

 (45)

By solving Equation (45), the displacement components at the bottom surface of
the sensor layer

[
u0 v0 w0

]
are obtained; then, using Equations (23), (26), and (37),

mechanical and electrical state variables can be computed. Finally, modified Dubner’s and
Abats’s numerical techniques are employed to transform the displacement and stress fields
from Laplace to the time domain [39].

4. Numerical Results and Discussion

For numerical illustration, a simply supported viscoelastic FGM plate attached to
piezoelectric layers is considered. The thermo-mechanical properties of the piezoelectric
layers are presented in Table 1 [21,38].

Table 1. Material properties of the piezoelectric sensor and actuator layers [21,38].

Elasticity Constant [109

Nm−2]
Q11 Q12 Q13 Q22 Q23 Q33 Q44 Q55 Q66

Sensor (PZT-4) 139 78 74 139 74 115 25.6 25.6 30.5
Actuator (Ba2 NaNb5 O15) 239 104 50 274 52 135 65 66 76

Piezoelectric coefficients
[coul·m−2] ε31 ε32 ε33 ε24 ε15

Sensor −5.2 −5.2 15.1 12.7 12.7
Actuator −0.4 −0.3 4.3 3.4 2.8

Dielectric constants
[10−9 farads·m−1] η1 η2 η3

Sensor 6.5 6.5 5.6

Actuator 1.96 2.01 0.28

Thermal conductivity
[W/(mK)]

λx = λy λz

Sensor 2.1 3.15

Actuator 8.6 12.9

Thermal expansion
[[1/K]× 10−6] αx = αy αz

Sensor 1.97 2.62

Actuator 4.39 2.45

Piezoelectric modulus
pyroelectric constant: d1 p3

Sensor −3.92 5.4

Actuator −3.92 5.4
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The relaxation time constant, Poisson’s ratio, and the parameters for the Prony se-
ries are [40]:

E1m = 70 GPa, E2m = 105 GPa, E1c = 380 GPa, E2c = 570 GPa, αc = 8.4× 10−6 1
◦K

,

αm = 22.2× 10−6 1
◦K

, λm = 205 W
m◦K

, λc = 35 W
m◦K

, τ = 5s, v = 0.3 .

It is worth noting that all the presented results are the maximum values within the
domain of the plate that are computed at t = 2 s. The geometrical dimensions of the plate
and the bottom and top surface temperature of the plate are introduced as:

a/b = 1.5, a/h = 10, h/hp = 25, V0 = 0, Ti = 400 K, and To = 600 K.

At first, a convergence study for the proposed analytical solution is conducted for
normal transverse stress, deflection, and latitudinal displacement along the thickness di-
rection for different values of half-wave numbers (m, n) and plotted in Figure 2a–c. As
the figures show, transverse quantities are more affected by the half-wave numbers. Addi-
tionally, the figures indicate that by increasing the half-wave numbers up to m = n = 11,
transverse normal stress, deflection, and latitudinal displacement perfectly converge to
their corresponding constant values. This matter clearly shows the high convergence rate
of the Fourier series technique. In other words, this shows the optimum pace of conver-
gence for the applied solution, and it means that this method requires comparatively lower
computational effort, which is highly essential for time-variant analysis of the thermoelastic
response of the sandwich structure.
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Moreover, the consequence of increasing the number of fictitious layers constituting
the FGM part of the sandwich plate on the convergence of stresses and displacement along
the thickness direction is presented in Figure 3a–c. Scrutinizing the diagrams shown in this
figure reveals that increasing the number of fictitious layers for N > 10 has infinitesimal
effect on their trend. In other words, considering N = 10 as the total number of fictitious
layers guarantees the acceptable degree of stability for the applied solution. Accordingly,
further computations in this research would be carried out by considering N = 10 as
the minimum number of fictitious layers of FGM required for obtaining a stable rate
of convergence.

To carry out the validation of the present formulation, numerical results for dimen-
sionless displacements and stresses of thick and thin FG rectangular plates subjected to a
temperature gradient were computed and presented in Table 2 to compare with the pub-
lished results. Comparison of the present results with the results reported by Refs. [38,41,42]
shows that the corresponding discrepancy between the present results with those of the
mentioned references is less than 1%. Accordingly, Table 2 reveals a perfect agreement
between the results of the current study and the results reported in the high-quality studies
published previously. To this end, it can be said that the method and solution employed in
this study are of high accuracy. Finally, it is essential to notice that the discrepancy between
the current results with Ref. [41] is due to the extended unified formulation used in the
mentioned reference.

After the convergence study and the validation analysis of the utilized methods are per-
formed, it is time to present a parametric study regarding the effects of length-to-thickness
ratio, a/h; FGM layer thickness to piezoelectric layers thickness, h/hp; outer surface tem-
perature, To; and relaxation time constant, τ, on the thermo-visco-elastic behavior of an
FGM plate surrounded by piezoelectric layers.
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Table 2. Numerical result displacements for FGM square plate under a thermal load.

a
h =4 a

h =50

[41] [42] [38] Present [41] [42] [38] Present

w(h) 3.043 3.043 3.0431 3.043 28.54 28.53 28.53 28.53

w
(

h
2

)
2.144 2.143 2.1443 2.143 28.46 28.45 28.448 28.45

w(0) 1.901 1.901 1.9012 1.900 28.44 28.43 28.432 28.43

u(h) −1.681 −1.681 −1.681 −1.681 −1.703 −1.703 −1.7027 −1.703

u
(

h
2

)
−0.6822 −0.6822 −0.6823 −0.6860 −0.8080 −0.8081 −0.8081 −0.808

u(0) 0.08266 0.08240 0.08242 0.08241 0.08553 0.08528 0.08527 −0.08552

σx(h) −1018 −1018 −1018 −1018 −1003 −1003 −1003 −1003

σx

(
h
2

)
−204.7 −204.8 −204.82 −204.821 −251.2 −251.2 −251.208 −251.2084

σx(0) −74.03 −73.53 −73.525 −73.525 −76.59 −76.10 −76.12 −76.1239

τxz

(
h
2

)
4.203 4.186 4.1875 4.1875 0.3135 0.3122 0.3123 0.3123

σz

(
h
2

)
6.300 6.217 6.23 6.2342 0.1178 0.04067 0.04051 0.4051

Figure 4a–d depicts through-thickness distribution of the axial normal stress σx, trans-
verse shear stress τzx, and deflection w for different length-to-thickness-ratios a/h. According
to the figures and as expected, increasing a/h causes a decrease in the stiffness of the plate,
and accordingly, the stresses decrease. Moreover, it is seen that the rate of variation decreases
by increasing the value of the length-to-thickness ratio. In other words, according to Figure 4a,
it can be seen that increasing the value of a/h from 10 to 20 causes the maximum value of
the axial normal stress, σx, to change from 1692 to 544. Meanwhile, increasing the value of
a/h from 20 to 40 causes the maximum value of the axial normal stress, σx, to be changed
from 544 to 427. Additionally, according to Figure 4b, it can be stated that increasing the
value of a/h from 10 to 20 causes the maximum value of the transverse shear stress, τzx, to
change from 48.129 to 8.352. Meanwhile, increasing the value of a/h from 20 to 40 causes the
maximum value of the transverse shear stress, τzx, to change from 8.352 to 2.967.
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The influence of the total thickness to piezoelectric thickness ratio, h/hp, while the
total thickness is kept constant is illustrated in Figure 5a–c. As the figures show, decreas-
ing the piezoelectric layer thickness applies a more considerable effect on the normal
transversal stress σz. Additionally, it can be observed that decreasing the piezoelectric
layer thickness causes the stresses and displacement to converge to their corresponding
constant values. In this regard, the difference between the thermoelastic response of the
system for h/hp = 100 and h/hp = 150 is lower than 3%. As a conclusion, it can be stated
that decreasing the thickness of the piezoelectric layers causes a decrease in their effect on
the stress and deflection variation of the system when h/hp ≥ 150. It is concluded that in
the absence of an applied voltage for h/hp ≥ 150, the effect of the piezoelectric thickness
on the thermo-visco-elastic behavior becomes negligible.

Table 3 presents the variation of the stresses and deflection across the thickness
for different applied temperatures. According to this table, it is observed that as To in-
creases, τxy and σz decrease, whereas the deflection increases. Moreover, it is observed
that the influence of a temperature difference in the lower region is greater than that for
the upper region, which is due to the thermal barrier behavior of the FGM core at the
upper surface.

For different values of the relaxation time constant τ, the distribution of latitudinal and
transverse displacements as well as transverse normal and shear stresses along the thickness
are computed and plotted in Figure 6a–d. The figures show that increasing the relaxation
time constant causes stress components to increase and displacement components to
decrease due to the increase in the visco-elastic plate stiffness compared to the elastic one.
Furthermore, it can be observed that the value of the relaxation time constant, τ, is more
considerable in the trend of displacement terms compared to stresses. Additionally, one
can observe from Figure 6a that increasing τ from 2 (s) to 6 (s) applies more significant
impact on the transverse normal stress σz compared with the change made on the value of
σz when τ changes from 6 (s) to 10 (s). Accordingly, it can be stated that σz converges to the
constant value when τ reaches its upper bound. In other words, the effect of increasing τ
on the transverse normal stress terms fades for higher values of τ.
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Figure 5. Effect of piezoelectric thickness variation on through-thickness distribution of dimensionless
transverse normal stress, in-plane shear stress, and longitudinal displacement.
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Table 3. Effect of different outer surface temperature, To, on the transverse normal and in-plane shear
stresses, as well as longitudinal displacement and transverse displacements.

To
z/h

0 0.2 0.4 0.6 0.8 1

u
(

0, b
2

) 600 −20.620 −20.850 −21.100 −21.392 −21.706 −22.040

800 −15.547 −16.507 −17.509 −18.574 −19.576 −20.704

900 −13.856 −15.088 −16.403 −17.635 −18.929 −20.265

w
(

a
2 , b

2

) 600 5.6785 6.0438 6.1482 6.3048 6.4092 6.5658

800 22.015 22.276 22.380 22.484 22.589 22.797

900 27.443 27.704 27.756 27.860 28.017 28.173

σz

(
a
2 , b

2

) 600 0 0.4945 0.7732 0.7438 0.4281 0

800 0 0.4155 0.7031 0.7167 0.4301 0

900 0 0.3892 0.6798 0.7076 0.4307 0

τxy(0, 0)

600 −199.79 −181.63 −239.87 −257.41 −258.66 −202.92

800 −137.79 −124.63 −187.27 −225.47 −248.64 −199.16

900 −117.12 −105.22 −169.73 −214.82 −246.14 −197.91

The time history of the stress and displacement components for different relaxation
time constants τ is depicted in Figure 7a–c. The figures show that stress and displacement
increase with time regardless of the value of τ and finally converge to their steady-state
constant values. Moreover, it is seen that for all quantities for which their time history is
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depicted in this presentation, the rate of convergence to the ultimate values decreases when
the time constant increases. From Figure 7c, it is seen that the influence of the relaxation
time constant,τ, on the deflection is more significant compared to other quantities.
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2 for different time constants.

Figure 8a–c demonstrate the effect of the applied voltage, V0, on the variation of
stresses and displacement along the thickness direction. According to the figures, increasing
the voltage causes stresses and deflections to be increased. Moreover, it is seen that the
effect of the applied voltage near the outer region of the FGM layer is more significant,
which is due to the effect of the actuator layer. From Figure 8a it is observed that the
normal longitudinal stress, σx, is discontinuous at two interfaces due to the different elastic
constants at the interfaces. Additionally, it is concluded that by moving from the lower
surface to the top surface of the sandwich plate, the sign of this stress changes from tension
to compression. Moreover, one can say that the maximum value of the normal longitudinal
stress σx has a linear-like relation with the intensity of the applied voltage. To clarify this
matter, it can be mentioned that the difference between the value of σx at the interface
between the core and the upper piezoelectric face-layer computed at V0 = 0 and V0 = 0.01 is
almost equal to the difference between the mentioned stress computed at V0 = 0.01 and
V0 = 0.02. As Figure 8b shows, the continuity of transverse shear stress τzx at the interfaces
as well as at the top and bottom surfaces are satisfied, and its variation at the bottom surface
is almost negligible. Figure 8c indicates that the slope for w is almost independent of the
V0 value, but an increase in the applied voltage causes the plate to experience an increase
in deflection. Moreover, it is observed that the slope of the deflection curve for the actuator
layer increases when the applied voltage increases.
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5. Conclusions

This article is dedicated to the analysis of the thermoviscoelastic response of the
sandwich plate with a viscoelastic core and two surrounding piezoelectric face-layers
simultaneously exposed to electro-thermal loading. The formulation is based on the
3D elasticity theory. The obtained equations were solved analytically using the state-
space Fourier series method. It is noted that the governing equations before solving were
converted to the Laplace domain and after solving the results were converted to the time
domain by using an inverse Laplace transform. Our numerical results are summarized as
the following list of conclusions:

• Increasing the length-to-thickness ratio a/h leads to decrease in deflections and in-
crease in stresses.

• In the absence of an applied voltage when h/hp ≥ 150, the effect of the piezoelectric
layer thickness on the thermo-elastic behavior becomes negligible.

• Stiffness of the plate decreases by increasing To and, accordingly, stresses and the
deflection decrease.

• The effect of a temperature difference in the lower region is more significant than in the
upper region due to the thermal barrier behavior of the FGM core at the upper surface.

• Increasing the relaxation time constant causes the stiffness of the viscoelastic plate and,
accordingly, stress components to increase and the displacement to decrease.

• Increasing the relaxation time constant causes the rate of convergence to the elastic
behaviour to decrease.

• The effect of the applied voltage near the outer region of the FGM layer is more
significant due to the actuator layer’s effect.

• Deflection w of the plate increases by increasing the applied voltage.
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• Through-thickness distribution of deflection is linear in piezoelectric and FGM layers
with different slope.

• Increasing the time constant τ causes delay in the steady state condition for stresses
and displacement.

• Increasing the time constant τ causes a decrease in the transverse displacement w.
• The maximum values of transverse normal stress σz are not at the mid-thickness of

the plate, which is due to the FGM property.
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Nomenclature

a, b, h Plate dimensions in x-, y-, and z-directions
f , a, s Subscripts designating FGM, actuator, and sensor layers, respectively
T Temperature distribution
Ti,To Temperature at the bottom and top surfaces, respectively
Tfi

,Tfo Temperature at the bottom and top surface of FGM layer, respectively
λ f Thermal conductivity coefficient for FGM layer
α0 Thermal expansion coefficient
βx, βy, βz Stress–temperature coefficients in x-, y-, and z-directions
p3 Pyroelectric constant
Cij(i, j = 1.2, . . . , 6) Relaxation moduli coefficients
Dx, Dy, Dz Electric displacement
Qij(i, j = 1.2, . . . , 6) Elasticity constant
Ex, Ey, Ez Electric field in x-, y-, and z-directions
E Young’s modulus
e Piezoelectric coefficient
η1, η2, η3 Dielectric constants
d1 Piezoelectric modulus
λxp, λyp, λzp Thermal conductivity coefficient for piezoelectric layer in the x-, y-, and z-directions
h f , hp Thicknesses of the FGM and piezoelectric layers
n, m Half-wave numbers in the x- and y-directions
u, v, and w Displacement components in the x-, y- and z-directions
σx, σy, σz Normal stresses
τxy, τzx, τzy Shear stresses
εx, εy, εz Normal strains
γxy, γzx, γxy Shear strains
τ Relaxation time constant
δ f , δp State vectors of the FGM and piezoelectric layers
ψ Electric voltage
ν Poisson’s ratio
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Appendix A

In the present paper, the piezoelectric layers are assumed to be orthorhombic piezo-
electric materials of crystal class 2 mm.

C =



(1−ν)E(z,t)
(1+ν)(1−2ν)

vE(z,t)
(1+ν)(1−2ν)

vE(z,t)
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0 0 0
vE(z,t)
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0 0 0
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0 0 0
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0 0
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0

0 0 0 0 0 E(z,t)
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− ν

(1−ν)
∂

∂x − ν
(1−ν)

∂
∂y 0 0 0

−ν
(1−ν)

∂
∂x

−sÊ
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