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Abstract: Mode pairing is a crucial step for the stability of any model-updating strategy based on 

experimental modal parameters. Automatically establishing a stable and assertive correspondence 

between numerical and experimental modes, in many cases, proves to be a very challenging task, 

especially in situations where complex mode shapes are present. This article presents a novel for-

mulation for the automatic mode pairing between experimental and numerical complex modes 

based on an Energy-based Modal Assurance Criterion (EMAC). The efficiency of the proposed cri-

terion was demonstrated on the basis of a case study involving the pairing between numerical and 

experimental modes of a passenger railway vehicle. A highly complex detailed FE numerical model 

of the vehicle was developed involving the modeling of the carbody, bogies and axles. A numerical 

damped modal analysis allowed obtaining the main global rigid-body and flexural modes of the 

vehicle’s carbody, as well as several local modes associated to the vibration of specific components 

of the carbody. Due to the localized damping provided by the suspensions, these modes presented 

complex modal ordinates, especially for the rigid-body modes. The comparison between the results 

obtained from the application of the EMAC and the classical MAC criteria, on the pairing of five 

global mode shapes, proved that the EMAC criterion is much more assertive, avoiding mismatches 

between the experimental global modes and some of the local numerical modes with similar con-

figurations, and, consequently, establishing the correct correspondences between experimental and 

numerical modes. 

Keywords: model updating; automatic mode pairing; complex modal parameters; energy-based 

MAC 

 

1. Introduction 

The overall use of numerical modeling techniques based on the finite element (FE) 

method, as well as experimental techniques for operational modal analysis (OMA), made 

the updating of numerical models based on modal parameters quite widespread [1]. 

These model-updating methodologies are widely used for: (i) developing highly accurate 

numerical models [2–6]; (ii) modeling structures under operational conditions with un-

known levels of degradation and/or geometrical/mechanical parameters with very high 

levels of uncertainty [7,8]; (iii) monitoring the evolution of the structural behavior during 

retrofit operations [9]; and (iv) identifying structural damage [10,11], among others. 

In most situations, these methodologies are based on the minimization of an objective 

function, composed by the residuals between numerical and experimental modal param-

eters, through the iterative variation of sensitive parameters of the numerical model [4]. 

During the optimization process, particularly due to variations on the numerical param-

eters’ values, several changes in the order of the numerical mode shapes are frequently 
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registered. To guarantee that these modifications do not affect the search for the optimal 

solution, it must be ensured that, in all iterations throughout the optimization process, the 

residuals of the objective function are calculated between an experimental mode and its 

correspondent numerical counterpart. Thus, the convergence of the optimization problem 

fundamentally depends on an efficient, automatic and stable mode-pairing technique to 

perform the correct assignment between numerical and experimental modes [12]. 

Most of the mode-pairing techniques are based on metrics for evaluating the correla-

tion between two vectors (in this case, modal ordinate vectors), or between Frequency 

Response Functions (FRFs) [13,14]. Such metrics, applied to experimental and numerical 

results, allow to quantify the degree of correlation between the modes, and, consequently, 

to assign each experimental mode to its numerical counterpart [12]. The metrics based on 

FRFs are less widespread in the field of mode pairing compared to those based on modal 

ordinate vectors, mainly due to the difficulties associated with the estimation of the ex-

perimental FRFs in large-scale structures. Nevertheless, the Frequency Domain Assurance 

Criterion (FDAC), proposed by [15], can be used for mode pairing with FRFs. The FDAC 

computes the correlation between two FRFs for different frequency shifts, and provides, 

for each frequency, a scalar between 0 and 1, with 0 meaning no correspondence and 1 

meaning full correspondence. 

Among the modal-ordinate-vector-based criteria, one of the first to be applied is 

known as the Modal Scale Factor (MSF), proposed by [16]. The MSF is defined as the inner 

product of the two modal ordinate vectors to be compared, scaled by the inner product of 

either one of these vectors, making it significantly dependent on the normalization of the 

modes [17]. This dependence on the normalization factor sometimes causes a problem in 

practical applications, since it is often not possible to apply the same normalization to 

experimental and numerical modes, especially when using OMA techniques to gather ex-

perimental data. A very widespread criterion that is independent from normalization is 

the Modal Assurance Criterion (MAC), proposed by [16]. The MAC is defined as the 

square of the inner product of the two vectors, scaled by the product of the two inner 

products of the two vectors by themselves, resulting in a real scalar between 0 and 1 [18]. 

Based on the MAC, several other criteria for the correlation between modal ordinate 

vectors were proposed: the Partial MAC (PMAC) [19], in which only part of the modal 

ordinate vector is used in the calculations, focusing the analysis in a particular component 

or direction; the Extended MAC (MACX) [20], with an expanded assertiveness for com-

plex modes, and its enhanced version (MACXP) [20], which, by a weighting with the poles 

of the corresponding mode shapes, improves the performance of the criterion under re-

duced spatial resolution; and the Weighted MAC (WMAC), also known as Normalized 

Cross Orthogonality (NCO), which incorporates the mass or stiffness matrices as a 

weighting matrix for the calculation of the MAC, remedying the shortcoming of the MAC 

not being a true orthogonality check [13]. However, due to the fact that usually not all 

degrees of freedom are instrumented, the application of the WMAC requires condensing 

the mass or stiffness matrices through model-reduction techniques [13,17]. Another issue 

regarding the WMAC is that, for complex mode shapes, a different formulation based on 

the state formulation of the orthogonality condition is required. This is due to the orthog-

onality conditions with respect to mass and stiffness matrices not being met for complex 

modes [21]. 

The mathematical formulation of some of these criteria will be briefly presented in 

Section 2 of the manuscript. A more detailed description of these and other criteria can be 

consulted, for example, in the References section [17,19,21,22]. 

A common issue associated with the application of these classic mode-pairing criteria 

arises when dealing with structures where local modes are associated to a particular struc-

tural component, as well as a set of components or parts of the structure that do not con-

stitute the object of interest but also have global components, even if very small, with a 

shape similar to the true global modes. These modes, especially when they have close 
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natural frequencies, can easily generate errors in the matching process and compromise 

the stability of the model-optimization algorithm [12,23]. 

Seeking to solve this issue, Brehm et al. [12] proposed an innovative criterion, the 

EMAC, which is based on the weighting of the MAC by the relative modal strain energy 

associated with different parts of the structure denominated as clusters. The authors 

demonstrated that, through the appropriate choice of clusters, it is possible to isolate 

modes from different parts of the structure quite efficiently. Applications of the EMAC 

for mode pairing can be consulted in the works of [3,5,23,24], in which its use proved to 

be essential in applications involving the model updating of FE models of railway bridges 

including the track. 

Since it relies on the orthogonality conditions between the vibration modes and the 

stiffness matrix to calculate the modal strain energy, the EMAC, according to its original 

formulation, cannot be applied to problems involving complex modes. In many cases, es-

pecially in civil engineering structures where the modes are real or almost real, this does 

not represent a problem, and often, the pairing and model updating are performed con-

sidering the undamped modal problem. However, in the case of vehicles and structures 

with localized dampers, modes with a significant degree of complexity are present. In 

these situations, the EMAC ends up being at a disadvantage compared to criteria such as 

the FDAC, the MSF and the MAC, which can be applied to complex modes, and even 

more in relation to the MACX, which was specifically developed for these applications. 

In this framework, the present work intends to share innovative contributions that, 

according to the authors’ knowledge, are not sufficiently detailed in the existing literature, 

namely: 

- The development of a mode-pairing formulation dedicated to complex modes based 

on an energy-based criterion and relying on a state-space formulation. The existing 

criteria for complex mode shapes reveal weaknesses and tend to fail in several situa-

tions; 

- The evaluation of the performance of the developed mode-pairing criterion based on 

a case study involving a highly complex FE model of a railway vehicle and experi-

mental modal parameters. In the existing mode pairing criteria, the validation is usu-

ally performed based on simple numerical or analytical examples. Additionally, the 

experimental restrictions associated with the positioning and number of sensors, 

noise and environmental interference create more challenging conditions to evaluate 

the performance of the pairing criteria. 

This article presents the main existing mode-pairing criteria for complex modes, with 

a special emphasis on the criteria relying on the Energy-based Modal Assurance Criteria 

(EMAC). Regarding the EMAC, an innovative mathematical formulation based on a state-

space model is detailed. Then, this criterion was applied to a case study involving the 

automatic mode pairing between the experimental and numerical modes of a passenger 

railway vehicle. In railway vehicles, the localized damping introduced by the suspension 

systems is responsible for the existence of complex mode shapes. In addition, the numer-

ical model considers the flexibility of the carbody’s elements, and consequently, the local 

modes of the panels that form the floor, walls and roof are present. These two aspects 

make the application of a criterion such as the EMAC particularly relevant to obtain a 

stable and robust automatic mode pairing. 

2. Review of Existing Mode-Pairing Criteria 

In this section, some of the most used criteria for mode pairing, which can be applied 

for systems with complex modes, are briefly presented. In addition to their mathematical 

formulation, the advantages and disadvantages of using each of these criteria are also 

presented.  
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2.1. Modal Assurance Criterion (MAC) 

The Modal Assurance Criterion (MAC) is the most used criterion for pairing numer-

ical and experimental modes of vibration [17,21,25]. It is defined as: 

MAC𝑖𝑗 =
|𝚽𝑖

𝐻𝚽𝑗|
2

𝚽𝑖
𝐻𝚽𝑖𝚽𝒋

𝐻𝚽𝑗

 (1) 

in which 𝚽𝑖  and 𝚽𝑗  are the vectors containing the modal ordinates of modes 𝑖 and 𝑗, 

respectively, and H is the Hermitian transpose (conjugate transpose) operator. 

According to [12], the main advantages of applying the MAC parameter are: (i) sim-

ple implementation; (ii) experimental information is not required on all degrees of free-

dom of the structure; and (iii) it does not depend on the normalization of the modal vec-

tors. However, according to [21], the value of the MAC parameter strongly depends on 

the dimension of the modal vectors and is also particularly sensitive to the change in the 

higher amplitude ordinates. Due to these issues, pairing by the MAC value may be not 

sufficient in cases of complex structures, as well as in continuous structures or structures 

with partial continuity, such as bridges with several spans, as demonstrated by [23]. Ex-

amples of the application of the MAC criterion in mode pairing can be found in references 

[1,2,26,27]. 

2.2. Extended Modal Assurance Criterion (MACX) 

As stated by Sternharz et al. [22], the MAC criteria might lead to inconclusive results 

in the case of modes with a significant level of complexity, especially in the presence of 

close or repeated modes. According to Vacher et al. [20], these inconclusive results are due 

to the fact that the MAC provides different results depending on the combinations made 

with the pairs of complex and complex-conjugate of the two mode shapes being com-

pared. In order to address those issues, Vacher et al. [20] proposed the Extended Modal 

Assurance Criterion (MACX), defined as: 

MACX𝑖𝑗 =
(|𝚽𝑖

𝐻𝚽𝑗| + |𝚽𝑖
𝑇𝚽𝑗|)

2

(𝚽𝑖
𝐻𝚽𝑖 + |𝚽𝑖

𝑇𝚽𝑖|)(𝚽𝒋
𝐻𝚽𝑗 + |𝚽𝒋

𝑇𝚽𝑗|)
 (2) 

in which T is the transpose operator. 

Compared to the MAC, the use of the MACX provides more consistent results in the 

case of complex mode shapes, but it is also influenced by the dimension of the modal 

ordinate vector and more sensible to variations in components of greater amplitude. Ex-

amples of its application can be found in references [28,29]. 

Aiming to improve the MACX performance in situations where the modal ordinate 

vectors contain information from only a few points, Vacher et al. [20] proposed an en-

hancement of the criterion called Pole-Weighted MACX (MACXP). This criterion incor-

porates information regarding the natural frequencies and damping ratios of the structure 

by weighting the MACX with the poles of the dynamic system. 

The MACXP is defined as: 

MACXP𝑖𝑗 =

(
|𝚽𝑖

𝐻𝚽𝑗|

|𝜆𝑖
∗ + 𝜆𝑗|

+
|𝚽𝑖

𝑇𝚽𝑗|

|𝜆𝑖 + 𝜆𝑗|
)

2

(
𝚽𝑖

𝐻𝚽𝑖

2|Re(𝜆𝑖)|
+

|𝚽𝑖
𝑇𝚽𝑖|

2|𝜆𝑖|
) (

𝚽𝒋
𝐻𝚽𝑗

2|Re(𝜆𝑗)|
+

|𝚽𝒋
𝑇𝚽𝑗|

2|𝜆𝑗|
)

 (3) 

in which 𝜆𝑖 and 𝜆𝑗 are the poles associated with modes 𝑖 and 𝑗, and * is the complex-

conjugate operator. It was demonstrated by Vacher et al. [20] that this weighting by the 

poles is capable of significantly improving the accuracy of the criterion in situations where 

there are few sample points. Examples of the application of this criterion can be consulted 

in [22]. 

  



Appl. Sci. 2023, 13, 350 5 of 21 
 

2.3. Frequency Domain Assurance Criterion (FDAC) 

The Frequency Domain Assurance Criterion (FDAC), proposed by Pascual et al. [15], 

is analogous to the MAC criteria, but it is calculated with the Frequency Response Func-

tions (FRFs) with distinct frequency shifts. It is defined as: 

FDAC(𝜔𝑓 , 𝜔𝑔) =
|∑ ∑ ℎ𝑝𝑞

(𝑥)
(𝜔𝑓)ℎ𝑝𝑞

∗(𝑎)
(𝜔𝑔)𝑁

𝑞=1
𝑁
𝑝=1 |

2

(∑ ∑ ℎ𝑝𝑞
(𝑥)

(𝜔𝑓)ℎ𝑝𝑞
∗(𝑥)

(𝜔𝑓)
𝑁
𝑞=1

𝑁
𝑝=1 )(∑ ∑ ℎ𝑝𝑞

(𝑎)
(𝜔𝑔)ℎ𝑝𝑞

∗(𝑎)
(𝜔𝑔)𝑁

𝑞=1
𝑁
𝑝=1 )

 (4) 

in which ℎ𝑝𝑞
(𝑥)

(𝜔𝑓) and ℎ𝑝𝑞
(𝑎)

(𝜔𝑔) are the values of the FRFs corresponding to an excitation 

at the Degree Of Freedom (DOF) 𝑝, measured at DOF 𝑞 and at frequencies 𝜔𝑓 and 𝜔𝑔, 

respectively [30]. The FDAC parameter allows for the analysis of the correspondence be-

tween two FRFs for all frequencies within a selected range. Such an operation results in 

something similar to a MAC matrix, although it is much denser given the large number 

of frequency values which can be used compared to the restricted number of modes used 

to compute the MAC matrix [13]. 

Several variants of this criterion are also found in the literature, such as the Response 

Vector Assurance Criterion (RVAC) [31], in which only one column of the FRF matrix is 

used to compute the FDAC; the improved FDAC [15], which takes into account the lags 

between the FRFs and prevents the pairing of FRFs with a lag of 180°; and the complex 

FDAC [30], which is calculated without the modulus and conjugated operator in the nu-

merator to account for the real and imaginary parts of the criterion. 

The major drawbacks associated with the application of this mode-pairing criteria 

are related to the necessity of estimating experimental FRFs, which are not obtained when 

applying OMA techniques. Furthermore, the FDAC calculation implies a higher compu-

tational cost compared to the correlation criteria between modal order vectors, especially 

when there is a wide range and high resolution of frequencies. Examples of application of 

the FDAC criteria and its variants are found in references [32–34]. 

3. Mode Pairing Using the Energy-Based Modal Assurance Criterion (EMAC) 

An efficient and robust mode-pairing criterion is a key aspect to assure the stability 

of any model-updating methodology based on experimental modal data. Undoubtedly, 

the MAC is the most used criterion for this task. However, due to its drawbacks (presented 

in Section 2), it might be unsuitable in some situations. Some of these issues may be solved 

by a proper weighting of the MAC values. The criterion based on strain energy gathers 

the information from the mathematical correlation between the modal vectors with the 

physical information of the degrees of freedom observed in the dynamic test and related 

to the stiffness or mass distribution. 

In this criterion, the correspondence of the numerical modes with the experimental 

ones is carried out through the EMAC parameter (Energy-based Modal Assurance Crite-

rion) which is given by: 

EMAC𝑖𝑗𝑘 = ∏𝑗𝑘MAC𝑖𝑗 (5) 

This parameter results from the weighting of the MAC parameter by the relative 

modal strain energy (∏𝑗𝑘) of one or several groups of degrees of freedom of the numerical 

model, called clusters. Each experimental mode is paired with the numerical mode corre-

sponding to the highest value of the EMAC parameter. 

The success of the criterion based on the EMAC parameter largely depends on the 

selection of the degrees of freedom of the numerical model that form the various clusters. 

Clusters must allow for the separation of measured degrees of freedom from unmeasured 

degrees of freedom in the test. In complex structures, the clusters must also consider the 

different substructures constituted by groups of elements with a dynamic behavior differ-

ent from the global structure. 
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This criterion was developed and successfully applied by Brehm et al. [12] for the 

case of real vibration modes. Its application to complex vibration modes based on a state-

space formulation is innovative and is not reported in the bibliography in detail. 

In this section, the mathematical formulation of the EMAC criterion is presented. 

First, the formulation proposed by Brehm et al. [12] for real modes is briefly presented, as 

it represents the basis for the understanding of the formulation for complex modes. Then, 

the mathematical formulation of the newly innovative approach to dealing with complex 

modes is presented. 

3.1. Real Modes 

In the case of real vibration modes, the relative modal strain energy uses the physical 

information of the stiffness matrix. Its calculation involves rearranging the modal vectors 

and dividing the stiffness matrix into submatrices that relate the different clusters [12]. 

Assuming that the modal matrix (𝚽) is normalized in relation to the mass matrix, the 

modal stiffness matrix, which constitutes the orthogonality condition in relation to the 

stiffness matrix, is as follows: 

𝚽𝑇𝐊𝚽 = [
⋱

𝜔𝑗
2

⋱

] (6) 

in which 𝜔𝑗 corresponds to the angular natural frequency of mode 𝑗. The total strain en-

ergy (Modal Strain Energy) associated with each vibration mode 𝑗 (MSE𝑗 ) is equal to 

1/2 × 𝜔𝑗
2. 

The vector that contains the modal information of the numerical mode 𝑗 can be re-

arranged by separating the degrees of freedom of the numerical model into 𝑛 clusters: 

𝚽𝑗
𝑇 = [𝚽𝑗1

𝑇   𝚽𝑗2
𝑇   ⋯   𝚽𝑗𝑛

𝑇 ]
𝑇
 (7) 

In turn, the stiffness matrix is also divided into submatrices (𝐊𝑘𝑙) that relate the de-

grees of freedom of clusters 𝑘 and 𝑙, that is: 

𝐊 = [

𝐊11 𝐊12 ⋯ 𝐊1n

𝐊21 𝐊22 ⋯ 𝐊2n

⋮ ⋮ ⋱ ⋮
𝐊n1 𝐊n2 ⋯ 𝐊nn

] (8) 

where 𝑘 and 𝑙 take values equal to 1, 2, . . . , 𝑛, and 𝑛 is the total number of clusters. 

The modal strain energy of vibration mode 𝑗 with respect to cluster 𝑘 (MSE𝑗𝑘) is cal-

culated based on the following expression: 

MSE𝑗𝑘 =
1

2
∑𝚽𝑗𝑘

𝑇 𝐊𝑘𝑙

𝑛

𝑙=1

𝚽𝑗𝑙 (9) 

where 𝚽𝑗𝑘  is the matrix that contains the modal information of the numerical mode 𝑗, 

corresponding to the degrees of freedom of cluster 𝑘; 𝐊𝑘𝑙  is the stiffness submatrix that 

relates the degrees of freedom of clusters 𝑘 and l; and 𝚽𝑗𝑙 is the matrix that contains the 

modal information of numerical mode 𝑗, corresponding to the degrees of freedom of clus-

ter 𝑙. 

The total strain energy of vibration mode 𝑗 is given by: 

MSE𝑗 =
1

2
∑ ∑𝚽𝑗𝑘

𝑇 𝐊kl

𝑛

𝑙=1

𝚽𝑗𝑙

𝑛

𝑘=1

=
1

2
𝚽𝑗

𝑇𝐊𝚽𝑗 =
1

2
𝜔𝑗

2 (10) 

The relative strain energy (∏𝑗𝑘) represents the portion of the total energy mobilized 

by the vibration mode 𝑗 considering only the degrees of freedom of cluster 𝑘. It can be 

calculated based on Equations (9) and (10), that is: 
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∏𝑗𝑘 =
MSE𝑗𝑘

MSE𝑗

=
∑ 𝚽𝑗𝑘

𝑇 𝐊𝑘𝑙
𝑛
𝑙=1 𝚽𝑗𝑙

𝚽𝑗
𝑇𝐊𝚽𝑗

 (11) 

with MSE𝑗 ≠ 0. This parameter is a scalar that takes values in the range between 0 and 1. 

Finally, the EMAC𝑖𝑗𝑘 is calculated through Equation (5). 

3.2. Complex Modes 

In cases where the damping matrix is not proportional to the mass and stiffness ma-

trices, the so-called complex modes of vibration are present. These are characterized by 

complex numbers, i.e., they encompass both magnitude and phase information. In a com-

plex vibration mode, the movements of the points occur with a time delay proportional to 

the phase difference, situated between 0° and 180°. The representation of the deformed 

structure is usually performed with animations that present the values of the amplitudes 

of the various components of the modes at different instants of time [17]. 

In the case of complex vibration modes, the previously presented formulation cannot 

be directly applied since the orthogonality conditions with respect to the stiffness matrix 

(Equation (6)) are not met. Therefore, to obtain an expression for the modal strain energy 

it is necessary to resort to a formulation based on state-space equations. 

In a state-space formulation, the system of second-order differential equilibrium 

equations, with dimension 𝑧, is transformed into a system of 2𝑧 first-order differential 

equations. To this end, the state vector 𝐱(𝑡) is defined with 𝑧 lines, which are constituted 

by the displacements and velocities of the 𝑧 degrees of freedom of the structure: 

𝐱(𝑡) = [
𝐪(𝑡)
�̇�(𝑡)

] (12) 

Based on the state-space formulation, the equation of motion (𝐌�̈� + 𝐂�̇� + 𝐊𝐪 = 𝐩(𝑡)) 

can be rewritten as: 

𝐏�̇�(𝑡) + 𝐐𝐱(t) = {
𝐩(𝑡)
0

} (13) 

𝐏 and 𝐐 are defined in Equations (14) and (15), respectively, in terms of the stiffness, 

damping and mass matrices [35,36]: 

𝐏 = [
𝐂 𝐌
𝐌 𝟎

] (14) 

𝐐 = [
𝐊 𝟎
𝟎 −𝐌

] (15) 

Assuming 𝑞(𝑡) = 𝜑𝑗𝑒
𝜆𝑗𝑡  as a solution for homogeneous differential equations re-

sults in the following eigenvalue problem: 

𝐐 ∙ 𝚿 = −𝐏 ∙ 𝚿 ∙ 𝚲𝐂 (16) 

The eigenvalues (𝚲) and the eigenvectors (𝚿) can be related to matrices that contain 

the vibration modes (𝚯) and 𝜆𝑗 , which characterize the dynamic behavior of the structure 

through the following expressions: 

𝚲𝐂 = [
𝚲 𝟎
𝟎  𝚲∗] (17) 

𝚿 = [
𝚯 𝚯∗

𝚯𝚲 𝚯∗𝚲∗] (18) 

where 

𝚲 = [
⋱

𝜆𝑗

⋱

]           𝑗 = 1, . . . , 𝑛 (19) 

𝚯 = [… 𝚽𝑗 …]           𝑗 = 1, . . . , 𝑛 (20) 
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in which 𝚽𝑗  is a vector containing the modal ordinates of mode 𝑖, and 𝜆𝑖 is the associ-

ated eigenvalue [35,36]. 

Based on the previously presented formulation, the following orthogonality condi-

tions can be derived: 

𝚿T𝐏𝚿 = [
⋱

𝑎𝑗

⋱

]      (21) 

𝚿T𝐐𝚿 = [
⋱

𝑏𝑗

⋱

] (22) 

in which 𝑎𝑗  and 𝑏𝑗  play a role similar to the modal mass and modal stiffness for un-

damped vibration systems but are usually complex numbers [36]. Therefore, in the case 

of complex modes, the modal strain energy can be calculated based on the second orthog-

onality condition, and the total strain energy associated with mode 𝑗 (𝑀𝑆𝐸𝑗) is equal to 

1/2 × 𝑏𝑗. 

The matrix 𝚿 has a dimension of 2𝑧 × 2𝑛′, where 𝑧 is the number of degrees of 

freedom of the numerical model and 𝑛′ is the total number of vibration modes. This ma-

trix can be rearranged by separating the degrees of freedom of the numerical model into 

𝑛 clusters, resulting in: 

𝚿 =

[
 
 
 
 
 
 
 

𝚽11 𝚽12 ⋯ 𝚽1𝑛′ 𝚽11
∗ 𝚽12

∗ ⋯ 𝚽1𝑛′
∗

𝚽21 𝚽22 ⋯ 𝚽2𝑛′ 𝚽21
∗ 𝚽22

∗ ⋯ 𝚽2𝑛′
∗

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝚽𝑛1 𝚽𝑛2 ⋯ 𝚽𝑛𝑛′ 𝚽𝑛1

∗ 𝚽𝑛2
∗ ⋯ 𝚽𝑛𝑛′

∗

𝚽11𝜆1 𝚽12𝜆2 ⋯ 𝚽1𝑛′𝜆𝑛′ 𝚽11
∗ 𝜆1

∗ 𝚽12
∗ 𝜆2

∗ ⋯ 𝚽1𝑛′
∗ 𝜆𝑛′

∗

𝚽21𝜆1 𝚽22𝜆2 ⋯ 𝚽2𝑛′𝜆𝑛′ 𝚽21
∗ 𝜆1

∗ 𝚽22
∗ 𝜆2

∗ ⋯ 𝚽2𝑛′
∗ 𝜆𝑛′

∗

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝚽𝑛1𝜆1 𝚽𝑛2𝜆2 ⋯ 𝚽𝑛𝑛′𝜆𝑛′ 𝚽𝑛1

∗ 𝜆1
∗ 𝚽𝑛2

∗ 𝜆2
∗ ⋯ 𝚽𝑛𝑛′

∗ 𝜆𝑛′
∗ ]

 
 
 
 
 
 
 

 (23) 

The vector that contains the modal information of the numerical mode 𝑗 can be re-

arranged by separating the degrees of freedom of the 𝑛 clusters. It has the following for-

mat: 

𝚿𝑗
𝑇 = [𝚽1𝑗

𝑇   𝚽2𝑗
𝑇   ⋯   𝚽𝑛𝑗

𝑇    (𝚽1𝑗𝜆𝑗)
𝑇
  (𝚽2𝑗𝜆𝑗)

𝑇
  ⋯    (𝚽𝑛𝑗𝜆𝑗)

𝑇
]
𝑇

 (24) 

In turn, the matrix 𝐐, with a dimension of 2𝑧 × 2𝑧, is also divided into submatrices 

(𝐊𝑘𝑙  and 𝐌𝑘𝑙) that relate the degrees of freedom of clusters 𝑘 and 𝑙, that is: 

𝐐 =

[
 
 
 
 
 
 
 
𝐊11 𝐊12 ⋯ 𝐊1𝑛 𝟎 𝟎 ⋯ 𝟎
𝐊21 𝐊22 ⋯ 𝐊2𝑛 𝟎 𝟎 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝐊𝑛1 𝐊𝑛2 ⋯ 𝐊𝑛𝑛 𝟎 𝟎 ⋯ 𝟎
𝟎 𝟎 ⋯ 𝟎 −𝐌11 −𝐌12 ⋯ −𝐌1𝑛

𝟎 𝟎 ⋯ 𝟎 −𝐌21 −𝐌12 ⋯ −𝐌2𝑛

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝟎 −𝐌𝑛1 −𝐌𝑛2 ⋯ −𝐌𝑛𝑛]

 
 
 
 
 
 
 

 (25) 

in which 𝑘 and 𝑙 can assume values equal to 1, 2, … , 𝑛, where 𝑛 is the total number of 

clusters. 

Based on this submatrix division of 𝐐, it is possible to form the matrices 𝐐𝑘𝑙 , which 

relate the degrees of freedom from clusters 𝑘 and 𝑙, that is: 

𝐐𝑘𝑙 = [
𝐊𝑘𝑙 0
0 −𝐌𝑘𝑙

] (26) 

Therefore, the modal strain energy from mode 𝑗 with respect to cluster 𝑘 (MSE𝑗𝑘) 

can be calculated by: 
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MSE𝑗𝑘 =
1

2
∑ 𝚿𝑗𝑘

𝑇 𝐐𝑘𝑙

𝑛

𝑙=1

𝚿𝑗𝑙  (27) 

where 𝚿𝒋𝒌 is the matrix that contains the information of numerical mode 𝑗, correspond-

ing to the degrees of freedom of cluster 𝑘; 𝐐𝑘𝑙 is the submatrix from 𝐐 relating the de-

grees of freedom from clusters 𝑘 and 𝑙; and 𝚿𝑗𝑙  is the matrix containing the modal in-

formation of numerical mode 𝑗, corresponding to the degrees of freedom from cluster 𝑙. 

The total modal strain energy of mode 𝑗 is given by: 

MSE𝑗 =
1

2
∑ ∑𝚿𝑗𝑘

𝑇 𝐐𝑘𝑙

𝑛

𝑙=1

𝚿𝑗𝑙

𝑛

𝑘=1

=
1

2
𝚿𝑗

𝑇𝐐𝚿𝑗 =
1

2
𝑏𝑗 (28) 

Therefore, the relative strain energy (∏𝑗𝑘) represents the portion of the total energy mobi-

lized by vibration mode 𝑗 considering only the degrees of freedom of cluster 𝑘. Itis given 

by: 

∏𝑗𝑘 =
|MSE𝑗𝑘|

|MSE𝑗|
=

|∑ 𝚿𝑗𝑘
𝑇 𝐐𝑘𝑙

𝑛
𝑙=1 𝚿𝑗𝑙|

|𝚿𝑗
𝑇𝐐𝚿𝑗|

 (29) 

with MSE𝑗 ≠ 0. Similarly to the case involving real modes, the relative strain energy (∏𝑗𝑘) 

varies from 0 to 1. 

4. Case Study 

In this section, the presented EMAC formulation for complex modes is applied to a 

case study involving the mode pairing between numerical and experimental modes of a 

BBN tourist-class passenger railway vehicle. The BBN vehicle (Figure 1) is a 25.9 m and 

55-ton car with two motor bogies and capacity for 62 passengers. This vehicle is part of 

the CPA 4000 series (“Alfa Pendular”) train which operates in the line connecting the cities 

of Porto and Lisbon in Portugal. 

 

Figure 1. BBN vehicle: (a) perspective; (b) elevation; (c) floor plan. 
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4.1. Numerical Model 

The numerical model of the vehicle (Figure 2) was developed based on shell, beam 

and spring-dashpot assemblies. Particularly, the beam elements were used for modeling 

the bogies, and the spring-dashpot assemblies were used to simulate the suspensions, the 

connecting rods and the tilting system. The shell elements were used to model the floor, 

the roof and the wall panels. The thickness of the shell elements was considered to match 

the cross-sectional area with one of the real panels. The real panels, however, are formed 

by an upper and lower plate connected by diagonal plates, thus presenting an orthotropic 

behavior to bending. To adequately represent this behavior, the inertia of the shell ele-

ments was corrected by the RMI (Ratio of the Bending Moment of Inertia) [37] parameter 

given by the ratio between the real inertia of the panel and that given by the shell element. 

 

Figure 2. Overview of the BBN vehicle’s numerical model. 

The main parameters of the numerical model are depicted in Table 1, according to 

the information provided by the manufacturer of the BBN vehicle. 

Table 1. Main parameters of the BBN vehicle’s numerical model. 

Parameter Designation Adopted Value Unit 

Carbody 

KS1 
Vertical secondary suspension stiffness 

Front bogie 
256.4 kN/m 

KS2 Rear bogie 

cS Vertical secondary suspension damping 35 kNm/s 
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KST Transverse secondary suspension stiffness 2500 kN/m 

cST Transverse secondary suspension damping 17.5 kNm/s 

KPend Rigidity of the pendulum system 0 (at rest) kN/m 

cAL Anti-hunting suspension damping 400 kNm/s 

Kb Stiffness of the tilting bolster–load bolster connection rod 20,000 kN/m 

Δalum Aluminum density 2700 kg/m3 

Ealum Aluminum deformability module 
Dir x 70 GPa 

Dir z 54.2 GPa 

RMIb 

Corrective factor of the moment of inertia 

Floor 90 - 

RMIp Walls 114 - 

RMIc Roof 386 - 

ΔMb 

Additional mass 

Floor 70 % 

ΔMp Walls 20 % 

ΔMc Roof 10 % 

ebas 

Equivalent thickness 

Floor 10.2 mm 

epar Walls 10.3 mm 

ecob Roof 8.8 mm 

Bogies 

KP Primary suspension stiffness 564 kN/m 

cP Primary suspension damping 18 kNm/s 

Kbls 
Axle-box connecting rod stiffness 

Top 6.5 MN/m 

Kbli Bottom 25 MN/m 

Krc Stiffness of the wheel–rail contact 1.5674 × 109 N/m 

ΔMlc 

Additional mass 

Girder  

(central zone) 
42 kg/m 

ΔMle 
Girder  

(extremities) 
38 kg/m 

ΔMt Crossmember 92 kg/m 

ΔMe Axles 271 kg/m 

Additionally, concentrated mass elements were used to incorporate the mass of some 

non-structural components and equipment at the wagon’s floor and at specific locations 

distributed along the bogies. The adequate positioning of these elements is essential for 

accurately representing the vehicle’s modal behavior. The positioning and corresponding 

values of these masses are depicted in Figure 3. 
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Figure 3. Mass elements in the finite element model: (a) carbody; (b) bogie. 

Figure 4 depicts the modal configurations and natural frequencies of the vehicle’s 

carbody. Among the rigid-body modes, 1C is a rotation about the x axis, 2C is a translation 

along the y axis, and 3C is a rotation about the z axis. Due to the relevant contribution of 

the localized damping provided by the suspension elements, these rigid-body modes pre-

sented a high degree of complexity. Among the deformation modes, 4C and 6C are, re-

spectively, the first and second torsional modes, and 5C is the first bending mode. 
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Figure 4. Numerical modes of the BBN vehicle’s carbody. 

Several local modes involving the bending of elements of the box, in particular the 

base, walls and roof, were also identified. As an example, Figure 5 illustrates the first two 

local modes (1L and 2L) that involve bending movements of the base of the carbody, with 

natural frequencies of the damped system equal to 8.85 Hz and 9.63 Hz, respectively. 

 

Figure 5. Numerically obtained local vibration modes of the housing. 

As can be seen in Figure 5, despite being clearly local, modes 1L and 2L contain global 

displacement components, which might be confused with global modes and create extra 

difficulties for an automatic mode-pairing algorithm. Particularly, in Mode 1L, these 

global movements are very similar, in a smaller scale, to the first global bending mode 

(5C). 

The vehicle damping matrix was constructed as the sum of a Rayleigh damping ma-

trix and the matrix resulting from the scattering of the matrices of the elements with lo-

calized damping, particularly the primary, secondary and anti-hunting dampers. The ad-

dition of the matrices from the localized dampers to the Rayleigh damping matrix makes 

it nonproportional to the stiffness and mass matrices, which results in complex modes. 
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The Rayleigh constants were calculated setting damping coefficients equal to 2% for 

the 4C and 6C vibration modes. The evolution of the damping coefficient as a function of 

frequency for the Rayleigh damping portion is graphically represented in Figure 6. 

 

Figure 6. Rayleigh damping curve. 

4.2. Mode Pairing 

A dynamic test, described in detail in [4], was performed based on a set of 14 accel-

erometers distributed along the floor of the carbody. The tests allowed for the identifica-

tion of 5 experimental vibration modes, depicted in Figure 7, which clearly correspond to 

the numerical modes 1C to 5C previously presented in Figure 4. In Figure 7, for each vi-

bration mode, the respective natural frequency and Mode Complexity Factor (MCF) [38] 

are also indicated. 

 

Figure 7. Experimental carbody modes. 
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To demonstrate the performance of the EMAC in automatically pairing these exper-

imental modes to their numerical correspondents, the vehicle’s FE model was divided into 

the four clusters presented in Figure 8. The carbody clusters, namely the floor, walls and 

roof, where each split into sub-clusters containing only the degrees of freedom associated 

with the vertical (y) and transverse (z) directions, respectively. Accordingly, seven sepa-

rate clusters were obtained in total. In the “other elements” cluster, the remaining degrees 

of freedom of translation and rotation of the numerical model were included, encompass-

ing, among others, the bogies and the seats. 

 

Figure 8. Identification of the clusters used in the numerical model of the BBN vehicle. 

For each of these clusters, the relative modal strain energy (see Figure 9) was calcu-

lated through Equation (29) considering 80 vibration modes, obtained through a numeri-

cal modal analysis taking the damping into account. 

Figure 10 presents the MAC and EMAC correlation matrices between the 80 numer-

ical modes and the 5 experimentally identified modes (see Figure 7). In this Figure, the 80 

numerical modes correspond to 40 complex-conjugate pairs. The EMAC values for the 2C, 

3C and 5C modes were obtained by weighting the MAC by the modal strain energy of the 

clusters 1, 3 and 5 (see Figures 8 and 9). The EMAC values for the 1C and 4C modes re-

sulted of the weighting of the MAC values by the modal strain energy of the clusters 1, 4 

and 6 (see Figures 8 and 9). Cluster 1 is representative of the positioning of the sensors 

and the measurement direction used in the dynamic test of the carbody, since the sensors 

were installed on the vehicle’s floor. The use of other clusters in the weighting of the MAC 

values, particularly in the rigid-body modes, allowed to highlight the interrelationship 

between the degrees of freedom of the base, walls and roof in the y and z directions. 
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Figure 9. Relative MSE values for the different clusters and vibration modes, obtained based on the 

numerical model of the BBN vehicle. 
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Figure 10. Pairing of experimental and numerical modes of the BBN vehicle based on the  (a) MAC 

and (b) EMAC parameters. 

As can be clearly seen, the EMAC matrix is significantly cleaner compared to the 

MAC matrix. The application of the EMAC allowed for the proper pairing the between 

experimental and the numerical modes, as indicated by the little green arrows in Figure 

10b. On the other hand, the use of the MAC parameter resulted in a high level of correla-

tion between the experimental modes and several numerical modes, which made it im-

possible to establish a proper pairing between experimental and numerical modes. 

The EMAC parameter facilitated the pairing of the 1C and 5C experimental modes, 

especially. Figure 11 shows two numerical vibration modes, modes 7 and 50, which can 

be paired with experimental modes 1C and 5C, respectively, and which the use of the 

EMAC parameter allowed to exclude. Mode 7 is a transverse rotation mode of both bogies. 
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It causes small-amplitude transverse-rotation movements of the box. Mode 50 is a global 

bending mode with local-box base movements. 

 

Figure 11. Numerical vibration modes likely to pair with (a) experimental mode 1C, and (b) exper-

imental mode 5C. 

It is also important to highlight the significant correlation between vibration modes 

1C and 4C. As can be seen from Figure 7, due to the limited number of points where the 

experimental information was available, the deformed modal configurations of these two 

modes, from the perspective of the instrumented points, are very similar. The distinction 

between these two modes became more evident using the EMAC parameter. 

5. Conclusions 

This paper presents a novel approach to the problem of automatic pairing complex 

vibration modes through the expansion of the MAC criterion weighted by the modal 

strain energy (EMAC), for its application in problems involving complex mode shapes. 

To enable the application of the EMAC to problems with complex modes, an expres-

sion for the modal strain energy was derived on the basis of the orthogonality conditions 

of a state-space formulation. The derived formulation allows to quantify the relative 

modal strain energy, used for the weighting of the MAC, in cases where the orthogonality 

condition between the modes and the stiffness matrix is not satisfied. Consequently, this 

made it possible to expand the criterion to more general applications. 

Subsequently, the effectiveness of the proposed criterion was demonstrated through 

a case study involving the pairing of modes of a BBN-type passenger vehicle. A detailed 

numerical model of the vehicle was developed in ANSYS® based on shell, beam, spring-

dashpot assemblies and concentrated mass elements. Particularly, the shell elements were 

used to represent the panels of the carbody, the beam elements were used to model the 

bogies, the spring-dashpot assemblies were used to model the suspension components, 

and the mass elements were used to represent the non-structural equipment and compo-

nents of the vehicle. The localized damping effect introduced by the dampers led to a non-

proportional damping matrix and, consequently, to complex modes. 

A numerical modal analysis was performed, in which it was possible to identify the 

main rigid-body modes of the carbody in addition to the first structural modes associated 

with the bending and torsional movements of the carbody. In addition to these global 

modes, it was possible to identify several local modes, mainly for bending the carbody 

panels. These modes presented global components of small amplitude with a format very 

similar to some of the global modes, which imposes extra difficulties in the pairing pro-

cess. 
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The numerical modes were paired with five experimental modes, from which infor-

mation was available on the modal ordinate amplitudes of the 14 points that were instru-

mented on the vehicle floor. To demonstrate the efficiency of the proposed criterion, the 

pairing process was performed by the MAC and EMAC, with the aim of comparing the 

results obtained. After applying both criteria, the EMAC proved to be much more asser-

tive in establishing the correct correspondences between numerical and experimental 

modes, even in challenging situations, due to the reduced number and positioning con-

straints of the sensors and the complexity of the numerical model. The weighting by the 

modal deformation energy, used in the EMAC, was able to significantly reduce the erro-

neous correspondences between the experimental global modes and the purely local 

modes verified when applying the MAC. In addition, even more assertive results are ex-

pected in situations with a higher number of sensors and larger spatial distribution. 

In conclusion, the new formulation proposed for the application of the EMAC crite-

rion to complex modes has proved to be very promising and represents an advance for 

future applications involving the updating of numerical models in the presence of non-

proportional damping conditions. 
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