
Citation: Xu, S.; Zhang, J.; Chen, H.;

Gao, Y.; Gao, Y.; Gao, H.; Jia, X.

GPU-Accelerated Infill Criterion for

Multi-Objective Efficient Global

Optimization Algorithm and Its

Applications. Appl. Sci. 2023, 13, 352.

https://doi.org/10.3390/

app13010352

Academic Editor: Wei Huang

Received: 29 November 2022

Revised: 19 December 2022

Accepted: 24 December 2022

Published: 27 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

GPU-Accelerated Infill Criterion for Multi-Objective Efficient
Global Optimization Algorithm and Its Applications
Shengguan Xu 1 , Jiale Zhang 1, Hongquan Chen 1,*, Yisheng Gao 1, Yunkun Gao 2, Huanqin Gao 1

and Xuesong Jia 1

1 Key Laboratory of Non-Steady Aerodynamics and Flow Control of MIIT, College of Aerospace Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2 School of Mechanical Engineering, Anhui University of Technology, Maanshan 243002, China
* Correspondence: hqchenam@nuaa.edu.cn

Abstract: In this work, a novel multi-objective efficient global optimization (EGO) algorithm, namely
GMOEGO, is presented by proposing an approach of available threads’ multi-objective infill criterion.
The work applies the outstanding hypervolume-based expected improvement criterion to enhance the
Pareto solutions in view of the accuracy and their distribution on the Pareto front, and the values of
sophisticated hypervolume improvement (HVI) are technically approximated by counting the Monte
Carlo sampling points under the modern GPU (graphics processing unit) architecture. As compared
with traditional methods, such as slice-based hypervolume integration, the programing complexity
of the present approach is greatly reduced due to such counting-like simple operations. That is, the
calculation of the sophisticated HVI, which has proven to be the most time-consuming part with
many objectives, can be light in programed implementation. Meanwhile, the time consumption of
massive computing associated with such Monte Carlo-based HVI approximation (MCHVI) is greatly
alleviated by parallelizing in the GPU. A set of mathematical function cases and a real engineering
airfoil shape optimization problem that appeared in the literature are taken to validate the proposed
approach. All the results show that, less time-consuming, up to around 13.734 times the speedup is
achieved when appropriate Pareto solutions are captured.

Keywords: efficient global optimization; Monte Carlo; hypervolume; GPU; multi-objective optimization

1. Introduction

The efficient global optimization (EGO) algorithm, which was first proposed by
Jones et al. [1] in 1998, has proved to be very efficient for dealing with expensive-to-evaluate
optimizations [2–5]. Benefited from the fundamental concepts of the Kriging surrogate
model and the expected improvement (EI) criterion, EGO can always capture a high-quality
optimal solution with relatively less objective function evaluations (FEs) compared to other
popular optimization algorithms, such as genetic algorithms (GAs) [6]. Because of this
advantage, the corresponding theory has been applied to a variety of modern engineering
applications [7–11]. One must notice that the original EI criterion is initially designed for
single-objective optimization (SOO) problems and cannot be applied to more important
multi-objective optimization (MOO) problems directly.

It is well known that real engineering optimization problems usually come up with
not only one single objective but also a set of objectives, which usually conflict with
each other. Motivated by the outstanding behaviors of the traditional EGO algorithm in
dealing with SOO problems, different methods have been developed by modifying the
EGO algorithm to be able to cope with MOO problems [12–14], particularly for expensive-
to-evaluate problems. For instance, the method, namely ParEGO, was developed by
Knowles [12] for coping with MOO problems. Different aggregate single-objectives are
updated iteration by iteration using the augmented Tchebycheff functions with different

Appl. Sci. 2023, 13, 352. https://doi.org/10.3390/app13010352 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010352
https://doi.org/10.3390/app13010352
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8438-7243
https://doi.org/10.3390/app13010352
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010352?type=check_update&version=2

Appl. Sci. 2023, 13, 352 2 of 21

random vectors to balance the multiple sub-objectives. A similar method called MOEA/D-
EGO was later proposed by Liu et al. [14]. These methods, which are realized in a way
of transforming the MOO problem into an SOO problem associated with any available
single-objective EGO optimizers, do show promise in the test cases appearing in the
literature mentioned. However, because of the usage of several probabilistic parameters of
corresponding optimization problems, they are usually not easy to directly apply to real
time-consuming engineering optimizations [15,16]. In addition, only one optimal solution
captured as a result of the transformed SOO problem is mostly weight dependence.

An alternative to avoiding the shortages mentioned is to capture a set of solutions
distributed at the Pareto front of the MOO problem. The main challenge in capturing the
distribution of Pareto solutions is modifying the EI infill criterion of the EGO algorithm
to be suitable for updating Pareto solutions efficiently. For example, Keane et al. [13]
developed the Euclidean distance-based EI (EI-ELU) infill criterion by maximizing the
minimum distance between the expected central point of probability distribution and the
Pareto points. A more recent hypervolume indicator-based criterion, which was proposed
by Zitzler and Thiele [17], is more of interest for MOO problems. In recent decades,
many practical contributions have been made to hypervolume-based infill metrics, such as
works in hypervolume indicator [17,18], hypervolume improvement [19], S-metric [2,20],
lower confidence bound (LCB) [2,21], expected hypervolume improvement (EHVI) [18,22],
truncated expected hypervolume improvement (TEHVI) [23], and modified expected
hypervolume improvement (MEHVI) [24].

In general, the hypervolume-based metric has been reported to be an outstanding met-
ric for improving accuracy and distribution on the Pareto front of the MOO problem [24,25].
However, the calculation of such metrics is still struggling with enhancing the accuracy of
computed hypervolume and reducing the computational complexity implementation. In
view of accuracy enhancement, several notable methods have been successfully developed
for computing hypervolume, such as the LebMeasure method [21,26], Overmars, and Yap
method [27], hypervolume by slicing objectives (HSO) method [28], IHSO method [29],
HypE method [30], and box decomposition method [31]. These methods have shown their
powerful potential in obtaining a more accurate hypervolume value; however, their imple-
mentations are usually hugely complex due to the irregular geometry of the nondominated
region of the Pareto front, particularly for the unimaginable Pareto front caused by many
objectives. Alternatively, a Monte Carlo-based method is proposed by Emmerich [2,18] to
reduce the computational complexity of related implementation, but high computational
costs are still required due to the fact that there are many repeated nondominated calcula-
tions related to the Monte Carlo-based calculations of hypervolume. It can be imagined that
such situations will be even worse for many objectives involved in the MOO problem. This
might be the reason that the Monte Carlo-based method has rarely been reported in real
applications of MOO problems in recent years. In contrast, for calculating hypervolume in-
volved in infill criteria, the Monte Carlo-based method, a kind of statistical method, is quite
easy to program in implementation, which is more preferred for MOO applications by new
users. Therefore, despite the low efficiency associated with calculations of hypervolume,
the attractive programing simplicity of the Monte Carlo-based method still motivates the
present research to find an efficient way to propose new treatments.

In the present work, an effort has been made to develop a novel approach for comput-
ing multi-objective infill criteria for efficient global optimization (EGO) algorithms. The
work applies the outstanding hypervolume-based expected improvement metric to en-
hance Pareto solutions in view of their accuracies and distributions on the Pareto front, and
the values of sophisticated hypervolume improvement (HVI) are technically approximated
by counting the Monte Carlo sampling points under the modern GPU (graphics processing
unit) architecture. The calculation of the sophisticated HVI, which has proven to be the
most time-consuming part with many objectives, can be light in programed implementation
due to such counting-like simple operations. Meanwhile, the time consuming of massive
computing associated with such HVI approximation is greatly alleviated by parallelizing

Appl. Sci. 2023, 13, 352 3 of 21

in the GPU. It can be learned from the test cases that significant speedups are achieved by
the proposed GMOEGO algorithm.

The rest of the paper is organized as follows. The related works, including an overview
of the traditional EGO algorithm and the hypervolume-based EI criterion, are described
in Section 2. Then, in Section 3, the modified EGO-based multi-objective optimization
method is presented by adopting the new proposed GPU-based Monte Carlo method.
After presenting representative function tests in Section 4, a more practicable aerodynamic
optimization case is further presented to investigate the efficiency of the proposed algorithm
in Section 5. Finally, in Section 6, concluding remarks are drawn.

2. Related Works
2.1. Traditional Single-Objective EGO Algorithm

A study of EGO to be used for optimizations with multiple objectives. The traditional
EGO algorithm is usually developed for optimization with a single objective. For the sake
of completeness, a brief discussion of the traditional single-objective EGO algorithm [1] is
presented in this section. To be the core components of the traditional EGO algorithm, the
Kriging surrogate model and EI infill criterion ensure its high efficiency of EGO and global
searching ability.

Kriging was first proposed by Krige [32] in 1951, and its formulation with d vari-
ables and ns samples can be described as follows: let ns sampled points be Xsns ={

x1, x2, · · · , xns
}

, and their associated objective function values are Ysns =
{

y1, y2, · · · , yns
}

,
in which the i-th sample point and its objective value are xi =

(
xi

1, xi
2, · · · , xi

d
)
, yi =(

yi
1, yi

2, · · · , yi
d
)
, respectively, for i = 1, 2, · · · , ns.

Y(xi) =
k

∑
j=1

β j f j(xi) + z(xi) (1)

where f j
(
xi) are k known regression models, and β j are correlation coefficients of f j

(
xi),

z(xi) is a stochastic model and its mean is zero and variance is δz
2. The covariance between

two design points xi and xj can be written as

Cov
[
z
(

xi
)

, z
(

xj
)]

= δz
2R
[

R
(

xi, xj
)]

(2)

where i, j = 1, 2, · · · , ns; a symmetric matrix, R, is a correlation function that reflects the
relationship between all the sample points; R is a correlation function defined by the user,
and a widely used form of R can be expressed as [33]

R
(

xi, xj
)
=

d

∏
k=1

esp
(
−θk

∣∣∣xi
k − xj

k

∣∣∣pk
)

(3)

where θk > 0, 0 ≤ pk ≤ 2 are two hyper parameters. Once the hyper parameters θk and pk
are determined, the prediction ŷ(x) of Y at the location x can be calculated by

ŷ(x) = β̂ + rT(x)R−1(y− 1β) (4)

in which the n-vector, r(x), reflects the correlations between the predicted location x and
the sampled locations R

(
x, xj), where j = 1, 2, · · · , ns; 1 is an n-vector of ones; and an

n-vector, y, is the value of accurate response; β is the mean of Y(x), and β̂ denotes the
generalized least squares estimator of β, which is defined as β̂ =

(
1TR−11

)−11TR−1y [33],
and then, the mean squared error (MSE) of ŷ(x) can be written as

MSE[ŷ(x)] = δZ
2
(

1− rT(x)R−1r(x)
)

(5)

Appl. Sci. 2023, 13, 352 4 of 21

The hyper parameter θk (see Equation (3)) can be determined by using the maximum
likelihood estimation (MLE) approach with the limitation of θk > 0

Ln(Likelihood) = −1
2

(
n ln

(
δz

2
)
+ ln|R|

)
(6)

where δz
2 =

(
y− 1β̂

)T
R−1(y− 1β̂

)
/n, and by solving Equation (6), the Kriging model can

be constructed. The approximation ŷ(x) and MSE can be obtained by Equations (4) and (5).
Once a Kriging surrogate model is constructed, the EI function (Equation (7)) can be

determined using a specific optimizer. Assume the ŷ(x) follows the normal distribution
Y ∼ N

(
µ, s2), where µ is the Kriging predictor ŷ(x) defined in Equation (4), s2(x) is the

MSE (see Equation (5)), and ymin is the minimum of all the sample points. Then the EI
function at location x can be expressed as follows [1]

E[I(x)] =

{
(ymin − ŷ(x))Φ

(
ymin−ŷ(x)

s(x)

)
+ s(x)φ

(
ymin−ŷ(x)

s(x)

)
s(x) > 0

0 s(x) = 0
(7)

where Φ and φ are the normal cumulative distribution function and the normal probabil-
ity density function, respectively. This criterion is considered a balance of “exploration
and exploitation”.

It should be pointed out that the EI criterion is initially designed for SOO problems,
and cannot be directly applied to MOO problems. That is, for MOO problems, the new
EI criterion should be constructed for the multi-objective EGO algorithm, which will be
discussed in the next section.

2.2. EHVI Infill Criterion for the Multi-Objective EGO Algorithm

As discussed in Section 1, one of the most popular criteria designed for a multi-
objective EGO (MOEGO) algorithm is the EHVI criterion, which is modified from HVI.
Therefore, the HVI is described here before presenting the EHVI criterion.

Considering the MOO problem with m > 1 objective functions fm: χ 7→ Rm , the
MOO problem can be briefly expressed as

Minmize
x∈χ

y = { f1(x), f2(x), . . . , fm(x)}
Subject to x ∈ [l, u]

}
(8)

where χ ⊆ Rd, y ∈ Y ⊆ Rm. l and u are the lower and upper constraints, respectively, of
the design variable vector x. d denotes the number of design variables, and m is the number
of objectives.

Assume the problem (8) to be optimized iteration by iteration with the EGO optimizer
and take the set of Pareto front solutions (points) at the n-th iteration of problem (8) as
Pn =

{
y1, y2, · · · , yndom

}
, where ndom is the number of current Pareto front points; all the

elements in Pn are nondominated by each other, and can be mathematically expressed as

∀i, j ∈ {1, 2, · · · , ndom} ∧ (i 6= j):
(

yi ⊀ yj

)
∧
(

yj ⊀ yi

)
in which a ⊀ b means a does not dominate b, and on the contrary, a ≺ b means a dominates
b. yi =

{
y1

i , y2
i , · · · , ym

i
}

denotes the coordinate of the i-th point in Pn.
In order to compute the hypervolume used in the EHVI criterion, a reference point

R = {r1, r2, · · · , rm} ∈ Rm is usually required to be defined by designers before the
calculation, and then the hypervolume of the current Pareto front related to the reference
point,H(Pn, R), can be expressed as

H(Pn, R) =
∫
(∃yi∈Pn)≺y≺R

dy (9)

Appl. Sci. 2023, 13, 352 5 of 21

In Equation (9), one must notice that the hypervolume is equivalent to the region,
which is dominated by at least one point of Pn and itself dominates the reference point, as
shown in Figure 1, shaded with blue oblique lines.

Appl. Sci. 2023, 13, 352 5 of 22

Assume the problem (8) to be optimized iteration by iteration with the EGO opti-
mizer and take the set of Pareto front solutions (points) at the n-th iteration of problem (8)
as { }1 2, , ,

domn n= y y yP , where domn is the number of current Pareto front points; all the

elements in nP are nondominated by each other, and can be mathematically expressed as

{ } (), 1, 2, , domi j n i j∀ ∈ ≠ ∧ : () ()i j j iy y y y ∧

in which a b means a does not dominate b , and on the contrary, a b means a
dominates b . { }1 2= , , , m

i i i iy y yy  denotes the coordinate of the i-th point in nP .
In order to compute the hypervolume used in the EHVI criterion, a reference point

{ }1 2= , , , m
mr r r ∈R  is usually required to be defined by designers before the calculation,

and then the hypervolume of the current Pareto front related to the reference point,
()n，P RH , can be expressed as

()
()

= d
i n

n ∃ ∈ y y
y

 
，

P R
P RH (9)

In Equation (9), one must notice that the hypervolume is equivalent to the region,
which is dominated by at least one point of nP and itself dominates the reference point,
as shown in Figure 1, shaded with blue oblique lines.

Figure 1. Example of a hypervolume indicator with two objectives.

Assume that the current predicted updating point is ′y , the HVI indicator
(), nI ′y PH of the red area in Figure 1 can then be defined as:

() { }()() () :
, =

0 Otherwise
n n i n i

nI
 ′ ′− ∈′ 


y y y y
y

 ， ， P R P R P
PH

H H
 (10)

It can be noted that only when ′y falls in the nP nondominated region can the pos-
itive value of HVI be obtained. As expected, a large value of HVI reflects an improvement
in the Pareto front solutions. Hence, the HVI, (), nI ′y PH , can be taken as the infill criterion
directly, and its further enhanced criterion of the HVI indicator, namely ()EI xH of EHVI
indicator, is proposed by Emmerich et al. [2] and could be predicted by the expected im-
provement function E I  H , which reads

() () ()EI E = , PDF dnI I
′∈

′ ′ ′=    y
x y y y

Ω
PH H H (11)

where the nondominated region Ω of the current Pareto front is defined as

Figure 1. Example of a hypervolume indicator with two objectives.

Assume that the current predicted updating point is y′, the HVI indicator IH(y′, Pn)
of the red area in Figure 1 can then be defined as:

IH
(
y′, Pn

)
=

{
H((Pn ∪ {y′}), R) − H(Pn, R) @yi ∈ Pn : yi ≺ y′

0 Otherwise
(10)

It can be noted that only when y′ falls in the Pn nondominated region can the positive
value of HVI be obtained. As expected, a large value of HVI reflects an improvement in
the Pareto front solutions. Hence, the HVI, IH(y′, Pn), can be taken as the infill criterion
directly, and its further enhanced criterion of the HVI indicator, namely EIH(x) of EHVI
indicator, is proposed by Emmerich et al. [2] and could be predicted by the expected
improvement function E[IH], which reads

EIH(x) = E[IH] =
∫

y′∈ Ω
IH
(
y′, Pn

)
PDF

(
y′
)
dy′ (11)

where the nondominated region Ω of the current Pareto front is defined as

Ω = {y ∈ Rm|(y ≺ R) ∧ (@yi ∈ Pn : yi ≺ y)} (12)

PDF(y′) is the probability density function, which can be estimated by

PDF
(
y′(x)

)
=

{
∏m

i=1 φ
(

y′ i−ŷi(x)
si(x)

)
si(x) > 0

1 si(x) = 0
(13)

It can be learned that the enhancement of the EHVI criterion is realized by considering
the uncertainty of the prediction with the probability density function (see φ1 and φ2 in
Figure 1), which could balance the exploration and exploitation. Unfortunately, there is a
lack of direct calculating formula of both the HVI and EHVI criteria due to the fact that the
shape of the Pareto front usually appears to be extremely irregular, as illustrated in Figure 2.
This results in the calculation of the HVI or EHVI criteria appearing to be of current interest
and usually requiring sophisticated programing steps with high time-consuming for both
implementation and computation [30,34]. In order to have an improvement, an alternative
Monte Carlo-based approach with GPU acceleration is proposed in the present work for
computing these infill criteria, which will be mainly addressed in the next section.

Appl. Sci. 2023, 13, 352 6 of 21

Appl. Sci. 2023, 13, 352 6 of 22

() (){ }:m
i n iΩ = ∈ ∈y y y y y R P ∧ (12)

()PDF ′y is the probability density function, which can be estimated by

()()
()

() ()

()
1

ˆ
0

PDF =
1 =0

m i i
ii

i

i

y y
s

s

s

φ
=

 ′ −
>   ′   




∏
x

x
xy x

x
 (13)

It can be learned that the enhancement of the EHVI criterion is realized by consider-
ing the uncertainty of the prediction with the probability density function (see 1φ and 2φ
in Figure 1), which could balance the exploration and exploitation. Unfortunately, there
is a lack of direct calculating formula of both the HVI and EHVI criteria due to the fact
that the shape of the Pareto front usually appears to be extremely irregular, as illustrated
in Figure 2. This results in the calculation of the HVI or EHVI criteria appearing to be of
current interest and usually requiring sophisticated programing steps with high time-con-
suming for both implementation and computation [30,34]. In order to have an improve-
ment, an alternative Monte Carlo-based approach with GPU acceleration is proposed in
the present work for computing these infill criteria, which will be mainly addressed in the
next section.

Figure 2. Example of geometry shape of hypervolume and its improvement.

3. Novel Approach to Computing Infill Criteria for MOEGO
A novel approach to calculating the hypervolume-based infill criterion for the

MOEGO algorithm is developed here by coupling with the Monte Carlo approach. In or-
der to make it clear, in Section 3.1, the main concepts of the Monte Carlo approach are
briefly described. In Section 3.2, the GPU-accelerated infill criterion is constructed for the
MOEGO algorithm, and in Section 3.3, the resulting framework of the MOEGO algorithm
is discussed theoretically.

3.1. A Brief Description of the Monte Carlo Approach
For the sake of easy implementation, the Monte Carlo approach is considered to cal-

culate the HVI or EHVI in the present work. According to the principle of the theory [35],
the HVI (see Figure 1 and Equation (10)) could be calculated via the hit-or-miss method
(also called the rejection method) [36]. The basic structure of the Monte Carlo-based HVI
(MCHVI) is presented for obtaining the HVI, as shown in Algorithm 1.

Figure 2. Example of geometry shape of hypervolume and its improvement.

3. Novel Approach to Computing Infill Criteria for MOEGO

A novel approach to calculating the hypervolume-based infill criterion for the MOEGO
algorithm is developed here by coupling with the Monte Carlo approach. In order
to make it clear, in Section 3.1, the main concepts of the Monte Carlo approach are
briefly described. In Section 3.2, the GPU-accelerated infill criterion is constructed for the
MOEGO algorithm, and in Section 3.3, the resulting framework of the MOEGO algorithm is
discussed theoretically.

3.1. A Brief Description of the Monte Carlo Approach

For the sake of easy implementation, the Monte Carlo approach is considered to
calculate the HVI or EHVI in the present work. According to the principle of the theory [35],
the HVI (see Figure 1 and Equation (10)) could be calculated via the hit-or-miss method
(also called the rejection method) [36]. The basic structure of the Monte Carlo-based HVI
(MCHVI) is presented for obtaining the HVI, as shown in Algorithm 1.

Algorithm 1. MCHVI algorithm

Appl. Sci. 2023, 13, 352 7 of 22

Algorithm 1. MCHVI algorithm

1
2
3
4
5
6
7
8

9

10

Input: Current set of Pareto front points nP , Predicted updating point 'y ,
reference point R .
Output: Hypervolume improvement (), nI ′y PH
Initialize the Monte Carlo sampling hypercube:

1 2 1 2min ,]m[a(, , x,) (, , ,)
p p

i i i i i i
n i n iy y y r y y y r  , 1,2, ,i m=  ;

Generate a set of pn sample points: (){ }1 2= , , , 1, 2, ,m m
i i i i pp p p i n∈ = P p  ;

Initialize count indicators k and qn : 1k = , 0qn = ;
While pk n≤ do
 If kp satisfy: () ():i n i k k′∈y y y p p P ∧ then
 Update qn : +1q qn n= ;
 Update k : 1k k= + ;

Compute the volume of hypercube V :
1 2 1 2

1

max mi, n= (, ,) (, , ,)
p p

m
i i i i i i

n i n i
i

V y y y r y y y r
=

−∏   ;

Compute and return the estimated MCHVI: (), q
n

p

nI Vn′ ≈ ×y PH .

In order to make it clear, Monte Carlo sampling points and approximation of the
MCHVI indicator are illustrated with two objectives as shown in Figure 3. In the present
work, the value of the MCHVI indicator is approximated by counting the number qn of
the sampling points located in the domain of dependence (red area in Figure 3) by

(), q
n

p

nI Vn′ ≈ ×y PH (14)

where 𝑛௣ is the number of Monte Carlo sampling points (see line 3 of Algorithm 1), and
V is the volume of the hypercube. Such counting-like simple operations are light in pro-
gramed implementation, and it can be imagined that the value of the MCHVI indicator is
proportional to the size of the Monte Carlo sampling points. However, in order to avoid
misguidance caused by the approximate MCHVI indicator, the number of Monte Carlo
sapling points is preferred to be as large as possible, which in turn requires massive arith-
metic operations associated with predicting the value of the MCHVI indicator will be re-
quired. This situation could be alleviated through GPU accelerating, which will be mainly
considered and addressed in Section 3.2.

Figure 3. Example of HVI calculation by the Monte Carlo-based method with two objectives.

In order to make it clear, Monte Carlo sampling points and approximation of the
MCHVI indicator are illustrated with two objectives as shown in Figure 3. In the present

Appl. Sci. 2023, 13, 352 7 of 21

work, the value of the MCHVI indicator is approximated by counting the number nq of the
sampling points located in the domain of dependence (red area in Figure 3) by

IH
(
y′, Pn

)
≈

nq

np
×V (14)

where np is the number of Monte Carlo sampling points (see line 3 of Algorithm 1), and
V is the volume of the hypercube. Such counting-like simple operations are light in
programed implementation, and it can be imagined that the value of the MCHVI indicator
is proportional to the size of the Monte Carlo sampling points. However, in order to
avoid misguidance caused by the approximate MCHVI indicator, the number of Monte
Carlo sapling points is preferred to be as large as possible, which in turn requires massive
arithmetic operations associated with predicting the value of the MCHVI indicator will
be required. This situation could be alleviated through GPU accelerating, which will be
mainly considered and addressed in Section 3.2.

Appl. Sci. 2023, 13, 352 7 of 22

Algorithm 1. MCHVI algorithm

1
2
3
4
5
6
7
8

9

10

Input: Current set of Pareto front points nP , Predicted updating point 'y ,
reference point R .
Output: Hypervolume improvement (), nI ′y PH
Initialize the Monte Carlo sampling hypercube:

1 2 1 2min ,]m[a(, , x,) (, , ,)
p p

i i i i i i
n i n iy y y r y y y r  , 1,2, ,i m=  ;

Generate a set of pn sample points: (){ }1 2= , , , 1, 2, ,m m
i i i i pp p p i n∈ = P p  ;

Initialize count indicators k and qn : 1k = , 0qn = ;
While pk n≤ do
 If kp satisfy: () ():i n i k k′∈y y y p p P ∧ then
 Update qn : +1q qn n= ;
 Update k : 1k k= + ;

Compute the volume of hypercube V :
1 2 1 2

1

max mi, n= (, ,) (, , ,)
p p

m
i i i i i i

n i n i
i

V y y y r y y y r
=

−∏   ;

Compute and return the estimated MCHVI: (), q
n

p

nI Vn′ ≈ ×y PH .

In order to make it clear, Monte Carlo sampling points and approximation of the
MCHVI indicator are illustrated with two objectives as shown in Figure 3. In the present
work, the value of the MCHVI indicator is approximated by counting the number qn of
the sampling points located in the domain of dependence (red area in Figure 3) by

(), q
n

p

nI Vn′ ≈ ×y PH (14)

where 𝑛௣ is the number of Monte Carlo sampling points (see line 3 of Algorithm 1), and
V is the volume of the hypercube. Such counting-like simple operations are light in pro-
gramed implementation, and it can be imagined that the value of the MCHVI indicator is
proportional to the size of the Monte Carlo sampling points. However, in order to avoid
misguidance caused by the approximate MCHVI indicator, the number of Monte Carlo
sapling points is preferred to be as large as possible, which in turn requires massive arith-
metic operations associated with predicting the value of the MCHVI indicator will be re-
quired. This situation could be alleviated through GPU accelerating, which will be mainly
considered and addressed in Section 3.2.

Figure 3. Example of HVI calculation by the Monte Carlo-based method with two objectives. Figure 3. Example of HVI calculation by the Monte Carlo-based method with two objectives.

Once the value of HVI indicator IH is obtained, the value of EHVI indicator EIH can
be approximated by the generalized form of the Monte Carlo estimator [37], which can be
expressed as

EIH(x) ≈
1
N

N

∑
i=1

IH(ymc
i, Pn) (15)

where
{

ymc
1 , ymc

2 , · · · , ymc
N
}

are the N random samples of the Gaussian distribution with
mean ŷ and standard deviation s. The number N is a user-defined parameter, and in this pa-
per, following the work of [38], a fixed number of 1000 is used for all test cases presented in
Section 4. The IH(ymc

i, Pn) is predicted by the MCHVI algorithm (see Algorithm 1), which
is the main time-consuming part of the EHVI indicator. and hence will be implemented in
GPU architecture, as discussed in the next section.

3.2. GPU-Accelerated Infill Criterion for the MOEGO Algorithm

In this section, GPU implementation is presented for computing the value of the
MCHVI indicator. As described in Algorithm 1, a mass of independent arithmetic oper-
ations associated with the dominated or non-dominated identifications (see Algorithm 1,
line 6) are proved to be time-consuming. Fortunately, such tasks are mostly weak-dependent
compute-intensive and are very suitable for GPU parallel architecture [39–41]. Therefore,
such a kind of computation is implemented on the GPU to achieve acceleration. In order to
obtain a global view of our implementation, the corresponding general framework of the
program is given in Figure 4. It should be noted that necessary computing data, including
the coordinates of all Monte Carlo sample points, Pareto front points, and updating points,
are designed to be prepared on the CPU side and then sent to the GPU side before starting

Appl. Sci. 2023, 13, 352 8 of 21

the GPU calculations. After all the calculations of the GPU side are finished, the total
number of sample points that satisfy the definition of the MCHVI indicator is fetched (see
Algorithm 1, line 6), and then sent back to the CPU side for the MCHVI estimation. That is,
only time-consuming and suitable tasks are implemented on the GPU.

Appl. Sci. 2023, 13, 352 8 of 22

Once the value of HVI indicator IH is obtained, the value of EHVI indicator EIH
can be approximated by the generalized form of the Monte Carlo estimator [37], which
can be expressed as

() ()
1

1EI ,
N

mc
i n

i
I

N =
≈ x y PH H (15)

where { }1 2, , ,mc mc mc
Ny y y are the N random samples of the Gaussian distribution with

mean ŷ and standard deviation s . The number N is a user-defined parameter, and in
this paper, following the work of [38], a fixed number of 1000 is used for all test cases
presented in Section 4. The (),mc

i nI y PH is predicted by the MCHVI algorithm (see Algo-
rithm 1), which is the main time-consuming part of the EHVI indicator. and hence will be
implemented in GPU architecture, as discussed in the next section.

3.2. GPU-Accelerated Infill Criterion for the MOEGO Algorithm
In this section, GPU implementation is presented for computing the value of the

MCHVI indicator. As described in Algorithm 1, a mass of independent arithmetic opera-
tions associated with the dominated or non-dominated identifications (see Algorithm 1,
line 6) are proved to be time-consuming. Fortunately, such tasks are mostly weak-depend-
ent compute-intensive and are very suitable for GPU parallel architecture [39–41]. There-
fore, such a kind of computation is implemented on the GPU to achieve acceleration. In
order to obtain a global view of our implementation, the corresponding general frame-
work of the program is given in Figure 4. It should be noted that necessary computing
data, including the coordinates of all Monte Carlo sample points, Pareto front points, and
updating points, are designed to be prepared on the CPU side and then sent to the GPU
side before starting the GPU calculations. After all the calculations of the GPU side are
finished, the total number of sample points that satisfy the definition of the MCHVI indi-
cator is fetched (see Algorithm 1, line 6), and then sent back to the CPU side for the MCHVI
estimation. That is, only time-consuming and suitable tasks are implemented on the GPU.

Figure 4. General framework of GPU-based MCHVI indicator value calculations.

Algorithm 2 presents the key code snippet of the GPU subroutine for MCHVI calcu-
lations, in which MCSP_d is the number of Monte Carlo sample points, Front_d denotes
the Pareto front, and HV_d is the computed MCHVI number nq (see lines 7 and 8 in Algo-
rithm 1). The corresponding thread hierarchy is designed as shown in Figure 5. It can be
learned that a GPU thread is assigned to the calculations related to each Monte Carlo sam-
ple point. All GPU threads are organized into a queue of thread blocks inside a thread
grid to be adjusted to the double-layer structure of GPU hardware [42]. In the correspond-
ing code snippet (Algorithm 2), the thread index is first calculated using three build-in

Figure 4. General framework of GPU-based MCHVI indicator value calculations.

Algorithm 2 presents the key code snippet of the GPU subroutine for MCHVI calcu-
lations, in which MCSP_d is the number of Monte Carlo sample points, Front_d denotes
the Pareto front, and HV_d is the computed MCHVI number nq (see lines 7 and 8 in
Algorithm 1). The corresponding thread hierarchy is designed as shown in Figure 5. It can
be learned that a GPU thread is assigned to the calculations related to each Monte Carlo
sample point. All GPU threads are organized into a queue of thread blocks inside a thread
grid to be adjusted to the double-layer structure of GPU hardware [42]. In the correspond-
ing code snippet (Algorithm 2), the thread index is first calculated using three build-in
parameters, blockdim, blockIdx and threadIdx (for details, see [42]). After the thread index
is obtained, the locations of each Monte Carlo sample point (with the same thread index)
are then compared with the existing Pareto front and current updating points. If the Monte
Carlo point is located in the dominated region, an integer of 1 is added to the value of the
MCHVI indicator using a build-in function of atomicadd (see line 8 in Algorithm 2).

Algorithm 2. Code snippet of the kernel for GPU-based MCHVI calculation

1 attributes(global) subroutine kernel_MCHV(MCSP_d, Front_d, HV_d)
2 i = (blockIdx%x-1)*blockDim%x + threadIdx%x !thread Index
3
4 do j = 1, nFront !loop over all Pareto front points and updating point
5 if(isInvalid(MCSP_d(:,i),Front_d(:,j)) return !judge of domination
6 end do
7
8 istat = atomicadd(HV_d, 1) !accumulate result to global memory
9 end subroutine

Appl. Sci. 2023, 13, 352 9 of 21

Appl. Sci. 2023, 13, 352 9 of 22

parameters, 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑚, 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 and 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 (for details, see [42]). After the thread
index is obtained, the locations of each Monte Carlo sample point (with the same thread
index) are then compared with the existing Pareto front and current updating points. If
the Monte Carlo point is located in the dominated region, an integer of 1 is added to the
value of the MCHVI indicator using a build-in function of 𝑎𝑡𝑜𝑚𝑖𝑐𝑎𝑑𝑑 (see line 8 in Algo-
rithm 2).

Algorithm 2. Code snippet of the kernel for GPU-based MCHVI calculation
1 attributes(global) subroutine kernel_MCHV(MCSP_d, Front_d, HV_d)
2 i = (blockIdx%x-1)*blockDim%x + threadIdx%x !thread Index
3
4 do j = 1, nFront !loop over all Pareto front points and updating point
5 if(isInvalid(MCSP_d(:,i),Front_d(:,j)) return !judge of domination
6 end do
7
8 istat = atomicadd(HV_d, 1) !accumulate result to global memory
9 end subroutine

Figure 5. Thread hierarchy designed for GPU-based MCHVI indicator.

While the corresponding CPU subroutine for calling the GPU subroutine (Algorithm
2) is presented in Algorithm 3, in which MCSP is the number of Monte Carlo sample
points, Front de-notes the Pareto front, and HV is the computed MCHVI number nq (See
lines 7 and 8 in Algorithm 1).in which the parameters of thread hierarchy, including num-
ber of threads per thread block and total number of thread blocks, are assigned in a spe-
cific build-in symbol of “<<<·>>>”. Following our previous GPU works [40,41], a suggested
value of 64 is assigned as the number of threads per block; hence, the total number of
thread blocks is equal to (),64pceiling n , a rounding function to return the least integer
greater than or equal to its argument, in which pn is the total number of Monte Carlo
sample points. The efficiency of the MOO problem could be expected to improve due to
the GPU accelerated implementation, which will be addressed in the following sections.

Thread Grid

Thread block k

P1 P2 P3 ... Pn ... Pi

...

Ti

...

...

......

Monte Carlo Sample Points

G
P

U
 T

hreads

Thread block 1
T1 T2 T3 Tn

...

Figure 5. Thread hierarchy designed for GPU-based MCHVI indicator.

While the corresponding CPU subroutine for calling the GPU subroutine (Algorithm 2)
is presented in Algorithm 3, in which MCSP is the number of Monte Carlo sample
points, Front de-notes the Pareto front, and HV is the computed MCHVI number nq
(See lines 7 and 8 in Algorithm 1).in which the parameters of thread hierarchy, including
number of threads per thread block and total number of thread blocks, are assigned in
a specific build-in symbol of “<<<·>>>”. Following our previous GPU works [40,41], a
suggested value of 64 is assigned as the number of threads per block; hence, the total
number of thread blocks is equal to ceiling

(
np, 64

)
, a rounding function to return the least

integer greater than or equal to its argument, in which np is the total number of Monte
Carlo sample points. The efficiency of the MOO problem could be expected to improve due
to the GPU accelerated implementation, which will be addressed in the following sections.

Algorithm 3. Code snippet of the CPU subroutine for calling kernel_MCHV

1 subroutine calKernel_MCHV(MCSP, Front, HV)
2 NTPB = 64 !Number of threads per block
3 NBPG = ceiling(MCSP/64) ! Number of blocks per grid
4
5 MCSP_d = MCSP; Front_d = Front !Copy data to GPU
7
8 call kernel_MCHV <<<NBPG,NTPB>>> (MCSP_d,Front_d,HV_d) !call the kernel
9
10 HV = HV_d !Send result back to CPU
11 end subroutine

3.3. Multi-Objective EGO Method with Modified Infill Criterion

The resulting GPU accelerated Monte Carlo-based multi-objective EGO algorithm,
namely GMOEGO, can be summarized as Algorithm 4, as follows.

In the present work, we use the Latin Hypercube Sampling (LHS) [43] is selected as
the DOE method (see step 1) for its space filling properties. A global genetic algorithm (GA)
is selected to be used in constructing Kriging surrogate models (see step 2) and searching
the optimal updating location (in step 4) for the objectives of them are both functions (see
Equations (6) and (15)), which are easy for GA optimizers; for details about GA, we refer
to [6]. The stopping criterion in step 6 is limited by the maximum number of FEs.

The algorithm presented has been programed to be different modules with Fortran
language. The performance of the algorithm presented will be demonstrated and analyzed
through comparison with the traditional EGO algorithm, which will be mainly addressed
in the next section.

Appl. Sci. 2023, 13, 352 10 of 21

Algorithm 4. GMOEGO Algorithm

Step 1
Initialization: Use the DOE method to generate a set of sample points Xsns within
design space, and evaluate their objective values Ysns of Xsns (for definition of ns,
see Section 2.1).

Step 2
Updating Model: Construct m Kriging surrogate models based on current sample
points (Xsns , Ysns) for each objective.

Step 3
Nondominated sort: Sort the current sample points (Xsns , Ysns) by nondominated
strategy to obtain the current set of Pareto front point Pn.

Step 4

Searching for Optimal Updating Point: Based on the Kriging models constructed,
search for the optimal updating location by maximizing the EHVI indicator
(Equation (11)) based on the Kriging models constructed, in which the indicator is
calculated based on the Monte Carlo approach on a GPU computational platform.

Step 5
Objective Function Evaluation: Calculate the values of objective functions at the
optimal updating location obtained in Step 4 to update the sample values to obtain(
Xsns+1, Ysns+1).

Step 6
Stopping criterion: Check the stopping criterion. If satisfied, output the
optimized Pareto front points and stop; if not, go back to Step 2.

4. Numerical Tests and Analysis

In order to have a view of performance, seven representative mathematical functions
with different properties appeared in the literature [16,38,44] are carefully selected to
validate the present algorithm. For the sake of convenience, the definitions of the selected
functions are listed in the Appendix A.

All the tests are carried out on a personal computer with the Intel Core i9-9900k CPU
(8 cores) and GTX-1066 GPU. The code is developed in CUDA Fortran, and the operating
system is Windows 10. The first function (ZDT1) is used in Section 4.1 to investigate
the speedup effect of the number of Monte Carlo sample points. In Section 4.2, all test
functions are then used to validate the present GMOEGO algorithm in comparison with
the optimizers listed in Table 1. In the following sections, the size of the initial EGO sample
points is set as ns = 6× d − 1, and all optimizations are carried out under the limited
maximum number of FEs. In the present work, nFEs ≤ 200 is assigned to be the stop
criterion used in step 6 of Algorithm 4. The speedup ratio SUR of the total computation
cost between the two algorithms is defined as

SUR =
TGMOEGO
TMOEGO

(16)

where TMOEGO is the total computational cost of the reference MOEGO algorithm, which is
parallelized on the platform of Intel Core i9-9900k CPU with 8 cores, and TGMOEGO is the
total computational cost of the present GMOEGO algorithm, which is run on the GTX-1066
GPU platform.

Table 1. Test results of the speedup ratio of ZDT1.

Number of Monte Carlo
Sample Points Algorithm Total Cost (Hours) MCHVI Cost (Hours) SUR of Total Cost (Times)

1× 102 MOEGO 0.239 0.001
0.916GMOEGO 0.261 0.018

1× 103 MOEGO 0.253 0.010
0.920GMOEGO 0.275 0.032

1× 104 MOEGO 0.403 0.169
1.404GMOEGO 0.287 0.051

1× 105 MOEGO 2.146 1.893
5.896GMOEGO 0.364 0.124

1× 106 MOEGO 28.081 27.830
12.575GMOEGO 2.233 1.986

Appl. Sci. 2023, 13, 352 11 of 21

In order to assess the performance of the GMOEGO algorithm, the Inverted Gener-
ational Distance (IGD) metric [45] is used in the numerical tests in this section. The IGD
metric can be mathematically expressed as

IGD(P∗, P) = ∑ν∈P∗ d(ν, P)
|P∗| (17)

in which P∗ is usually a set of n points uniformly distributed on the theoretical Pareto front,
while P is the optimized Pareto front. d(ν, P) is the minimum Euclidean distance between
ν and the points in P, and |P∗| represents the number of points in P∗. It can be seen that a
low value of IGD(P∗, P), means the optimized P is very close to the theoretical Pareto front
P∗. This is desired by designers.

4.1. Analysis of GPU Speedup Effect

As mentioned above, the computational cost of the MCHVI calculation on the CPU
is very time consuming (the most consuming part). In order to investigate the speedup
effect of the number of Monte Carlo sample points, the GMOEGO algorithm with different
amounts of Monte Carlo sample points, 1× 102, 1× 103, 1× 104, 1× 105, and 1× 106, is
validated, and the traditional MOEGO algorithm is taken as the reference optimizer for
comparison. For the purpose of saving testing time, one test function, the ZDT1 function
with 2 variables (d = 2), is selected for analyzing the performance of GPU implementation.

The test results for the speedup ratio of ZDT1 are listed in Table 1. It can be learned that
the most time-consuming part, up to 99 percent of the overall costs (the MOEGO algorithm
with 1× 106 Monte Carlo sample points), are really spent in MCHVI calculations (see the
fourth column of Table 1), the time consuming of GMOEGO presented are now speedup by
proposed GPU implementation, and significant acceleration, up to 12.575 speedup ratio,
are achieved (see the last column in Table 1). In order to make it clear, the corresponding
speedup ratio of the total cost to a different number of Monte Carlo sample points is
illustrated in Figure 6. When the Monte Carlo sample points are few, it fails to have GPU
speedup (see Figure 6) due to the fact that the cost of data exchange between the CPU and
GPU side is mainly dominated in such circumstances, as listed in Table 1. It can also be
observed that a continual increase in speedups related to the growing number of sample
points can be achieved, which are favorable for coping with the problems in the case of a
large number of sample points required. Such situations usually occur in complex MOO
problems under the requirement of high accuracy in capturing the Pareto front.

Appl. Sci. 2023, 13, 352 12 of 22

4.1. Analysis of GPU Speedup Effect
As mentioned above, the computational cost of the MCHVI calculation on the CPU

is very time consuming (the most consuming part). In order to investigate the speedup
effect of the number of Monte Carlo sample points, the GMOEGO algorithm with different
amounts of Monte Carlo sample points, 21 10× , 31 10× , 41 10× , 51 10× , and 61 10× , is val-
idated, and the traditional MOEGO algorithm is taken as the reference optimizer for com-
parison. For the purpose of saving testing time, one test function, the ZDT1 function with
2 variables (d = 2), is selected for analyzing the performance of GPU implementation.

The test results for the speedup ratio of ZDT1 are listed in Table 1. It can be learned
that the most time-consuming part, up to 99 percent of the overall costs (the MOEGO
algorithm with 61 10× Monte Carlo sample points), are really spent in MCHVI calcula-
tions (see the fourth column of Table 1), the time consuming of GMOEGO presented are
now speedup by proposed GPU implementation, and significant acceleration, up to 12.575
speedup ratio, are achieved (see the last column in Table 1). In order to make it clear, the
corresponding speedup ratio of the total cost to a different number of Monte Carlo sample
points is illustrated in Figure 6. When the Monte Carlo sample points are few, it fails to
have GPU speedup (see Figure 6) due to the fact that the cost of data exchange between
the CPU and GPU side is mainly dominated in such circumstances, as listed in Table 1. It
can also be observed that a continual increase in speedups related to the growing number
of sample points can be achieved, which are favorable for coping with the problems in the
case of a large number of sample points required. Such situations usually occur in complex
MOO problems under the requirement of high accuracy in capturing the Pareto front.

Figure 6. Speedup ratio of total cost to different numbers of Monte Carlo sample points.

4.2. Numerical Tests of the GMOEGO Algorithm
In order to investigate the performance of the proposed GMOEGO algorithm, all six

test functions (see Appendix A) are selected as the test functions. In order to mimic real
engineering optimizations, test functions with more variables are constructed: 10 varia-
bles for ZDT1-ZDT3 functions, 5 variables for DTLZ2 function, 8 variables for DTLZ5
function, and 10 variables for DTLZ7. In contrast, these test cases are also optimized by
the referenced MOEGO algorithm, which is run on a 12-core CPU (Intel Core i9-9900k) in
parallel. The Monte Carlo sample points of the GMOEGO algorithm are set as 𝑛௣ =1 × 10ହ for two-objective functions (ZDT1-ZDT3), and 𝑛௣ = 1 × 10଺ for three-objective
functions (DTLZ2, DTLZ 5, and DTLZ7). Both algorithms are performed on the same com-
putational platform mentioned at the beginning of this section.

The test results are shown in Table 2. The Pareto solution distributions compared
with the theoretical true Pareto front are illustrated in Figure 7. It can be noticed that, for
all the test cases, the Pareto solution distributions obtained by the GMOEGO algorithm
and the referenced MOEGO algorithm are very close to the theoretical true Pareto front,

Figure 6. Speedup ratio of total cost to different numbers of Monte Carlo sample points.

Appl. Sci. 2023, 13, 352 12 of 21

4.2. Numerical Tests of the GMOEGO Algorithm

In order to investigate the performance of the proposed GMOEGO algorithm, all six
test functions (see Appendix A) are selected as the test functions. In order to mimic real engi-
neering optimizations, test functions with more variables are constructed:
10 variables for ZDT1-ZDT3 functions, 5 variables for DTLZ2 function, 8 variables for
DTLZ5 function, and 10 variables for DTLZ7. In contrast, these test cases are also optimized
by the referenced MOEGO algorithm, which is run on a 12-core CPU (Intel Core i9-9900k) in
parallel. The Monte Carlo sample points of the GMOEGO algorithm are set as np = 1× 105

for two-objective functions (ZDT1-ZDT3), and np = 1× 106 for three-objective functions
(DTLZ2, DTLZ 5, and DTLZ7). Both algorithms are performed on the same computational
platform mentioned at the beginning of this section.

The test results are shown in Table 2. The Pareto solution distributions compared with
the theoretical true Pareto front are illustrated in Figure 7. It can be noticed that, for all the
test cases, the Pareto solution distributions obtained by the GMOEGO algorithm and the
referenced MOEGO algorithm are very close to the theoretical true Pareto front, and the
obtained IGD values listed in the third column of Table 2 are around 10−3 to 10−5, which
indicates the optimized Pareto fronts are very close to the theoretical Pareto fronts.

Table 2. Results of the test functions.

Test
Function Algorithm IGD Total Cost

(Hours)
MCHVI

Cost (Hours)
SUR of Total Cost

(Times)

ZDT1
MOEGO 1.817× 10−5 4.952 4.511

5.246GMOEGO 2.080× 10−5 0.944 0.703

ZDT2
MOEGO 2.124× 10−5 5.247 4.530

6.559GMOEGO 3.878× 10−5 0.800 0.601

ZDT3
MOEGO 1.594× 10−4 4.249 2.474

4.634GMOEGO 1.216× 10−4 0.917 0.636

DTLZ2
MOEGO 3.200× 10−3 32.943 32.843

13.734GMOEGO 3.070× 10−3 2.397 2.365

DTLZ5
MOEGO 1.260× 10−4 28.014 26.138

11.906GMOEGO 1.290× 10−4 2.353 2.272

DTLZ7
MOEGO 5.530× 10−3 29.679 27.426

12.408GMOEGO 3.740× 10−3 2.392 2.183

The total wall-clock time costs and the MCHVI calculation costs are given in the fourth
and fifth columns of Table 2, and their corresponding comparison histories are illustrated in
Figure 8. It can be seen that, as analyzed in Section 3, the computational cost of the MCHVI
calculations is the main part of the overall optimization procedure, and it is not hard to
imagine that improving this module of the optimization algorithm will bring the most
benefits, and as expected, the computational cost improvements of the proposed GMOEGO
algorithm mainly come from the speedup of the MCHVI calculations. The speedup ratio
of the GMOEGO in comparison with the MOEGO algorithm is given in the sixth column
of Table 2. It can be seen that benefit from the GPU implementation, speedups up to
13.734 times are achieved in comparison with the cost of the MOEGO algorithm based on
8 cores in parallel, which shows the effectiveness of the GPU architecture.

Appl. Sci. 2023, 13, 352 13 of 21

Appl. Sci. 2023, 13, 352 13 of 22

and the obtained IGD values listed in the third column of Table 2 are around 10ିଷ to 10ିହ, which indicates the optimized Pareto fronts are very close to the theoretical Pareto
fronts.

Table 2. Results of the test functions.

Test
Function Algorithm IGD

Total Cost
(Hours)

MCHVI Cost
(Hours)

of Total Cost
(Times)

ZDT1
MOEGO -51.817 10× 4.952 4.511

5.246
GMOEGO -52.080 10× 0.944 0.703

ZDT2
MOEGO -52.124 10× 5.247 4.530

6.559
GMOEGO -53.878 10× 0.800 0.601

ZDT3
MOEGO -41.594 10× 4.249 2.474

4.634
GMOEGO -41.216 10× 0.917 0.636

DTLZ2
MOEGO -33.200 10× 32.943 32.843

13.734
GMOEGO -33.070 10× 2.397 2.365

DTLZ5
MOEGO -41.260 10× 28.014 26.138

11.906
GMOEGO -41.290 10× 2.353 2.272

DTLZ7
MOEGO -35.530 10× 29.679 27.426

12.408
GMOEGO -33.740 10× 2.392 2.183

(a) (b)

(c) (d)

SUR

Appl. Sci. 2023, 13, 352 14 of 22

(e) (f)

Figure 7. Pareto front comparisons: (a) ZTD1; (b) ZTD2; (c) ZTD3; (d) DTLZ2; (e) DTLZ5; (f)
DTLZ7.

The total wall-clock time costs and the MCHVI calculation costs are given in the
fourth and fifth columns of Table 2, and their corresponding comparison histories are il-
lustrated in Figure 8. It can be seen that, as analyzed in Section 3, the computational cost
of the MCHVI calculations is the main part of the overall optimization procedure, and it
is not hard to imagine that improving this module of the optimization algorithm will bring
the most benefits, and as expected, the computational cost improvements of the proposed
GMOEGO algorithm mainly come from the speedup of the MCHVI calculations. The
speedup ratio of the GMOEGO in comparison with the MOEGO algorithm is given in the
sixth column of Table 2. It can be seen that benefit from the GPU implementation,
speedups up to 13.734 times are achieved in comparison with the cost of the MOEGO
algorithm based on 8 cores in parallel, which shows the effectiveness of the GPU architec-
ture.

(a) (b)

Figure 8. Wall-clock time history comparisons: (a) ZDT series functions; (b) DTLZ series functions.

5. Aerodynamic Design Optimization
In order to investigate the performance of the proposed GMOEGO algorithm in real

engineering optimization applications, an aerodynamic airfoil shape optimization case
[46] is selected to test the algorithm. The baseline of the airfoil is RAE2822 under the

Figure 7. Pareto front comparisons: (a) ZTD1; (b) ZTD2; (c) ZTD3; (d) DTLZ2; (e) DTLZ5; (f) DTLZ7.

Appl. Sci. 2023, 13, 352 14 of 21

Appl. Sci. 2023, 13, 352 14 of 22

(e) (f)

Figure 7. Pareto front comparisons: (a) ZTD1; (b) ZTD2; (c) ZTD3; (d) DTLZ2; (e) DTLZ5; (f)
DTLZ7.

The total wall-clock time costs and the MCHVI calculation costs are given in the
fourth and fifth columns of Table 2, and their corresponding comparison histories are il-
lustrated in Figure 8. It can be seen that, as analyzed in Section 3, the computational cost
of the MCHVI calculations is the main part of the overall optimization procedure, and it
is not hard to imagine that improving this module of the optimization algorithm will bring
the most benefits, and as expected, the computational cost improvements of the proposed
GMOEGO algorithm mainly come from the speedup of the MCHVI calculations. The
speedup ratio of the GMOEGO in comparison with the MOEGO algorithm is given in the
sixth column of Table 2. It can be seen that benefit from the GPU implementation,
speedups up to 13.734 times are achieved in comparison with the cost of the MOEGO
algorithm based on 8 cores in parallel, which shows the effectiveness of the GPU architec-
ture.

(a) (b)

Figure 8. Wall-clock time history comparisons: (a) ZDT series functions; (b) DTLZ series functions.

5. Aerodynamic Design Optimization
In order to investigate the performance of the proposed GMOEGO algorithm in real

engineering optimization applications, an aerodynamic airfoil shape optimization case
[46] is selected to test the algorithm. The baseline of the airfoil is RAE2822 under the

Figure 8. Wall-clock time history comparisons: (a) ZDT series functions; (b) DTLZ series functions.

5. Aerodynamic Design Optimization

In order to investigate the performance of the proposed GMOEGO algorithm in real
engineering optimization applications, an aerodynamic airfoil shape optimization case [46]
is selected to test the algorithm. The baseline of the airfoil is RAE2822 under the conditions
of Ma = 0.75, Re = 6.5× 106, and α = 2.31◦. The optimization target is to maximize the
lift-drag ratios under two different Mach numbers: Ma = 0.6, Ma = 0.75. The optimization
problem can be defined as:

Max. (CL/CD)Ma=0.6
(CL/CD)Ma=0.75

}
s.t. {xi ∈ X|i = 1, 2, · · · , n}

(18)

in which CL is the lift coefficient, CD is the drag coefficient, X is the design parameters of
the Hicks–Henne parametrization method [47], and n is the number of control parameters.
In this paper, n = 14 is set to parametrize the airfoil geometry.

The Computational Fluid Dynamics (CFD) simulator used to calculate the aerody-
namic coefficients is the open-source software SU2 [48]. In this work, the Jameson scheme
is selected as the spatial discretization scheme, and the Spalart-Allmaras (SA) one equa-
tion turbulence model is used for turbulence closure. The computational O-type mesh of
RAE2822 airfoil is shown in Figure 9.

During the optimizations, 43 initial samples are set by using the LHS method, and
the maximum FEs of CFD evaluations is limited to 400. The computations are carried
out on the computational platform of Intel Core i9-9900k CPU (8 cores) with GTX-1066
GPU. After 400 CFD evaluations, the Pareto front obtained by the proposed GMOEGO
algorithm is illustrated in Figure 10. Three representative optimized solutions marked with
Optimum 1–3 in Figure 10 are selected to show their aerodynamic performances.

Appl. Sci. 2023, 13, 352 15 of 21

Appl. Sci. 2023, 13, 352 15 of 22

conditions of 0.75Ma = , 66.5 10Re = × , and 2.31α =  . The optimization target is to max-
imize the lift-drag ratios under two different Mach numbers: 0.6Ma = , 0.75Ma = . The
optimization problem can be defined as:

()
()

{ }

0.6

0.75

.

. . 1, 2, ,

L D Ma

L D Ma

i

Max C C
C C

s t x i n

=

=





∈ = X

 (18)

in which LC is the lift coefficient, DC is the drag coefficient, X is the design parame-
ters of the Hicks–Henne parametrization method [47], and n is the number of control
parameters. In this paper, 14n = is set to parametrize the airfoil geometry.

 The Computational Fluid Dynamics (CFD) simulator used to calculate the aerody-
namic coefficients is the open-source software SU2 [48]. In this work, the Jameson scheme
is selected as the spatial discretization scheme, and the Spalart-Allmaras (SA) one equa-
tion turbulence model is used for turbulence closure. The computational O-type mesh of
RAE2822 airfoil is shown in Figure 9.

Figure 9. Computational mesh of RAE2822.

During the optimizations, 43 initial samples are set by using the LHS method, and
the maximum FEs of CFD evaluations is limited to 400. The computations are carried out
on the computational platform of Intel Core i9-9900k CPU (8 cores) with GTX-1066 GPU.
After 400 CFD evaluations, the Pareto front obtained by the proposed GMOEGO algo-
rithm is illustrated in Figure 10. Three representative optimized solutions marked with
Optimum 1–3 in Figure 10 are selected to show their aerodynamic performances.

Figure 10. Optimization results of the GMOEGO algorithm.

Figure 9. Computational mesh of RAE2822.

Appl. Sci. 2023, 13, 352 15 of 22

conditions of 0.75Ma = , 66.5 10Re = × , and 2.31α =  . The optimization target is to max-
imize the lift-drag ratios under two different Mach numbers: 0.6Ma = , 0.75Ma = . The
optimization problem can be defined as:

()
()

{ }

0.6

0.75

.

. . 1, 2, ,

L D Ma

L D Ma

i

Max C C
C C

s t x i n

=

=





∈ = X

 (18)

in which LC is the lift coefficient, DC is the drag coefficient, X is the design parame-
ters of the Hicks–Henne parametrization method [47], and n is the number of control
parameters. In this paper, 14n = is set to parametrize the airfoil geometry.

 The Computational Fluid Dynamics (CFD) simulator used to calculate the aerody-
namic coefficients is the open-source software SU2 [48]. In this work, the Jameson scheme
is selected as the spatial discretization scheme, and the Spalart-Allmaras (SA) one equa-
tion turbulence model is used for turbulence closure. The computational O-type mesh of
RAE2822 airfoil is shown in Figure 9.

Figure 9. Computational mesh of RAE2822.

During the optimizations, 43 initial samples are set by using the LHS method, and
the maximum FEs of CFD evaluations is limited to 400. The computations are carried out
on the computational platform of Intel Core i9-9900k CPU (8 cores) with GTX-1066 GPU.
After 400 CFD evaluations, the Pareto front obtained by the proposed GMOEGO algo-
rithm is illustrated in Figure 10. Three representative optimized solutions marked with
Optimum 1–3 in Figure 10 are selected to show their aerodynamic performances.

Figure 10. Optimization results of the GMOEGO algorithm. Figure 10. Optimization results of the GMOEGO algorithm.

The comparison of aerodynamic performance between the baseline and the selected
optimized airfoils is listed in Table 3. It can be seen in the table that for optimum 1, the lift-
drag ratio is increased by 7.14% for objective 1 and 22.57% for objective 2 when compared
to the baseline. For optimum 2, the optimized ratios are 26.26% and 21.10%, respectively.
For optimum 3, the lift-drag ratio of objective 1 is increased to 39.04%, and objective 2′s
improvement of lift-drag ratio is 16.73%.

The geometry shape of the optimized airfoil and the baseline are compared in Figure 11.
Figure 12 illustrates the comparison of Cp distributions of two objectives, and the corre-
sponding Cp comparisons are depicted in Figure 13. It can be learned that for objective 1,
the shock wave of optimum 3 is weaker than that of optimums 1 and 2, which results in
a significantly increasing lift-drag ratio (39.04%). For objective 2, the increase in lift-drag
ratios is mainly due to the increase in lift coefficients. It can also be seen that different points
on the Pareto front relate to the different aerodynamic performances of airfoils. Designers
can select a specific airfoil depending on specific application scenarios and requirements.

Appl. Sci. 2023, 13, 352 16 of 21

Appl. Sci. 2023, 13, 352 16 of 22

The comparison of aerodynamic performance between the baseline and the selected
optimized airfoils is listed in Table 3. It can be seen in the table that for optimum 1, the
lift-drag ratio is increased by 7.14% for objective 1 and 22.57% for objective 2 when com-
pared to the baseline. For optimum 2, the optimized ratios are 26.26% and 21.10%, respec-
tively. For optimum 3, the lift-drag ratio of objective 1 is increased to 39.04%, and objective
2′s improvement of lift-drag ratio is 16.73%.

The geometry shape of the optimized airfoil and the baseline are compared in Figure
11. Figure 12 illustrates the comparison of pC distributions of two objectives, and the
corresponding pC comparisons are depicted in Figure 13. It can be learned that for ob-
jective 1, the shock wave of optimum 3 is weaker than that of optimums 1 and 2, which
results in a significantly increasing lift-drag ratio (39.04%). For objective 2, the increase in
lift-drag ratios is mainly due to the increase in lift coefficients. It can also be seen that
different points on the Pareto front relate to the different aerodynamic performances of
airfoils. Designers can select a specific airfoil depending on specific application scenarios
and requirements.

Figure 11. Comparison of shape between optimized airfoil and baseline.

Table 3. Comparison of aerodynamic performance between baseline and optimized airfoils.

Airfoil Number of Objective L DC C

Baseline 1 53.81
2 61.86

Optimum 1 1 57.65 (+7.14%)
2 75.90 (+22.57%)

Optimum 2 1 67.94 (+26.26%)
2 74.91 (+21.10%)

Optimum 3 1 74.82 (+39.04%)
2 72.21 (+16.73%)

Figure 11. Comparison of shape between optimized airfoil and baseline.

Table 3. Comparison of aerodynamic performance between baseline and optimized airfoils.

Airfoil Number of Objective CL/CD

Baseline
1 53.81
2 61.86

Optimum 1 1 57.65 (+7.14%)
2 75.90 (+22.57%)

Optimum 2 1 67.94 (+26.26%)
2 74.91 (+21.10%)

Optimum 3 1 74.82 (+39.04%)
2 72.21 (+16.73%)Appl. Sci. 2023, 13, 352 17 of 22

Figure 12. Comparison of pressure coefficient distribution between optimized airfoil and baseline.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 13. Contour of pressure coefficient comparison between optimized airfoil and baseline: (a1)
Baseline of objective 1; (a2) Optimum 1 of objective 1; (a3) Optimum 2 of objective 1; (a4) Optimum
3 of objective 1; (b1) Baseline of objective 2; (b2) Optimum 1 of objective 2; (b3) Optimum 2 of ob-
jective 2; (b4) Optimum 3 of objective 2.

Furthermore, in order to investigate the acceleration effect of the proposed GMOEGO
algorithm in real applications, the aerodynamic airfoil shape optimization case above is
also optimized by the counterpart referenced MOEGO algorithm. The computational plat-
form is Intel Core i9-9900k CPU (8 cores), and all the other setups remain the same, as
mentioned at the beginning of this section.

The optimized Pareto fronts obtained by MOEGO and GMOEGO algorithms for
comparison is in Figure 14. It can be seen that both algorithms could obtain similar Pareto
fronts. Figure 15 shows the comparison of the wall-clock time histories of the two algo-
rithms, and the corresponding comparison results are listed in Table 4. The comparison
shows that, benefiting from the Monte Carlo-based GPU-acceleration technique, a signif-
icantly speedup ratio, up to 7.27 times, is achieved. The fourth column of Table 4 shows

Figure 12. Comparison of pressure coefficient distribution between optimized airfoil and baseline.

Appl. Sci. 2023, 13, 352 17 of 21

Appl. Sci. 2023, 13, 352 17 of 22

Figure 12. Comparison of pressure coefficient distribution between optimized airfoil and baseline.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 13. Contour of pressure coefficient comparison between optimized airfoil and baseline: (a1)
Baseline of objective 1; (a2) Optimum 1 of objective 1; (a3) Optimum 2 of objective 1; (a4) Optimum
3 of objective 1; (b1) Baseline of objective 2; (b2) Optimum 1 of objective 2; (b3) Optimum 2 of ob-
jective 2; (b4) Optimum 3 of objective 2.

Furthermore, in order to investigate the acceleration effect of the proposed GMOEGO
algorithm in real applications, the aerodynamic airfoil shape optimization case above is
also optimized by the counterpart referenced MOEGO algorithm. The computational plat-
form is Intel Core i9-9900k CPU (8 cores), and all the other setups remain the same, as
mentioned at the beginning of this section.

The optimized Pareto fronts obtained by MOEGO and GMOEGO algorithms for
comparison is in Figure 14. It can be seen that both algorithms could obtain similar Pareto
fronts. Figure 15 shows the comparison of the wall-clock time histories of the two algo-
rithms, and the corresponding comparison results are listed in Table 4. The comparison
shows that, benefiting from the Monte Carlo-based GPU-acceleration technique, a signif-
icantly speedup ratio, up to 7.27 times, is achieved. The fourth column of Table 4 shows

Figure 13. Contour of pressure coefficient comparison between optimized airfoil and baseline:
(a1) Baseline of objective 1; (a2) Optimum 1 of objective 1; (a3) Optimum 2 of objective 1;
(a4) Optimum 3 of objective 1; (b1) Baseline of objective 2; (b2) Optimum 1 of objective 2;
(b3) Optimum 2 of objective 2; (b4) Optimum 3 of objective 2.

Furthermore, in order to investigate the acceleration effect of the proposed GMOEGO
algorithm in real applications, the aerodynamic airfoil shape optimization case above is also
optimized by the counterpart referenced MOEGO algorithm. The computational platform
is Intel Core i9-9900k CPU (8 cores), and all the other setups remain the same, as mentioned
at the beginning of this section.

The optimized Pareto fronts obtained by MOEGO and GMOEGO algorithms for
comparison is in Figure 14. It can be seen that both algorithms could obtain similar
Pareto fronts. Figure 15 shows the comparison of the wall-clock time histories of the
two algorithms, and the corresponding comparison results are listed in Table 4. The
comparison shows that, benefiting from the Monte Carlo-based GPU-acceleration technique,
a significantly speedup ratio, up to 7.27 times, is achieved. The fourth column of Table 4
shows the wall-clock time cost of MCHVI, and the corresponding histories are also depicted
in Figure 15. It can be seen that the MCHVI calculation is the most time-consuming
part of the whole optimization procedure of both algorithms, and the acceleration of the
GMOEGO algorithm is mainly driven by the acceleration of this MCHVI calculation part.
The significant speedup ratio shows the capability of the proposed GMOEGO algorithm to
deal with real engineering optimizations.

Table 4. Speedup results of MOEGO and GMOEGO algorithms.

Algorithm Platform Total Cost
(Hours)

MCHVI Cost
(Hours)

SUR of Total
Cost (Times)

MOEGO Intel Core i9-9900k CPU (with 8 cores in parallel) 255.78 235.69
7.27GMOEGO GTX-1066 35.20 17.13

Appl. Sci. 2023, 13, 352 18 of 21

Appl. Sci. 2023, 13, 352 18 of 22

the wall-clock time cost of MCHVI, and the corresponding histories are also depicted in
Figure 15. It can be seen that the MCHVI calculation is the most time-consuming part of
the whole optimization procedure of both algorithms, and the acceleration of the
GMOEGO algorithm is mainly driven by the acceleration of this MCHVI calculation part.
The significant speedup ratio shows the capability of the proposed GMOEGO algorithm
to deal with real engineering optimizations.

Table 4. Speedup results of MOEGO and GMOEGO algorithms.

Algorithm Platform Total Cost
(Hours)

MCHVI Cost
(Hours)

of Total
Cost (Times)

MOEGO Intel Core i9-9900k CPU (with 8 cores in parallel) 255.78 235.69
7.27 GMOEGO GTX-1066 35.20 17.13

Figure 14. Obtained optimal Pareto fronts.

Figure 15. Time cost histories.

6. Conclusions
In this paper, the GMOEGO algorithm has been successfully developed for MOO

problems. The outstanding hypervolume-based EI criterion is adopted as the multi-objec-
tive infill criterion computed in a novel Monte Carlo-based way of high efficiency. The
time consumption of massive computing associated with Monte Carlo-based HVI approx-
imation (MCHVI) is greatly alleviated by parallelizing in the GPU. The algorithm pre-
sented has been successfully validated by a set of typical mathematical test functions. Pos-
itive speedups up to 13.734 times can be achieved when compared with the traditional

SUR

Figure 14. Obtained optimal Pareto fronts.

Appl. Sci. 2023, 13, 352 18 of 22

the wall-clock time cost of MCHVI, and the corresponding histories are also depicted in
Figure 15. It can be seen that the MCHVI calculation is the most time-consuming part of
the whole optimization procedure of both algorithms, and the acceleration of the
GMOEGO algorithm is mainly driven by the acceleration of this MCHVI calculation part.
The significant speedup ratio shows the capability of the proposed GMOEGO algorithm
to deal with real engineering optimizations.

Table 4. Speedup results of MOEGO and GMOEGO algorithms.

Algorithm Platform Total Cost
(Hours)

MCHVI Cost
(Hours)

of Total
Cost (Times)

MOEGO Intel Core i9-9900k CPU (with 8 cores in parallel) 255.78 235.69
7.27 GMOEGO GTX-1066 35.20 17.13

Figure 14. Obtained optimal Pareto fronts.

Figure 15. Time cost histories.

6. Conclusions
In this paper, the GMOEGO algorithm has been successfully developed for MOO

problems. The outstanding hypervolume-based EI criterion is adopted as the multi-objec-
tive infill criterion computed in a novel Monte Carlo-based way of high efficiency. The
time consumption of massive computing associated with Monte Carlo-based HVI approx-
imation (MCHVI) is greatly alleviated by parallelizing in the GPU. The algorithm pre-
sented has been successfully validated by a set of typical mathematical test functions. Pos-
itive speedups up to 13.734 times can be achieved when compared with the traditional

SUR

Figure 15. Time cost histories.

6. Conclusions

In this paper, the GMOEGO algorithm has been successfully developed for MOO prob-
lems. The outstanding hypervolume-based EI criterion is adopted as the multi-objective
infill criterion computed in a novel Monte Carlo-based way of high efficiency. The time
consumption of massive computing associated with Monte Carlo-based HVI approxima-
tion (MCHVI) is greatly alleviated by parallelizing in the GPU. The algorithm presented
has been successfully validated by a set of typical mathematical test functions. Positive
speedups up to 13.734 times can be achieved when compared with the traditional Monte
Carlo-based MOEGO algorithm. The presented algorithm has also been successfully ap-
plied to an aerodynamic optimization problem, and a 7.27-times speedup is achieved with
limited expensive-to-evaluate CFD evaluations, which shows the potential capability of the
algorithm to deal with real engineering MOO problems in view of accuracy and efficiency.

Author Contributions: Conceptualization, S.X., J.Z. and H.C.; methodology, S.X.; software, S.X.
and J.Z.; validation, S.X. and J.Z.; formal analysis, S.X.; investigation, S.X., Y.G. (Yunkun Gao) and
Y.G. (Yisheng Gao); resources, S.X. and H.G.; data curation, J.Z. and X.J.; writing—original draft
preparation, S.X.; writing—review and editing, S.X., H.C., Y.G. (Yunkun Gao) and Y.G. (Yisheng Gao);
visualization, H.G. and X.J.; supervision, S.X.; project administration, S.X.; funding acquisition, S.X.,
J.Z., H.C. and Y.G. (Yunkun Gao). All authors have read and agreed to the published version of
the manuscript.

Appl. Sci. 2023, 13, 352 19 of 21

Funding: This research was funded by the National Natural Science Foundation of China (grant
number 12102185, 11972189 and 12102188), the China Postdoctoral Science Foundation (grant number
2021M701693), the Natural Science Foundation of Jiangsu Province (grant number BK20190391), and
the Natural Science Foundation of Anhui Province (grant number 1908085QF260).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Definitions of selected mathematical functions.

Name
Number of
Objectives

Number of
Variables

Function Constraints

ZDT1 2 2, 10
f1 = x1; f2 = h · g
g = 1 + 9

m
∑

i=2

xi
m−1

h = 1−
√

f1/g

xi ∈ [0, 1]

ZDT2 2 10
f1 = x1; f2 = h · g
g = 1 + 9

m
∑

i=2

xi
m−1

h = 1− (f1/g)2

xi ∈ [0, 1]

ZDT3 2 10
f1 = x1; f2 = h · g
g = 1 + 9

m
∑

i=2

xi
m−1

h = 1−
√

f1/g− (f1/g) sin(10π f1)

xi ∈ [0, 1]

DTLZ2 3 5
f1 = (1 + g) cos(x1π/2) cos(x2π/2)
f2 = (1 + g) cos(x1π/2) sin(x2π/2)

f3 = (1 + g) sin(x1π/2)

g = ∑10
3 (xi − 0.5)

2

xi ∈ [0, 1]

DTLZ5 3 8
f1 = (1 + g) cos(θ1π/2) cos(θ2π/2)
f2 = (1 + g) cos(θ1π/2) sin(θ2π/2)

f3 = (1 + g) sin(θ1π/2)
θ1 = x1; θ2 = π

4(1+g) (1 + 2g x2)

g = (x3 − 0.5)2

xi ∈ [0, 1]

DTLZ7 3 10
f1 = x1; f2 = x2

f3 = (1 + g)h
h = 3−∑2

i=1

[
fi

1+g (1 + sin(3π fi))
]

g = 1 + 9x3

xi ∈ [0, 1]

References
1. Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient Global Optimization of Expensive Black-Box Functions. J. Glob. Optim. 1998,

13, 455–492. [CrossRef]
2. Emmerich, M.T.M.; Giannakoglou, K.C.; Naujoks, B. Single- and multiobjective evolutionary optimization assisted by Gaussian

random field metamodels. IEEE Trans. Evol. Comput. 2006, 10, 421–439. [CrossRef]
3. Forrester, A.I.J.; Keane, A.J. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79. [CrossRef]
4. Deng, F.; Qin, N.; Liu, X.; Yu, X.; Zhao, N. Shock control bump optimization for a low sweep supercritical wing. Sci. China Technol.

Sci. 2013, 56, 2385–2390. [CrossRef]
5. Xu, S.; Chen, H. Nash game based efficient global optimization for large-scale design problems. J. Glob. Optim. 2018, 71, 361–381.

[CrossRef]
6. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
7. Sóbester, A.; Leary, S.J.; Keane, A.J. On the Design of Optimization Strategies Based on Global Response Surface Approximation

Models. J. Glob. Optim. 2005, 33, 31–59. [CrossRef]

http://doi.org/10.1023/A:1008306431147
http://doi.org/10.1109/TEVC.2005.859463
http://doi.org/10.1016/j.paerosci.2008.11.001
http://doi.org/10.1007/s11431-013-5345-8
http://doi.org/10.1007/s10898-018-0608-3
http://doi.org/10.1007/BF00175354
http://doi.org/10.1007/s10898-004-6733-1

Appl. Sci. 2023, 13, 352 20 of 21

8. Horowitz, B.; Guimarães, L.J.d.N.; Dantas, V.; Afonso, S.M.B. A concurrent efficient global optimization algorithm applied to
polymer injection strategies. J. Pet. Sci. Eng. 2010, 71, 195–204. [CrossRef]

9. Han, Z.-H.; Görtz, S.; Zimmermann, R. Improving variable-fidelity surrogate modeling via gradient-enhanced Kriging and a
generalized hybrid bridge function. Aerosp. Sci. Technol. 2013, 25, 177–189. [CrossRef]

10. Chung, I.-B.; Park, D.; Choi, D.-H. Surrogate-based global optimization using an adaptive switching infill sampling criterion for
expensive black-box functions. Struct. Multidiscip. Optim. 2018, 57, 1443–1459. [CrossRef]

11. Xu, S.; Chen, H.; Zhang, J. A study of Nash-EGO algorithm for aerodynamic shape design optimizations. Struct. Multidiscip.
Optim. 2019, 59, 1241–1254. [CrossRef]

12. Knowles, J. ParEGO A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization
problems. IEEE Trans. Evol. Comput. 2006, 10, 50–66. [CrossRef]

13. Keane, A.J. Statistical Improvement Criteria for Use in Multiobjective Design Optimization. AIAA J. 2006, 44, 879–891. [CrossRef]
14. Liu, W.; Zhang, Q.; Tsang, E.; Liu, C.; Virginas, B. On the Performance of Metamodel Assisted MOEA/D. In ISICA 2007: Advances

in Computation and Intelligence; International Symposium on Intelligence Computation and Applications; Kang, L., Liu, Y., Zeng,
S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4683, pp. 547–557.

15. Namura, N.; Shimoyama, K.; Obayashi, S. Expected Improvement of Penalty-Based Boundary Intersection for Expensive
Multiobjective Optimization. IEEE Trans. Evol. Comput. 2017, 21, 898–913. [CrossRef]

16. Qingfu, Z.; Wudong, L.; Tsang, E.; Virginas, B. Expensive Multiobjective Optimization by MOEA/D With Gaussian Process
Model. IEEE Trans. Evol. Comput. 2010, 14, 456–474. [CrossRef]

17. Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms—A comparative case study. In Parallel Problem
Solving from Nature—PPSN V; Lecture Notes in Computer Science; Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P., Eds.;
Springer: Berlin/Heidelberg, Germany, 1998; Volume 1498, pp. 292–301.

18. Emmerich, M.T.M. Single- and Multi-objective Evolutionary Design Optimization Assisted by Gaussian Random Field Metamod-
els. Ph.D. Thesis, University of Dortmund, Dortmund, Germany, 2005.

19. Emmerich, M.; Beume, N.; Naujoks, B. An EMO Algorithm Using the Hypervolume Measure as Selection Criterion. In The Third
International Conference on Evolutionary Multi-Criterion Optimization, Berlin, Heidelberg; Evolutionary Multi-Criterion Optimization;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 62–76.

20. Ponweiser, W.; Wagner, T.; Biermann, D.; Vincze, M. Multiobjective Optimization on a Limited Budget of Evaluations Using
Model-Assisted S-Metric Selection. In Parallel Problem Solving from Nature—PPSN X; Springer: Berlin/Heidelberg, Germany,
2008; pp. 784–794.

21. Fleischer, M. The Measure of Pareto Optima Applications to Multi-objective Metaheuristics. In Evolutionary Multi-Criterion
Optimization; Springer: Berlin/Heidelberg, Germany, 2003; pp. 519–533.

22. Wagner, T.; Emmerich, M.; Deutz, A.; Ponweiser, W. On Expected-Improvement Criteria for Model-based Multi-objective
Optimization. In Parallel Problem Solving from Nature, PPSN XI; Springer: Berlin/Heidelberg, Germany, 2010; pp. 718–727.

23. Yang, K.; Deutz, A.H.; Yang, Z.; Back, T.; Emmerich, M. Truncated expected hypervolume improvement: Exact computation and
application. In Congress on Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2016; pp. 4350–4357.

24. Li, Z.; Wang, X.; Ruan, S.; Li, Z.; Shen, C.; Zeng, Y. A modified hypervolume based expected improvement for multi-objective
efficient global optimization method. Struct. Multidiscip. Optim. 2018, 58, 1961–1979. [CrossRef]

25. Yang, K.; Emmerich, M.; Deutz, A.; Bäck, T. Multi-Objective Bayesian Global Optimization using expected hypervolume
improvement gradient. Swarm Evol. Comput. 2019, 44, 945–956. [CrossRef]

26. Zitzler, E. Evolutionary Algorithms for Multiobjective Optimization Methods and Applications. Ph.D. Thesis, Swiss Federal
Institute of Technology, Zürich, Switzerland, 1999.

27. Beume, N.; Rudolph, G. Faster S-Metric Calculation by Considering Dominated Hypervolume as Klee’s Measure Problem. In
Proceedings of the Second IASTED International Conference on Computational Intelligence, San Francisco, CA, USA, 20–22
November 2006; pp. 233–238.

28. While, L.; Hingston, P.; Barone, L.; Huband, S. A Faster Algorithm for Calculating Hypervolume. IEEE Trans. Evol. Comput.
Optim. Appl. 2006, 10, 29–38. [CrossRef]

29. Bradstreet, L.; While, L.; Barone, L. A Fast Incremental Hypervolume Algorithm. IEEE Trans. Evol. Comput. 2008, 12, 714–723.
[CrossRef]

30. Bader, J.; Zitzler, E. HypE An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 2011, 19, 45–76.
[CrossRef]

31. Yang, K.; Emmerich, M.; Deutz, A.; Bäck, T. Efficient Computation of Expected Hypervolume Improvement Using Box Decompo-
sition Algorithms. J. Glob. Optim. 2019, 75, 3–34. [CrossRef]

32. Krige, D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. South Afr. Inst. Min. Metall.
1951, 52, 119–139.

33. Sekishiro, M.; Venter, G.; Balabanov, V. Combined Kriging and Gradient-Based Optimization Method. In Proceedings of the
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA, USA, 6–8 September 2006;
p. AIAA 2006-7091.

34. Jiang, S.; Zhang, J.; Ong, Y.S.; Zhang, A.N.; Tan, P.S. A Simple and Fast Hypervolume Indicator-Based Multiobjective Evolutionary
Algorithm. IEEE Trans. Cybern. 2015, 45, 2202–2213. [CrossRef] [PubMed]

http://doi.org/10.1016/j.petrol.2010.02.002
http://doi.org/10.1016/j.ast.2012.01.006
http://doi.org/10.1007/s00158-018-1942-2
http://doi.org/10.1007/s00158-018-2126-9
http://doi.org/10.1109/TEVC.2005.851274
http://doi.org/10.2514/1.16875
http://doi.org/10.1109/TEVC.2017.2693320
http://doi.org/10.1109/TEVC.2009.2033671
http://doi.org/10.1007/s00158-018-2006-3
http://doi.org/10.1016/j.swevo.2018.10.007
http://doi.org/10.1109/TEVC.2005.851275
http://doi.org/10.1109/TEVC.2008.919001
http://doi.org/10.1162/EVCO_a_00009
http://doi.org/10.1007/s10898-019-00798-7
http://doi.org/10.1109/TCYB.2014.2367526
http://www.ncbi.nlm.nih.gov/pubmed/25474815

Appl. Sci. 2023, 13, 352 21 of 21

35. Hammersley, J.M.; Handscomb, D.C.; Weiss, G. Monte Carlo Methods. Phys. Today 1965, 18, 55. [CrossRef]
36. Evans, M.; Swartz, T. Approximating Integrals via Monte Carlo and Deterministic Methods; OUP Oxford: Oxford, UK, 2000.
37. Luo, C.; Shimoyama, K.; Obayashi, S. Kriging Model Based Many-Objective Optimization with Efficient Calculation of Expected

Hypervolume Improvement. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11
July 2014.

38. Feng, D. Research on Efficient Global Optimization Algorithm and Its Application. Ph.D. Thesis, Nanjing University of
Aeronautics and Astronautics, Nanjing, China, 2011.

39. Ma, Z.; Wang, H.; Pu, S. GPU computing of compressible flow problems by a meshless method with space-filling curves. J.
Comput. Phys. 2014, 263, 113–135. [CrossRef]

40. Zhang, J.; Chen, H.; Cao, C. A graphics processing unit-accelerated meshless method for two-dimensional compressible flows.
Eng. Appl. Comput. Fluid Mech. 2017, 11, 526–543. [CrossRef]

41. Zhang, J.-L.; Ma, Z.-H.; Chen, H.-Q.; Cao, C. A GPU-accelerated implicit meshless method for compressible flows. J. Comput.
Phys. 2018, 360, 39–56. [CrossRef]

42. NVIDIA. CUDA C++ Programming Guide, Version 10. 2010. Available online: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html (accessed on 8 September 2022).

43. Kenny, Q.Y.; Li, W.; Sudjianto, A. Algorithmic construction of optimal symmetric Latin hypercube designs. J. Stat. Plan. Inference
2000, 90, 145–159.

44. Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Test Problems for Evolutionary Multi-Objective Optimization. In Evolutionary
Multiobjective Optimization. Advanced Information and Knowledge Processing; Abraham, A., Jain, L., Goldberg, R., Eds.; Springer:
London, UK, 2005.

45. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

46. Zhang, X.S.; Liu, J.; Luo, S.B. An improved multi-objective cuckoo search algorithm for airfoil aerodynamic shape optimization
design. Hangkong Xuebao/Acta Aeronaut. Et Astronaut. Sinica 2018, 40, 5.

47. Hicks, R.M.; Henne, P.A. Wing design by numerical optimization. J. Aircr. 1978, 15, 407–412. [CrossRef]
48. Economon, T.D.; Palacios, F.; Copeland, S.R.; Lukaczyk, T.W.; Alonso, J.J. SU2: An open-source suite for multiphysics simulation

and design. AIAA J. 2016, 54, 828–846. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1063/1.3047186
http://doi.org/10.1016/j.jcp.2014.01.023
http://doi.org/10.1080/19942060.2017.1317027
http://doi.org/10.1016/j.jcp.2018.01.037
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://doi.org/10.1109/TEVC.2007.892759
http://doi.org/10.2514/3.58379
http://doi.org/10.2514/1.J053813

	Introduction
	Related Works
	Traditional Single-Objective EGO Algorithm
	EHVI Infill Criterion for the Multi-Objective EGO Algorithm

	Novel Approach to Computing Infill Criteria for MOEGO
	A Brief Description of the Monte Carlo Approach
	GPU-Accelerated Infill Criterion for the MOEGO Algorithm
	Multi-Objective EGO Method with Modified Infill Criterion

	Numerical Tests and Analysis
	Analysis of GPU Speedup Effect
	Numerical Tests of the GMOEGO Algorithm

	Aerodynamic Design Optimization
	Conclusions
	Appendix A
	References

