
Citation: Ahmed, M.H.; Tiun, S.;

Omar, N.; Sani, N.S. Short Text

Clustering Algorithms, Application

and Challenges: A Survey. Appl. Sci.

2023, 13, 342. https://doi.org/

10.3390/app13010342

Academic Editor: Lidia

Jackowska-Strumillo

Received: 19 October 2022

Revised: 25 November 2022

Accepted: 16 December 2022

Published: 27 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Review

Short Text Clustering Algorithms, Application and Challenges:
A Survey
Majid Hameed Ahmed 1,2,*, Sabrina Tiun 1,*, Nazlia Omar 1 and Nor Samsiah Sani 1

1 CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia,
Bangi 43600, Selangor, Malaysia

2 Ministry of Higher Education and Scientific Research, Baghdad 10065, Iraq
* Correspondence: majidhameed4000@gmail.com (M.H.A.); sabrinatiun@ukm.edu.my (S.T.)

Abstract: The number of online documents has rapidly grown, and with the expansion of the Web,
document analysis, or text analysis, has become an essential task for preparing, storing, visualizing
and mining documents. The texts generated daily on social media platforms such as Twitter, Insta-
gram and Facebook are vast and unstructured. Most of these generated texts come in the form of
short text and need special analysis because short text suffers from lack of information and sparsity.
Thus, this topic has attracted growing attention from researchers in the data storing and processing
community for knowledge discovery. Short text clustering (STC) has become a critical task for auto-
matically grouping various unlabelled texts into meaningful clusters. STC is a necessary step in many
applications, including Twitter personalization, sentiment analysis, spam filtering, customer reviews
and many other social network-related applications. In the last few years, the natural-language-
processing research community has concentrated on STC and attempted to overcome the problems
of sparseness, dimensionality, and lack of information. We comprehensively review various STC
approaches proposed in the literature. Providing insights into the technological component should
assist researchers in identifying the possibilities and challenges facing STC. To gain such insights, we
review various literature, journals, and academic papers focusing on STC techniques. The contents
of this study are prepared by reviewing, analysing and summarizing diverse types of journals and
scholarly articles with a focus on the STC techniques from five authoritative databases: IEEE Xplore,
Web of Science, Science Direct, Scopus and Google Scholar. This study focuses on STC techniques:
text clustering, challenges to short texts, pre-processing, document representation, dimensionality
reduction, similarity measurement of short text and evaluation.

Keywords: short text; text representation; dimensionality reduction; clustering techniques; short
text clustering

1. Introduction

Recently, the number of text documents on the Internet has increased significantly and
rapidly. The rapid development of mobile devices and Internet technologies has encouraged
users to search for information, communicate with friends and share their opinions and
ideas on social media such as Twitter, Instagram, and Facebook and search engines such as
Google. The texts generated every day in social media are vast and unstructured data [1].

Most of these generated texts come in the form of short texts and need special anal-
ysis compared with formally written ones [2,3]. Short texts can be found on the Internet,
including on social media, in product descriptions, in advertisement text, on questions
and answers (Q&A) websites [4] and in many other applications. Short texts are distin-
guished by a lack of context, so finding knowledge in them is difficult. This issue motivates
researchers to develop novel, effective methods. Examples of short texts can be found in
various contexts, like tweets, search inquiries, chat messages, online reviews and product
descriptions. Short text also presents a challenge in clustering owing to its chaotic nature,

Appl. Sci. 2023, 13, 342. https://doi.org/10.3390/app13010342 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010342
https://doi.org/10.3390/app13010342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8173-8933
https://orcid.org/0000-0001-5802-5946
https://doi.org/10.3390/app13010342
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010342?type=check_update&version=2

Appl. Sci. 2023, 13, 342 2 of 38

which typically contains noise, slang, emojis, misspellings, abbreviations and grammatical
errors. Tweets are a good example of these challenges. In addition, short text represents
various facets of people’s daily lives. As an illustration, Twitter generates 500 million
tweets per day. These short texts can be used in several applications, such as trend detec-
tion [5], user profiling [6], event exploration [7], system recommendation [8], online user
clustering [9] and cluster-based retrieval [2,10].

With the vast amount of short texts being added to the web every day, extracting valu-
able information from short text corpora by using data-mining techniques is essential [11,12].
Among the many different data-mining techniques, clustering stands out as a unique tech-
nique for short text that provides the exciting potential to automatically recognize valuable
patterns from a massive, messy collection of short texts [13]. Clustering techniques focus
on detecting similarity patterns in corpus data, automatically detecting groups of similar
short texts, and organising documents into semantic and logical structures.

Clustering techniques help governments, organisations and companies monitor so-
cial events, interests and trends by identifying various subjects from user-generated
content [14,15]. Many users can post short text messages, image captions, search queries
and product reviews on social media platforms. Twitter sets a restriction of 280 characters
on the length of each tweet [16], and Instagram sets a limit of 2200 characters for each
post [17].

Clustering short texts (forum titles, result snippets, frequently asked questions, tweets,
microblogs, image or video titles and tags) within groups assigned to topics is an important
research subject. Short text clustering (STC) has undergone extensive research in recent
years to solve the most critical challenges to the current clustering techniques for short text,
which are data sparsity, limited length and high-dimensional representation [18–23].

Applying standard clustering techniques directly to a short text corpus creates is-
sues. The accuracy is worse when using traditional clustering techniques such as the
K-means [24] technique to group short text data than when using the same method to
group regular-length documents [25]. One of the reasons is that standard clustering tech-
niques such as K-means [24] and DBSCAN [26] depend on methods that measure the
similarity/distance between data objects and accurate text representations [25]. However,
the use of standard text representation methods for STC, such as a term frequency inverse-
document-frequency (TF-IDF) vectors or bag of words (BOW) [27], leads to sparse and
high-dimensional feature vectors that are less distinctive for measuring distance [18,28,29].
Therefore, using dimensionality reduction as an optional step of the STC system is essential.
For example, if we use TF-IDF as our text representation for the datasets, assuming we
have 300k unique words, the dimensions are high, and the computational time is extensive.
We can reduce these choices by using feature reduction.

In this paper, we present various concepts for STC and introduce several text clus-
tering methodologies and some recent strategies of these models. In addition, we discuss
techniques and algorithms used when representing a short text from a dataset. We advise
readers to look up the original publications cited here for any methods or techniques to
assist them in understanding STC fully and remain open to different approaches they may
come across when reviewing published research.

The main contribution of this study is a comprehensive review of techniques and
applications of STC, along with the components of STC and its main challenges. This paper
overviews many STC types and options for various data scenarios and tries to answer the
following research questions:

RQ1: What are the applications of STC?
RQ2: What are the main components of STC?
RQ3: Which method is used for the representation of STC?
RQ4: What are the main challenges of STC, and how can one overcome them?
The remaining sections of this study are structured as follows. In Section 2, we briefly

mention the applications of STC. In Section 3, we describe the detailed components of STC.
In Section 4, we describe the challenges of STC. In Section 5, we draw the conclusions.

Appl. Sci. 2023, 13, 342 3 of 38

2. Applications of Short Text Clustering

Many clustering methods have been used in several real-world applications. The
following disciplines and fields use clustering:

i. Information retrieval (IR): Clustering methods have been used in various applica-
tions in information retrieval, including clustering big datasets. In search engines,
text clustering plays a critical role in improving document retrieval performance by
grouping and indexing related documents [30].

ii. Internet of Things (IoT): With the rapid advancement of technology, several domains
have focused on IoT. Data collection in the IoT involves using a global positioning
system, radio frequency identification technology, sensors and various other IoT
devices. Clustering techniques are used for distributed clustering, which is essential
for wireless sensor networks [31,32].

iii. Biology: When clustering genes and samples in gene expression, the gene expression
data characteristics become meaningful. They can be classified into clusters based
on their expression patterns [33].

iv. Industry: Businesses collect large volumes of information about current and prospec-
tive customers. For further analysis, customers can be divided into small groups [34].

v. Climate: Recognising global climate patterns necessitates detecting patterns in the
oceans and atmosphere. Data clustering seeks to identify atmospheric pressure
patterns that significantly impact the climate [35].

vi. Medicine: Cluster analysis is used to differentiate among disease subcategories. It
can also detect disease patterns in the temporal or spatial distribution [36].

3. Components of Short Text Clustering

Clustering is a type of data analysis that has been widely studied; it aims to group
a collection of data objects or items into subsets or clusters [37]. Specifically, the main
goal of clustering is to generate cohesive and identical groups of similar data elements by
grouping related data points into unified clusters. All the documents or objects in the same
cluster must be as similar as possible [38]. In other words, similar documents in a cluster
have similar topics so that the cluster is coherent internally. Distinctions between each
cluster are notable. Documents or objects in the same cluster must be as different from
those in the other clusters as possible.

Text clustering is essential to many real-world applications, such as text mining,
online text organisation and automatic information retrieval systems. Fast and high-
quality document clustering greatly aids users in successfully navigating, summarizing and
organizing large amounts of disorganized data. Furthermore, it may determine the structure
and content of previously unknown text collections. Clustering attempts to automatically
group documents or objects with similar clusters by using various similarity/distance
measures [39].

Differentiating between clustering and classification of documents is crucial [40]. Still,
the difference between the two may be unclear because a set of documents must be split into
groups in both cases. In general, labelled training data are supplied during classification;
however, the challenge arises when attempting to categorize test sets, which consist of
unlabelled data, into a predetermined set of classes. In most cases, the classification problem
may be handled using a supervised learning method [41,42].

As mentioned above, one of the significant challenges in clustering is grouping a set of
unlabelled and non-predefined data into similar groups. Unsupervised learning methods
are commonly used to solve the clustering problem. Furthermore, clustering is used in
many data fields that do not rely on predefined knowledge of the data, unlike classification,
which requires prior knowledge of the data [43].

Short texts are becoming increasingly common as online social media platforms such
as Instagram, Twitter and Facebook increase in size. They have very minimal vocabulary;
many words even appear only once. Therefore, STC significantly affects semantic analysis,
demonstrating its importance in various applications, such as IR and summarisation [2].

Appl. Sci. 2023, 13, 342 4 of 38

However, the sparsity of short text representation makes the traditional clustering methods
unsatisfying. This is due to the sparsity problems caused by each short text document only
containing a few words.

Short text data contain unstructured sentences that lead to massive variance from
regular texts’ vocabulary when using clustering techniques. Therefore, self-corpus-based
expansion is presented as a semantically aligned substitutional approach by defining and
augmenting concepts in the corpus using clustering techniques [44] or topics based on the
probability of frequency of the term [45]. However, dealing with the microblogging data
is challenging for any of these methods because of their lack of structure and the small
number of co-occurrences among words [46].

Several strategies have been proposed to alleviate the sparsity difficulties caused by
lack of context, such as corpus-based metrics [47] and knowledge-based metrics [25,48].
One of these simple strategies concentrates on data-level enhancements. The main idea
is to combine short text documents to create longer ones [49]. For aggregation, related
models utilize metadata or external data [48]. Although these models can alleviate some
of the sparsity issues, a drawback remains. That is, these models rely on external data to
a large extent.

STC is more challenging than traditional text clustering. Representations of the text
in the original lexical space are typically sparse, and this problem is exacerbated for short
texts [50]. Therefore, learning an efficient short text representation scheme suitable for
clustering is critical to the success of STC. In essence, the major drawback of the standard
STC techniques is that they cannot adequately handle the sparseness of words in the
documents. Compared with long texts containing rich contexts, distinguishing the clusters
of short documents with few words occurring in the training set is more challenging.

Generally, most models primarily focus on learning representation from local co-
occurrences of words [21]. Understanding how a model works is critical for using and
developing text clustering methods. STC generally contains different steps that can be
applied, as shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 39

in many data fields that do not rely on predefined knowledge of the data, unlike classifi-
cation, which requires prior knowledge of the data [43].

Short texts are becoming increasingly common as online social media platforms such
as Instagram, Twitter and Facebook increase in size. They have very minimal vocabulary;
many words even appear only once. Therefore, STC significantly affects semantic analy-
sis, demonstrating its importance in various applications, such as IR and summarisation
[2]. However, the sparsity of short text representation makes the traditional clustering
methods unsatisfying. This is due to the sparsity problems caused by each short text doc-
ument only containing a few words.

Short text data contain unstructured sentences that lead to massive variance from
regular texts’ vocabulary when using clustering techniques. Therefore, self-corpus-based
expansion is presented as a semantically aligned substitutional approach by defining and
augmenting concepts in the corpus using clustering techniques [44] or topics based on the
probability of frequency of the term [45]. However, dealing with the microblogging data
is challenging for any of these methods because of their lack of structure and the small
number of co-occurrences among words [46].

Several strategies have been proposed to alleviate the sparsity difficulties caused by
lack of context, such as corpus-based metrics [47] and knowledge-based metrics [25,48].
One of these simple strategies concentrates on data-level enhancements. The main idea is
to combine short text documents to create longer ones [49]. For aggregation, related mod-
els utilize metadata or external data [48]. Although these models can alleviate some of the
sparsity issues, a drawback remains. That is, these models rely on external data to a large
extent.

STC is more challenging than traditional text clustering. Representations of the text
in the original lexical space are typically sparse, and this problem is exacerbated for short
texts [50]. Therefore, learning an efficient short text representation scheme suitable for
clustering is critical to the success of STC. In essence, the major drawback of the standard
STC techniques is that they cannot adequately handle the sparseness of words in the doc-
uments. Compared with long texts containing rich contexts, distinguishing the clusters of
short documents with few words occurring in the training set is more challenging.

Generally, most models primarily focus on learning representation from local co-oc-
currences of words [21]. Understanding how a model works is critical for using and de-
veloping text clustering methods. STC generally contains different steps that can be ap-
plied, as shown in Figure 1.

Figure 1. Components for text-data clustering. Figure 1. Components for text-data clustering.

(I) Pre-processing: It is the first step to take in STC. The data must be cleaned by remov-
ing unnecessary characters, words, symbols, and digits. Then, text representation
methods can be applied. Pre-processing plays an essential role in building an efficient
clustering system because short text data (original text) are unsuitable to be used
directly for clustering.

Appl. Sci. 2023, 13, 342 5 of 38

(II) Representation: Documents and texts are collections of unstructured data. These
unstructured data need to be transformed into a structured feature space to use math-
ematical modelling during clustering. The standard techniques of text representation
can be divided into the representation-based corpus and representation-based external
knowledge methods.

(III) Dimensionality reduction: Texts or documents, often after being represented by tra-
ditional techniques, become high-dimensional. Data-clustering procedures may be
slowed down by extensive processing time and storage complexity. Dimensionality
reduction is a standard method for dealing with this kind of issue. Many academics
employ dimensionality reduction to lessen their application time and memory com-
plexity rather than risk a performance drop. Dimensionality reduction may be more
effective than developing inexpensive representation.

(IV) Similarity measure: It is the fundamental entity in the clustering algorithm. It
makes it easier to measure similar entities, group the entities and elements that
are most similar and determine the shortest distance between related entities. In other
words, distance and similarity have an inverse relationship, so they are used inter-
changeably. The vector representation of the data items is typically used to compute
similarity/distance measures.

(V) Clustering techniques: The crucial part of any text clustering system is selecting the
best algorithm. We cannot choose the best model for a text clustering system without
a deep conceptual understanding of each approach. The goal of clustering algorithms
is to generate internally coherent clusters that are obviously distinct from one another.

(VI) Evaluation: It is the final step of STC. Understanding how the model works is nec-
essary before applying or creating text clustering techniques. Several models are
available to evaluate STC.

3.1. Document Pre-Processing in Short Text Clustering

Document pre-processing plays an essential part in STC because the short text data
(original text) are unsuitable to be used directly for clustering. The textual document likely
contains every type of string, such as digits, symbols, words, and phrases. Noisy strings
may negatively impact clustering performance, affecting information retrieval [51,52]. The
pre-processing phase for STC enhances the overall processing [47]. In this context, the
pre-processing step must be used on documents to cluster if one wants to use machine
learning approaches [53]. Pre-processing consists of four steps: tokenization, normalization,
stop word removal and stemming. The main pre-processing steps are shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 39

(I) Pre-processing: It is the first step to take in STC. The data must be cleaned by remov-
ing unnecessary characters, words, symbols, and digits. Then, text representation
methods can be applied. Pre-processing plays an essential role in building an efficient
clustering system because short text data (original text) are unsuitable to be used di-
rectly for clustering.

(II) Representation: Documents and texts are collections of unstructured data. These un-
structured data need to be transformed into a structured feature space to use mathe-
matical modelling during clustering. The standard techniques of text representation
can be divided into the representation-based corpus and representation-based exter-
nal knowledge methods.

(III) Dimensionality reduction: Texts or documents, often after being represented by tra-
ditional techniques, become high-dimensional. Data-clustering procedures may be
slowed down by extensive processing time and storage complexity. Dimensionality
reduction is a standard method for dealing with this kind of issue. Many academics
employ dimensionality reduction to lessen their application time and memory com-
plexity rather than risk a performance drop. Dimensionality reduction may be more
effective than developing inexpensive representation.

(IV) Similarity measure: It is the fundamental entity in the clustering algorithm. It makes
it easier to measure similar entities, group the entities and elements that are most
similar and determine the shortest distance between related entities. In other words,
distance and similarity have an inverse relationship, so they are used interchangea-
bly. The vector representation of the data items is typically used to compute similar-
ity/distance measures.

(V) Clustering techniques: The crucial part of any text clustering system is selecting the
best algorithm. We cannot choose the best model for a text clustering system without
a deep conceptual understanding of each approach. The goal of clustering algorithms
is to generate internally coherent clusters that are obviously distinct from one an-
other.

(VI) Evaluation: It is the final step of STC. Understanding how the model works is neces-
sary before applying or creating text clustering techniques. Several models are avail-
able to evaluate STC.

3.1. Document Pre-Processing in Short Text Clustering
Document pre-processing plays an essential part in STC because the short text data

(original text) are unsuitable to be used directly for clustering. The textual document likely
contains every type of string, such as digits, symbols, words, and phrases. Noisy strings
may negatively impact clustering performance, affecting information retrieval [51,52]. The
pre-processing phase for STC enhances the overall processing [47]. In this context, the pre-
processing step must be used on documents to cluster if one wants to use machine learn-
ing approaches [53]. Pre-processing consists of four steps: tokenization, normalization,
stop word removal and stemming. The main pre-processing steps are shown in Figure 2.

Figure 2. Main pre-processing steps. Figure 2. Main pre-processing steps.

According to [54], short texts have many unwanted words which may harm the
representation rather than assist it. This fact validates the benefits of pre-processing the
document in STC. Utilizing the documents with all their words, including unnecessary ones
is a complicated task. Generally, words classified under particles, conjunctions and other
grammar-based categories, which are commonly used, may be unsuitable for supporting
studies on short text clustering. Furthermore, as suggested by Bruce et al. [55], even
standard terms such as ‘go’, ‘gone’ and ‘going’ in the English language are created by the

Appl. Sci. 2023, 13, 342 6 of 38

derivational and inflectional processes. They fare better if their inflectional and derivational
morphemes are taken to remain in their original stems. This reduces the number of
words in a document whilst preserving the semantic functions of these words. Therefore,
a document free of unwanted words is an appropriate pre-processing goal [56,57].

3.1.1. Tokenization and Normalization

Tokenization is defined as a standard text representation that divides a flow of
natural language text into distinct significant elements called tokens as part of the pre-
processing [58]. Tokenization transforms the text from a document into data that can be
analysed by machine learning methods. Generally, these algorithms segment the text into
separate units by adding a space or some other kind of distinctive marker so that each team
may be mapped to a different word in the text [55].

The normalization step aims to clean the data by removing unnecessary and noisy
data, such as numbers, symbols, code tags and special characters. Whilst clustering search
results, noise filtering is an essential task of the tokenizer. Likewise, the retrieved results,
such as the contextual snippets supplied as input, include file names; URLs; characters
that demarcate portions of whole documents, such as ellipsis characters (@, %, &, etc.) and
other symbols whose meanings are not readily apparent. A reliable tokenizer needs to be
able to recognize and get rid of this type of noise whilst it creates a token sequence. This
step is necessary to carry out acceptable data representation and pre-processing.

As explained above, text tokenization and normalization transform the text into
words or phrases by deleting extraneous strings of characters, such as punctuation marks,
numerals and other strings of characters [59]. In essence, the white space is utilized to
distinguish the collection of tokens that may be differentiated from one another. A text
tokenization sample is illustrated in Figure 3. The text is displayed as a collection of tokens,
with all of the characters written in lowercase, and white space is utilized to differentiate
between each token. The commas, periods and other punctuation marks, along with any
other special characters, are deleted.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 39

According to [54], short texts have many unwanted words which may harm the rep-
resentation rather than assist it. This fact validates the benefits of pre-processing the doc-
ument in STC. Utilizing the documents with all their words, including unnecessary ones
is a complicated task. Generally, words classified under particles, conjunctions and other
grammar-based categories, which are commonly used, may be unsuitable for supporting
studies on short text clustering. Furthermore, as suggested by Bruce et al. [55], even stand-
ard terms such as ‘go’, ‘gone’ and ‘going’ in the English language are created by the deri-
vational and inflectional processes. They fare better if their inflectional and derivational
morphemes are taken to remain in their original stems. This reduces the number of words
in a document whilst preserving the semantic functions of these words. Therefore, a doc-
ument free of unwanted words is an appropriate pre-processing goal [56,57].

3.1.1. Tokenization and Normalization
Tokenization is defined as a standard text representation that divides a flow of natu-

ral language text into distinct significant elements called tokens as part of the pre-pro-
cessing [58]. Tokenization transforms the text from a document into data that can be ana-
lysed by machine learning methods. Generally, these algorithms segment the text into
separate units by adding a space or some other kind of distinctive marker so that each
team may be mapped to a different word in the text [55].

The normalization step aims to clean the data by removing unnecessary and noisy
data, such as numbers, symbols, code tags and special characters. Whilst clustering search
results, noise filtering is an essential task of the tokenizer. Likewise, the retrieved results,
such as the contextual snippets supplied as input, include file names; URLs; characters
that demarcate portions of whole documents, such as ellipsis characters (@, %, &, etc.) and
other symbols whose meanings are not readily apparent. A reliable tokenizer needs to be
able to recognize and get rid of this type of noise whilst it creates a token sequence. This
step is necessary to carry out acceptable data representation and pre-processing.

As explained above, text tokenization and normalization transform the text into
words or phrases by deleting extraneous strings of characters, such as punctuation marks,
numerals and other strings of characters [59]. In essence, the white space is utilized to
distinguish the collection of tokens that may be differentiated from one another. A text
tokenization sample is illustrated in Figure 3. The text is displayed as a collection of to-
kens, with all of the characters written in lowercase, and white space is utilized to differ-
entiate between each token. The commas, periods and other punctuation marks, along
with any other special characters, are deleted.

Figure 3. Example of output of tokenization.

The first step of the text pre-processing is describing the tokenization and normali-
zation, which are as follows:
1. Remove numbers (2, 1…).
2. Remove punctuation marks (‘!’, ’, -, ”, :, ?, [], \, …).
3. Remove special characters (~, @, #, $, %, &, =, +).

Figure 3. Example of output of tokenization.

The first step of the text pre-processing is describing the tokenization and normaliza-
tion, which are as follows:

1. Remove numbers (2, 1 . . .).
2. Remove punctuation marks (‘!’, ’, -, ”, :, ?, [], \, . . .).
3. Remove special characters (~, @, #, $, %, &, =, +).

4. Remove symbols (e.g.,

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 39

4. Remove symbols (e.g.,).
5. Remove non-English words, such as اسم.
6. Remove words with less than three letters.

Figure 4 shows the tokenization and normalization steps.

Figure 4. Tokenization and normalization steps.

3.1.2. Stop-Word Removal
Stop words are utilized as a grammatical function of the language when a document

lacks context instead of specifying a semantic function or meaning. Stop words are con-
sidered less useful in text than other terms. Generally, they have a direct effect on the
meaning of the text. In most cases, documents include many unnecessary words in Eng-
lish. Stop words are typically utilized by writers to improve the structure of their writing
linguistically. Examples of stop words include demonstratives such as ‘this’, ‘that’ and
‘those’ and articles such as ‘the’, ‘a’ and ‘an.’ Removing stop words from a document is
typical and positively affects document clustering. This is because the capacity of the
terms’ space is significantly reduced upon completion of word removal. Every language
has its unique collection of stop words [56]. By removing these frequently used stop words
from the text documents, the number of words each search term has to be matched against
is reduced, significantly increasing the time it takes for queries to receive a result without
affecting accuracy.

These words often communicate more grammatical functions than semantic func-
tions, which may increase the conversational or informative aspects of the document’s
content. Considering this, removing unnecessary words results in an improved ability to
transmit the meaning of the text or document content and leads to an easier time under-
standing it using machine learning approaches. Many search engines have implemented
stop word removal to help users or writers with queries obtain improved results by
searching for information or meaning instead of searching for functional words [55]. Fig-
ure 5 displays the word document sample after removing stop words.

).
5. Remove non-English words, such as Õæ� @.

6. Remove words with less than three letters.

Figure 4 shows the tokenization and normalization steps.

Appl. Sci. 2023, 13, 342 7 of 38

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 39

4. Remove symbols (e.g.,).
5. Remove non-English words, such as اسم.
6. Remove words with less than three letters.

Figure 4 shows the tokenization and normalization steps.

Figure 4. Tokenization and normalization steps.

3.1.2. Stop-Word Removal
Stop words are utilized as a grammatical function of the language when a document

lacks context instead of specifying a semantic function or meaning. Stop words are con-
sidered less useful in text than other terms. Generally, they have a direct effect on the
meaning of the text. In most cases, documents include many unnecessary words in Eng-
lish. Stop words are typically utilized by writers to improve the structure of their writing
linguistically. Examples of stop words include demonstratives such as ‘this’, ‘that’ and
‘those’ and articles such as ‘the’, ‘a’ and ‘an.’ Removing stop words from a document is
typical and positively affects document clustering. This is because the capacity of the
terms’ space is significantly reduced upon completion of word removal. Every language
has its unique collection of stop words [56]. By removing these frequently used stop words
from the text documents, the number of words each search term has to be matched against
is reduced, significantly increasing the time it takes for queries to receive a result without
affecting accuracy.

These words often communicate more grammatical functions than semantic func-
tions, which may increase the conversational or informative aspects of the document’s
content. Considering this, removing unnecessary words results in an improved ability to
transmit the meaning of the text or document content and leads to an easier time under-
standing it using machine learning approaches. Many search engines have implemented
stop word removal to help users or writers with queries obtain improved results by
searching for information or meaning instead of searching for functional words [55]. Fig-
ure 5 displays the word document sample after removing stop words.

Figure 4. Tokenization and normalization steps.

3.1.2. Stop-Word Removal

Stop words are utilized as a grammatical function of the language when a document
lacks context instead of specifying a semantic function or meaning. Stop words are consid-
ered less useful in text than other terms. Generally, they have a direct effect on the meaning
of the text. In most cases, documents include many unnecessary words in English. Stop
words are typically utilized by writers to improve the structure of their writing linguistically.
Examples of stop words include demonstratives such as ‘this’, ‘that’ and ‘those’ and articles
such as ‘the’, ‘a’ and ‘an.’ Removing stop words from a document is typical and positively
affects document clustering. This is because the capacity of the terms’ space is significantly
reduced upon completion of word removal. Every language has its unique collection of
stop words [56]. By removing these frequently used stop words from the text documents,
the number of words each search term has to be matched against is reduced, significantly
increasing the time it takes for queries to receive a result without affecting accuracy.

These words often communicate more grammatical functions than semantic functions,
which may increase the conversational or informative aspects of the document’s content.
Considering this, removing unnecessary words results in an improved ability to transmit
the meaning of the text or document content and leads to an easier time understanding it
using machine learning approaches. Many search engines have implemented stop word
removal to help users or writers with queries obtain improved results by searching for
information or meaning instead of searching for functional words [55]. Figure 5 displays
the word document sample after removing stop words.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 39

Figure 5. Sample text after stop word removal.

3.1.3. Stemming
This is the third step in pre-processing. We utilize stemmed words to represent the

texts in this step. Stemming is a traditional shallow natural language processing (NLP)
technique. Word stemming removes all prefixes and suffixes to obtain stem words [60].
Indexing and keyword filtering are crucial steps of stemming because they improve clus-
tering faster and more accurately by reducing the vocabulary quantity and dependence
on certain vocabulary forms [61]. Figure 6 illustrates how the stemming transforms the
words ‘consultant’, ‘consultants’, ‘consulting’ and ‘consultative’ into a single stem, ‘con-
sult’, which is also a word in the dictionary. However, this is not always the case; a stem
may not always be an accurate word.

Figure 6. Example of stemming.

3.2. Document Representation
Even after the noise in the text has been removed during pre-processing, the text still

does not fit together well enough to produce the best results when clustering. Therefore,
focusing on the text representation step is essential, which involves converting the word
or the full text from its initial form into another. Directly applying learning algorithms to
text information without representing it is impossible [62] because text information has
complex nature [63]. Textual document content must be converted into a concise repre-
sentation before applying a machine learning approach to the text. Language-independ-
ent approaches are particularly successful because they are not dependent on the meaning
of the language and perform well in the event of noisy text. As these methods do not
depend on language, they are efficient [64].

Short text similarity has attracted more attention in recent years, and understanding
semantics correctly between documents is challenging to understanding lexical diversity
and ambiguity [65]. Representing short text is critical in NLP yet challenging owing to its

Figure 5. Sample text after stop word removal.

Appl. Sci. 2023, 13, 342 8 of 38

3.1.3. Stemming

This is the third step in pre-processing. We utilize stemmed words to represent the texts
in this step. Stemming is a traditional shallow natural language processing (NLP) technique.
Word stemming removes all prefixes and suffixes to obtain stem words [60]. Indexing and
keyword filtering are crucial steps of stemming because they improve clustering faster and
more accurately by reducing the vocabulary quantity and dependence on certain vocabulary
forms [61]. Figure 6 illustrates how the stemming transforms the words ‘consultant’,
‘consultants’, ‘consulting’ and ‘consultative’ into a single stem, ‘consult’, which is also
a word in the dictionary. However, this is not always the case; a stem may not always be
an accurate word.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 39

Figure 5. Sample text after stop word removal.

3.1.3. Stemming
This is the third step in pre-processing. We utilize stemmed words to represent the

texts in this step. Stemming is a traditional shallow natural language processing (NLP)
technique. Word stemming removes all prefixes and suffixes to obtain stem words [60].
Indexing and keyword filtering are crucial steps of stemming because they improve clus-
tering faster and more accurately by reducing the vocabulary quantity and dependence
on certain vocabulary forms [61]. Figure 6 illustrates how the stemming transforms the
words ‘consultant’, ‘consultants’, ‘consulting’ and ‘consultative’ into a single stem, ‘con-
sult’, which is also a word in the dictionary. However, this is not always the case; a stem
may not always be an accurate word.

Figure 6. Example of stemming.

3.2. Document Representation
Even after the noise in the text has been removed during pre-processing, the text still

does not fit together well enough to produce the best results when clustering. Therefore,
focusing on the text representation step is essential, which involves converting the word
or the full text from its initial form into another. Directly applying learning algorithms to
text information without representing it is impossible [62] because text information has
complex nature [63]. Textual document content must be converted into a concise repre-
sentation before applying a machine learning approach to the text. Language-independ-
ent approaches are particularly successful because they are not dependent on the meaning
of the language and perform well in the event of noisy text. As these methods do not
depend on language, they are efficient [64].

Short text similarity has attracted more attention in recent years, and understanding
semantics correctly between documents is challenging to understanding lexical diversity
and ambiguity [65]. Representing short text is critical in NLP yet challenging owing to its

Figure 6. Example of stemming.

3.2. Document Representation

Even after the noise in the text has been removed during pre-processing, the text still
does not fit together well enough to produce the best results when clustering. Therefore,
focusing on the text representation step is essential, which involves converting the word
or the full text from its initial form into another. Directly applying learning algorithms to
text information without representing it is impossible [62] because text information has
complex nature [63]. Textual document content must be converted into a concise represen-
tation before applying a machine learning approach to the text. Language-independent
approaches are particularly successful because they are not dependent on the meaning of
the language and perform well in the event of noisy text. As these methods do not depend
on language, they are efficient [64].

Short text similarity has attracted more attention in recent years, and understanding
semantics correctly between documents is challenging to understanding lexical diversity
and ambiguity [65]. Representing short text is critical in NLP yet challenging owing to its
sparsity; high dimensionality; complexity; large volume and much irrelevant, redundant
and noisy information [1,66]. As a result, the traditional methods of computing semantic
similarity are a significant roadblock because they are ineffective in various circumstances.
Many existing traditional systems fail to deal with terms not covered by synonyms and
cannot handle abbreviations, acronyms, brand names and other terms [67]. Examples of
these traditional systems are BOW and TF-IDF, which represent text as real value vectors to
help with semantic similarity computation. However, these strategies cannot account for the
fact that words have diverse meanings and that different words may be used to represent the
same concept. For example, consider two sentences: ‘Majid is taking insulin’ and ‘Majid has
diabetes’. Although these two sentences have the same meaning, they do not use the same
words. These methods capture the lexical features of the text and are simple to implement;
however, they ignore the semantic and syntactic features of the text. To address this issue,

Appl. Sci. 2023, 13, 342 9 of 38

several studies have expanded and enriched the context of data from an ontology [68,69]
or Wikipedia [70,71]. However, these techniques require a great deal of understanding
of NLP. They still use high-dimensional representation for short text, which may lead to
wasting memory and computing time. Generally, these methods use external knowledge to
improve contextual information for short texts. Many short text similarity measurement
approaches exist, such as representation-based measurement [72,73], which learn new
representations for short text and then measure similarity based on this model [74]. A large
number of similarity metrics have previously been proposed in the literature. We choose
corpus-based and knowledge-based metrics because of their observed performance in NLP
applications. This study explains several representation-based measurement methods, as
shown in Figure 7.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 39

sparsity; high dimensionality; complexity; large volume and much irrelevant, redundant
and noisy information [1,66]. As a result, the traditional methods of computing semantic
similarity are a significant roadblock because they are ineffective in various circum-
stances. Many existing traditional systems fail to deal with terms not covered by syno-
nyms and cannot handle abbreviations, acronyms, brand names and other terms [67]. Ex-
amples of these traditional systems are BOW and TF-IDF, which represent text as real
value vectors to help with semantic similarity computation. However, these strategies
cannot account for the fact that words have diverse meanings and that different words
may be used to represent the same concept. For example, consider two sentences: ‘Majid
is taking insulin’ and ‘Majid has diabetes’. Although these two sentences have the same
meaning, they do not use the same words. These methods capture the lexical features of
the text and are simple to implement; however, they ignore the semantic and syntactic
features of the text. To address this issue, several studies have expanded and enriched the
context of data from an ontology [68,69] or Wikipedia [70,71]. However, these techniques
require a great deal of understanding of NLP. They still use high-dimensional represen-
tation for short text, which may lead to wasting memory and computing time. Generally,
these methods use external knowledge to improve contextual information for short texts.
Many short text similarity measurement approaches exist, such as representation-based
measurement [72,73], which learn new representations for short text and then measure
similarity based on this model [74]. A large number of similarity metrics have previously
been proposed in the literature. We choose corpus-based and knowledge-based metrics
because of their observed performance in NLP applications. This study explains several
representation-based measurement methods, as shown in Figure 7.

Figure 7. Main taxonomies for short text representation.

3.2.1. Non-DL Measures
In this section, the literature is comprehensively reviewed to understand the research

attempts and trends in measuring the similarity of STC, including corpus-based measures
and knowledge-based measures.

Bag of Words Model
According to [75,76], BOW is the most traditional text representation method used to

simplify the data to be more suitable in the processing stage by considering the text data
as groups of words. It is widely used in IR and NLP because of its simplicity and effi-
ciency, where it uses simple words or phrases as features to represent text. The difficulties

Figure 7. Main taxonomies for short text representation.

3.2.1. Non-DL Measures

In this section, the literature is comprehensively reviewed to understand the research
attempts and trends in measuring the similarity of STC, including corpus-based measures
and knowledge-based measures.

Bag of Words Model

According to [75,76], BOW is the most traditional text representation method used to
simplify the data to be more suitable in the processing stage by considering the text data as
groups of words. It is widely used in IR and NLP because of its simplicity and efficiency,
where it uses simple words or phrases as features to represent text. The difficulties with text
processing stem from the fact that text data’s syntactic and semantic content is challenging to
quantify. Creating a comprehensive model of all text data is challenging. Thus, the current
text analysis approach usually represents a text document by reducing the text structure
complexity and simplifying text documents. BOW is a text document representation that
treats a written document as a BOW, ignoring word order and grammar. Figure 8 illustrates
how BOW can be used to represent two texts. Stop words are removed, such as ‘a’ and
‘is’, from practical processing to underline the relevance of other words. In Figure 8, we
see a fixed-length vector is represented for each short text. The value assigned to each
dimension in the vector represents the term frequency (tf) in the corresponding section of
the text document. BOW can help text representation by simplifying the text document,
but it may not distinguish the difference between two documents with the same bag of
words but in different sequences.

Appl. Sci. 2023, 13, 342 10 of 38

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 39

with text processing stem from the fact that text data’s syntactic and semantic content is
challenging to quantify. Creating a comprehensive model of all text data is challenging.
Thus, the current text analysis approach usually represents a text document by reducing
the text structure complexity and simplifying text documents. BOW is a text document
representation that treats a written document as a BOW, ignoring word order and gram-
mar. Figure 8 illustrates how BOW can be used to represent two texts. Stop words are
removed, such as ‘a’ and ‘is’, from practical processing to underline the relevance of other
words. In Figure 8, we see a fixed-length vector is represented for each short text. The
value assigned to each dimension in the vector represents the term frequency (tf) in the
corresponding section of the text document. BOW can help text representation by simpli-
fying the text document, but it may not distinguish the difference between two documents
with the same bag of words but in different sequences.

Figure 8. BOW with two text documents represented as binary vectors.

However, the BOW model has several drawbacks. Some corpora, such as social me-
dia corpora, include slang and misspelt words, which result in a high-dimensional feature
space. Furthermore, these models cannot process complex word meaning differences,
such as synonyms and polysemy. BOW has a weak sense of the semantics of the words,
or more formally, the distances between words [77].

Vector Space Model (VSM)
It is a traditional method for measuring the distance between text documents after

simplifying text data by BOW, where term weight vectors represent the original texts
[27,78]. VSM uses document-level word occurrences as its representational basis. Using
different term-weighting methods, a document with basic terms can be mapped into the
high-dimensional term feature space. The term-weighting algorithms are utilized to de-
termine which terms are most significant. The performance of text analysis can be im-
proved by using the appropriate term weighting. Term weighting aims to assess the sig-
nificance of terms within a given document or corpus. Several different term-weighting
methods are available. Short text has a limited length of the text, and the size vocabulary
of words in the corpus is often quite large. Therefore, when calculating similarity/distance
using cosine similarity or Euclidean distances [29], the VSM-based representation for
short texts produces sparse and high-dimensional vectors, which are less discriminative.

Topic-model-related methods are utilized to learn high-level semantic text represen-
tations to alleviate the disadvantages of VSM with a short text [1]. Based on the frequen-
cies of the terms in the original text documents, the weights of the terms are calculated.

Figure 8. BOW with two text documents represented as binary vectors.

However, the BOW model has several drawbacks. Some corpora, such as social media
corpora, include slang and misspelt words, which result in a high-dimensional feature
space. Furthermore, these models cannot process complex word meaning differences, such
as synonyms and polysemy. BOW has a weak sense of the semantics of the words, or more
formally, the distances between words [77].

Vector Space Model (VSM)

It is a traditional method for measuring the distance between text documents after
simplifying text data by BOW, where term weight vectors represent the original texts [27,78].
VSM uses document-level word occurrences as its representational basis. Using different
term-weighting methods, a document with basic terms can be mapped into the high-
dimensional term feature space. The term-weighting algorithms are utilized to determine
which terms are most significant. The performance of text analysis can be improved by
using the appropriate term weighting. Term weighting aims to assess the significance of
terms within a given document or corpus. Several different term-weighting methods are
available. Short text has a limited length of the text, and the size vocabulary of words
in the corpus is often quite large. Therefore, when calculating similarity/distance using
cosine similarity or Euclidean distances [29], the VSM-based representation for short texts
produces sparse and high-dimensional vectors, which are less discriminative.

Topic-model-related methods are utilized to learn high-level semantic text representa-
tions to alleviate the disadvantages of VSM with a short text [1]. Based on the frequencies
of the terms in the original text documents, the weights of the terms are calculated. The
VSM transforms the term frequency into a numerical vector. Although simple to set up,
VSM has drawbacks, including high dimensionality and sparsity. These weaknesses of
VSM become even more apparent when dealing with short text data. In addition, the global
term weighting is calculated by querying all documents. Generally, the common word
weighting strategies can be divided into local and global term weighting schemes [27,79].

I. Local term weight

It is the term frequency value within the document derived by several methods [78].
For example, the most important and commonly used local weighting schemes, as shown
in Table 1, are term presence (tp), term frequency (tf), augmented term frequency (atf), the
logarithm of term frequency (ltf), and BM25 term frequency (btf). The most notable and
common representation is tf, which indicates the number of occurrences of the term in the
document. Thus, it emphasizes the words that appear more frequently. tp is the simple bi-
nary representation, which ignores the number of appearances of the term in the document.

Appl. Sci. 2023, 13, 342 11 of 38

This can be useful when the number of times a word appears is unimportant. tp and tf are
combined in the atf scheme. It tries to instil confidence in any term in the document and
add confidence to frequently occurring terms. ltf is used as a logarithmic function to set
within-document frequency because a term that appears five times in a document is not
always five times as important as a term that occurs once in that document.

Table 1. Local and global term weighting schemes.

Term Weights Formulation Description

Local weights

t f t f Raw term frequency

tp
{

1, if t f > 0
0, otherwise

Appearance of the term

at f k + (1− k) t f
maxt(t f)

maxt(t f) indicates the highest
term frequency

lt f log2(1 + t) Logarithm of term frequency

bt f (k1+1)+t f

k1

(
(1−b)+bdL

avg−dl

) + t f
averdl represents the average

number of terms found in
all texts

Global weights

i d f log2
N

a+c − 1 Inverse document frequency

pi d f log2

(
N

a+c − 1
)

Probabilistic idf

bi d f log2
b+d+0.5
a+c+0.5 BM25 idf

II. Global term weight

It calculates the weight by collecting all training documents [78]. It tries to grant
a discrimination value to each term and emphasize discriminatory terms. For example, the
most popular and notable metric global term weighting schemes shown in Table 1, such as
idf, bidf, and pidf, are unsupervised because they do not use the category label information
from training documents. In idf, the main idea of the inverse document frequency is to
provide high weights for rare terms and low values for standard terms. This scheme is
calculated using the logarithmic ratio of the number of documents in a collection to the
number of documents containing a specific term. The versions of bidf and pidf are the other
two approaches to idf. The premise behind idf, bidf and pidf is that a phrase that appears
less frequently in documents is more discriminatory. This strategy works well in IR, but it
is inappropriate for text categorization and text clustering because these tasks are designed
to distinguish between categories, not documents [78].

Table 1 shows that a and b represent the number of training documents in group one,
including the terms ti and c; d represents the number of training documents in group two,
including term ti. N represents the number of documents in the corpus, N = a + b + c + d.

Finally, text data are represented by considering the context or topic of text documents
or segments. However, a document is characterized by its topic or the keywords that stand
out the most. Consequently, several topics can be associated with a single document, and
documents are clustered according to the number of topics they share.

Latent Dirichlet Allocation (LDA)

LDA is defined as generative probabilistic modelling for text data. LDA is one of
the most widely used methods in topic modelling, and it was developed in 2003 by [73].
The fundamental concept is based on the texts represented as random mixtures from
latent topics, where the distribution of the words characterizes a topic. The simplicity and
effectiveness of LDA lead to its widespread use. LDA uses word probabilities to represent
topics. The words with the highest probabilities in each topic usually give a good idea of
what the topic is using word probabilities from LDA.

Appl. Sci. 2023, 13, 342 12 of 38

LDA assumes that each text may represent a probability distribution across latent
topics, with a shared Dirichlet prior across all texts. Each latent topic is represented as
a probabilistic distribution from words in the LDA model, and the word distributions of
topics share a common Dirichlet prior. Assuming a corpus D consisting of M documents,
with document d having Nd words (d ∈ 1, . . . , M), LDA models D using to the following
generative process [73]:

(a) Select a multinomial distribution ϕt for topic t (t ∈ [1, . . . , T]) from a Dirichlet
distribution with parameter β.

(b) Select a multinomial distribution θd for document d (d ∈ [1, . . . , M]) from a Dirichlet
distribution with parameter α.

(c) For a word wn (n ∈ [1, . . . , Nd]) in document d,

1. Choose a topic zn from θd.
2. Choose a word wn from ϕzn.

In the generative process described above, words in texts are the only observable
variables, whereas others (ϕ and θ) are latent variables. (α and β) are hyperparameters. The
probability of observed data D, as shown in Figure 9, is calculated and acquired from the
data corpus by using the following equation [80]:

p(D|α, β) = ∏M
d=1

∫
p(θd|α)

(
∏Nd

n=1 ∑zdn
p(zdn|θd)p(wdn|zdn, β)

)
dθd (1)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 39

Figure 9. Graphical illustration of LDA.

Several methods for estimating LDA parameters have been proposed for parameter
estimation, inference and training for LDA, such as Gibbs sampling [81].

I. Gibbs sampling
It is a powerful and simple technique in statistical inference. It is a Monte-Carlo–

Markov-chain algorithm. Gibbs sampling produces a sample from a joint distribution
when only conditional distributions of each variable can be efficiently computed. Many
researchers have used this technique for the LDA [82–84].

Dirichlet Multinomial Mixture (DMM)
The other technique is based on model-level improvements, in which standard pro-

cedures impose additional constraints on model assumptions to generate topics. Assum-
ing that in traditional models, each document is composed of several topics, given that
each short text document has only a few words. The DMM [66] model assumes that there
is only one topic covered in each document. The constraints on these models are excessive.
The number of relevant topics depends on the information in the various texts. As a result,
simply putting such restrictions has the potential to cause noise, so this technique may be
less effective and less generic. A corpus is a collection of search results composed of 𝐷.
The character 𝐷 denotes the number of documents in the corpus. Each dሬ⃗ includes a
group of words (𝑤 ϵ 1,2, . . . , 𝑁ௗ). Figure 10 describes the DMM model D. The DMM mod-
els work according to the following process:
(a) Sample 𝜃 = (∝ଵ, ∝ଶ, … , ∝௡) from a Dirichlet distribution with parameter 𝛼 =(𝜆∝ଵ, 𝜆∝ଶ, … , 𝜆∝௡).
(b) For each topic 𝑡 = 1,2, … , 𝑛் , the sample ∅ from a Dirichlet (𝛽) , where 𝛽 =(𝜆ఉଵ, 𝜆ఉଶ, … , 𝜆ఉ௡).

(c) For a dሬ⃗ (𝑑 𝜖 {1, … , N}): in = 𝑑.
1. A topic 𝑧௡ ∈ {1,2, … , 𝑇}𝑐𝑐 is selected from multinomial(𝛼) , where 𝛼 =(∝ଵ, ∝ଶ, … , ∝௡) represents the topic distribution in the corpus.
2. The word count 𝑁ௗ is selected, and a word 𝑤ௗ from d from multinomial(𝛽) is

also independently selected, where 𝛽 = (𝛽∝ଵ, 𝛽∝ଶ, … , 𝛽∝௡) represents the word
topic distribution in the corpus.

Figure 9. Graphical illustration of LDA.

Several methods for estimating LDA parameters have been proposed for parameter
estimation, inference and training for LDA, such as Gibbs sampling [81].

I. Gibbs sampling

It is a powerful and simple technique in statistical inference. It is a Monte-Carlo–
Markov-chain algorithm. Gibbs sampling produces a sample from a joint distribution
when only conditional distributions of each variable can be efficiently computed. Many
researchers have used this technique for the LDA [82–84].

Dirichlet Multinomial Mixture (DMM)

The other technique is based on model-level improvements, in which standard proce-
dures impose additional constraints on model assumptions to generate topics. Assuming
that in traditional models, each document is composed of several topics, given that each
short text document has only a few words. The DMM [66] model assumes that there is
only one topic covered in each document. The constraints on these models are excessive.
The number of relevant topics depends on the information in the various texts. As a result,
simply putting such restrictions has the potential to cause noise, so this technique may be
less effective and less generic. A corpus is a collection of search results composed of D. The

character D denotes the number of documents in the corpus. Each
→
d includes a group of

words (w ε 1, 2, . . . , Nd). Figure 10 describes the DMM model D. The DMM models work
according to the following process:

Appl. Sci. 2023, 13, 342 13 of 38Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 39

Figure 10. Graphical model illustration for DDM.

A DMM-based method for STC was suggested by [66]. However, how to create an
effective model remains unclear. Based on BOW, most of these methods are trained, which
are shallow structures that cannot maintain semantic similarities [25]. In Equation (2), the
probability of observed data 𝐷 is calculated and maximized to infer the latent variables
and hyperparameters [66]: 𝑝(𝑑|𝛼, 𝛽) = ∑ 𝛼௟ ே೏!∏ ே೏ೢ !ೇೢ సభ ∏ 𝛽௪௧ே೏ೢ௏௪ୀଵ௟்ୀଵ , (2)

where 𝛼 denotes the topic Dirichlet prior parameters and the distribution of words over
topics from the Dirichlet distribution; for a specific 𝛽, the vocabulary size is represented
by the letter 𝑉. The frequency of the word 𝑊 in 𝑑 is 𝑁ௗ௪. Additionally, the number of
words is 𝑁ௗ. For corpus-level topic distributions, the Dirichlet-multinomial pair is (𝛼, 𝜃).
A DMM output matrix has rows for documents and columns for topics. The labelled one
is assigned to the cell with the coordinates (i,j) if the document 𝑑௜ belongs to the topic 𝑡௝.

Latent Semantic Analysis (LSA)
This model is a technique in text representation that can be used for modelling the

conceptual relationship among several documents based on their set of words, which can
be computed as semantic information using this model. One of the methods for improving
the text representation model is using semantic information [85]. This concept is founded
on the premise that words with lexical distinctions frequently appear in similar docu-
ments and have similar meanings. LSA is a promising method for constructing a latent
semantic structure in textual data and identifying relevant documents that do not share
common words. It also reduces the sizeable term matrix to a smaller one and provides a
stable clustering space. LSA differs from standard NLP because it does not use dictionar-
ies, knowledge bases, grammar or syntactic parsers. It accepts as input only raw text that
has been split into meaningful paragraphs. In a matrix, LSA represents the text that is
described. Each column of the matrix refers to a passage where the word appears, and
each word corresponds to one row in the table. The matrix cells show how often the term
appears in the paragraph, as shown in Figure 11.

Figure 10. Graphical model illustration for DDM.

(a) Sample θ = (∝1, ∝2, . . . , ∝n) from a Dirichlet distribution with parameter
α = (λ∝1, λ∝2, . . . , λ∝n).

(b) For each topic t = 1, 2, . . . , nT , the sample from a Dirichlet (β), where
β =

(
λβ1, λβ2, . . . , λβn

)
.

(c) For a
→
d (d ε {1, . . . , N}): in = d.

1. A topic zn ∈ {1, 2, . . . , T}cc is selected from multinomial(α), where
α = (∝1, ∝2, . . . , ∝n) represents the topic distribution in the corpus.

2. The word count Nd is selected, and a word wd from d from multinomial(β) is
also independently selected, where β = (β∝1, β∝2, . . . , β∝n) represents the word
topic distribution in the corpus.

A DMM-based method for STC was suggested by [66]. However, how to create
an effective model remains unclear. Based on BOW, most of these methods are trained,
which are shallow structures that cannot maintain semantic similarities [25]. In Equation
(2), the probability of observed data D is calculated and maximized to infer the latent
variables and hyperparameters [66]:

p(d|α, β) = ∑T
l=1 αl

Nd!

∏V
w=1 Nw

d !
∏V

w=1 β
Nw

d
wt , (2)

where α denotes the topic Dirichlet prior parameters and the distribution of words over
topics from the Dirichlet distribution; for a specific β, the vocabulary size is represented by
the letter V. The frequency of the word W in d is Nw

d . Additionally, the number of words is
Nd. For corpus-level topic distributions, the Dirichlet-multinomial pair is (α, θ). A DMM
output matrix has rows for documents and columns for topics. The labelled one is assigned
to the cell with the coordinates (i,j) if the document di belongs to the topic tj.

Latent Semantic Analysis (LSA)

This model is a technique in text representation that can be used for modelling the
conceptual relationship among several documents based on their set of words, which can
be computed as semantic information using this model. One of the methods for improving
the text representation model is using semantic information [85]. This concept is founded
on the premise that words with lexical distinctions frequently appear in similar documents
and have similar meanings. LSA is a promising method for constructing a latent semantic
structure in textual data and identifying relevant documents that do not share common
words. It also reduces the sizeable term matrix to a smaller one and provides a stable
clustering space. LSA differs from standard NLP because it does not use dictionaries,
knowledge bases, grammar or syntactic parsers. It accepts as input only raw text that
has been split into meaningful paragraphs. In a matrix, LSA represents the text that is

Appl. Sci. 2023, 13, 342 14 of 38

described. Each column of the matrix refers to a passage where the word appears, and
each word corresponds to one row in the table. The matrix cells show how often the term
appears in the paragraph, as shown in Figure 11.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 39

Figure 11. Graphical model illustration for LSA.

Word Embedding
It is a neural network representation learning approach that be capture syntactic and

semantic similarities between words [86]. Word embedding aims to map the words in
unlabelled text data to a continuously valued low-dimensional space to capture the simi-
larities between words [87]. It creates latent feature vectors for words to maintain their
syntactic and semantic information. The efficiency of word representations relies on im-
plicit relations between words in the corpus. The three common approaches for word em-
bedding learning are Word2Vec [86], Doc2Vec and Glove [88]. Owing to vocabulary mis-
matches, the noisy nature of microblogging data, and a lower number of word co-occur-
rence in text data, applying these pre-trained word embedding algorithms to short text
input is limited [89]. Most word embedding strategies can only learn one vector for each
word [90]. Many words, however, have multiple meanings. For example, the word apple
can have numerous semantics. When used in the statement ‘I like eating apples’, it refers
to a type of food. It refers to the name of a technological corporation when it appears in
the sentence ‘We went to the Apple store yesterday’.

I. Word2Vec
It was proposed by [86] as a collection of related models used to generate word em-

bedding. It utilizes a ‘shallow’ neural network capable of quickly processing billions of
word occurrences and producing syntactically and semantically relevant word represen-
tation models. The authors also investigated two models of word-embedding learning:
skip-gram and continuous bag of words (CBOW). The former takes in a word and predicts
the context words, whereas the latter indicates the target word using a source of context
words [20].

II. Doc2Vec
It was proposed by [77] as a straightforward extension to Word2Vec [86] for extend-

ing learning embeddings from words to word sequences. Doc2Vec is agnostic to the gran-
ularity of the word sequence, which can be a word n-gram, sentence, paragraph, or docu-
ment. Doc2Vec also produces sub-par performance compared with vector-averaging
methods based on previous studies [46].

III. GloVe (Global Vectors for Word Representation)
It is a log-bilinear regression model proposed by [88]. It attempts to resolve the dis-

advantages of global factorization approaches (e.g. latent semantic analysis [91]) and local
context window approaches (e.g. skip-gram model [73]) on the word analogies and se-
mantic relatedness task. GloVe’s global vectors are trained via unsupervised learning on
a corpus of aggregated global (word x word) co-occurrence information. GloVe’s goal is
to factorize the log-count matrix and find a word embedding that meets this criterion [92].

Figure 11. Graphical model illustration for LSA.

Word Embedding

It is a neural network representation learning approach that be capture syntactic
and semantic similarities between words [86]. Word embedding aims to map the words
in unlabelled text data to a continuously valued low-dimensional space to capture the
similarities between words [87]. It creates latent feature vectors for words to maintain their
syntactic and semantic information. The efficiency of word representations relies on implicit
relations between words in the corpus. The three common approaches for word embedding
learning are Word2Vec [86], Doc2Vec and Glove [88]. Owing to vocabulary mismatches,
the noisy nature of microblogging data, and a lower number of word co-occurrence in
text data, applying these pre-trained word embedding algorithms to short text input is
limited [89]. Most word embedding strategies can only learn one vector for each word [90].
Many words, however, have multiple meanings. For example, the word apple can have
numerous semantics. When used in the statement ‘I like eating apples’, it refers to a type of
food. It refers to the name of a technological corporation when it appears in the sentence
‘We went to the Apple store yesterday’.

I. Word2Vec

It was proposed by [86] as a collection of related models used to generate word embed-
ding. It utilizes a ‘shallow’ neural network capable of quickly processing billions of word
occurrences and producing syntactically and semantically relevant word representation
models. The authors also investigated two models of word-embedding learning: skip-gram
and continuous bag of words (CBOW). The former takes in a word and predicts the context
words, whereas the latter indicates the target word using a source of context words [20].

II. Doc2Vec

It was proposed by [77] as a straightforward extension to Word2Vec [86] for extending
learning embeddings from words to word sequences. Doc2Vec is agnostic to the granularity
of the word sequence, which can be a word n-gram, sentence, paragraph, or document.
Doc2Vec also produces sub-par performance compared with vector-averaging methods
based on previous studies [46].

III. GloVe (Global Vectors for Word Representation)

It is a log-bilinear regression model proposed by [88]. It attempts to resolve the
disadvantages of global factorization approaches (e.g., latent semantic analysis [91]) and
local context window approaches (e.g., skip-gram model [73]) on the word analogies and
semantic relatedness task. GloVe’s global vectors are trained via unsupervised learning on

Appl. Sci. 2023, 13, 342 15 of 38

a corpus of aggregated global (word x word) co-occurrence information. GloVe’s goal is to
factorize the log-count matrix and find a word embedding that meets this criterion [92].
Owing to vocabulary mismatch, a lower number of word co-occurrence in short text
data and noisy nature of microblogging data, the applicability of these pre-trained word-
embedding models to short text data is minimal [89].

Pseudo

One typical strategy to compensate for the sparsity of short texts is to use ‘pseudo-
relevance feedback’, which involves enriching the original short text corpus with supple-
mentary data from semantically related long texts. This can be accomplished by submitting
the short text data as input to a search engine as queries, which returns a set of the most
relevant results [48].

Although the pseudo-relevance feedback-based data augmentation strategy appears
promising, this strategy’s drawbacks should be noted. Such a process is inherently noisy,
and some of the auxiliary material may be semantically unrelated to the original short
texts. Similarly, unconnected or loud extra issues may have a negative impact. As a result,
combining short texts with long texts or themes that are semantically unrelated to the short
texts may degrade the performance of the short texts. The problem can become even more
severe because there is no labelling information to guide the selection of auxiliary data and
auxiliary topics for unsupervised learning of short texts.

Another strategy is to combine short texts into large pseudo-documents and then
use standard topic models to infer topics from these pseudo-documents [49,93]. This
strategy is highly data dependent, so extending it to deal with more generic forms, such as
questions/answers and news headlines, is complex. One of the current strategies’ main
weaknesses is that the exact short text may contain different topics and therefore can
be related to more than one topic. The assumption that only one topic is addressed in
each text is inappropriate for these short texts. Furthermore, most standard similarity
measures depend heavily on the co-occurrence of words in two documents. As they have
no words in common, aggregating a large number of short texts into a small number of
pseudo-documents is challenging [94].

External Knowledge

One of these strategies is to use external knowledge as a source of enrichment. [95]
suggested a strategy that can be summarized by using external knowledge to uncover
hidden topics to address the data sparsity issue. The dual-LDA model was proposed
by [48], which generates topics using short texts and related lengthy texts. Document
expansion strategies usually expand feature vectors by adding relevant terms [48,70,96].
External knowledge sources such as Wikipedia [70], WordNet [96] and ontologies [48] are
commonly used for document expansion. However, owing to semantic incoherence, short
text from social media enriched with these static external sources provides insufficient
information [45]. Given the dynamic nature of short text data on the web, comprehensive
background information from an external knowledge sources such as Wikipedia may
not accurately capture the meaning of context-sensitive short texts. In addition, external
knowledge such as Wikipedia may not always be available on the web or may be too costly.

I. WordNet

It is defined as a vast lexical database. Nouns, verbs, adverbs and adjectives are
grouped into sets of cognitive synonyms. Each of these expresses a distinct concept.
Conceptual-semantic and linguistic relationships link synsets together [96]. WordNet is
helpful for computational linguistics and NLP because of its structure.

WordNet resembles a thesaurus because it groups words depending on their meanings.
Nevertheless, some key distinctions are noted. Firstly, WordNet connects not just word
forms—letter strings—but also precise meanings of words. Therefore, words in the network
close to one another are semantically disambiguated. Secondly, WordNet labels the semantic
relationships between words, whereas thesaurus groupings follow no defined pattern other

Appl. Sci. 2023, 13, 342 16 of 38

than meaning similarity. One issue with using WordNet is that it does not cover the most
recent topics.

II. Wikipedia

It is a free online encyclopaedia where experts and volunteers express various concepts.
It contains a substantial knowledge base: history, art, society and science. It is an ideal
knowledge base for readers and scholars seeking information and modern data-mining al-
gorithms looking for supplementary data to increase performance. Each Wikipedia entity’s
article contains a comprehensive explanation from multiple perspectives. Furthermore, the
content of these articles is organized logically [70]. This benefit may make retrieving entity
information easier for autonomous learning systems.

Many links in an entity corpus can indicate a semantic relationship between connected
entities, aiding automatic concept recognizers in finding related data. Wikipedia is used to
improve the short text quality, where clustered short text is enhanced based on the enriched
representation. They enrich the short text with information from the Wikipedia database.
The concepts from Wikipedia are used to improve short text clustering. Related concepts
are extracted and computed using a combination of statistical laws and categories. Then,
the semantically related concept sets are built to extend the eigenvector of a short text to
supply its semantic features.

However, non-deep-learning measures have several disadvantages. Table 2 illustrates
and summarizes the advantages and disadvantages of non-deep-learning measures.

Table 2. Advantages and disadvantages of non-deep-learning measures.

Methods Advantage Disadvantage

BOW It is simple and widely used. It ignores syntactic and semantic relationships
between words and leads to sparsity.

VSM It is simple and effective. It has trouble distinguishing between synonyms
and polysemy.

LDA Simplicity and effectiveness led to widely used. It disregards the sequence of the words in a sentence
and the multiple meanings of words.

DMM It can obtain the representative words of each cluster. It assumes that there is only one topic covered in
each document.

LSA
It can distinguish between synonyms and polysemy
and take semantic relationships among the concepts
to find relevant documents.

It disregards the sequence of the words in a sentence.

Word2Vec It can process semantic information quickly. It ignores the order of words in a sentence.

Doc2Vec It analyses word order and trains
different-length texts. It ignores polysemy and synonyms of words.

Glove it preserves the regular linear pattern between
words and words and is faster in training.

It cannot retain the memory relationship between
words and words.

3.2.2. Deep Learning Measures

Deep learning is currently the undisputed best technology for supervised machine
learning, particularly for numerical data classification and clustering. However, its use in
unsupervised learning has been more limited and recent [97]. Recently, deep learning has
been used for unsupervised tasks, including topic modelling and clustering [98]. In many
cases, the training goals are still the same, and deep learning appears to be most helpful
with feature extractors such as convolutional neural network (CNN) [99]. The process of
transforming input data into a collection of features is known as feature extraction [99].
Feature extraction is a technique used in machine learning to improve the efficacy of
learning algorithms by transforming training data and augmenting them with extra features
to make machine learning algorithms much more adequate.

Appl. Sci. 2023, 13, 342 17 of 38

Deep learning is one of several strategies utilized for short text. Recently, short text
has grown on social media platforms, where people can share information and assemble
societal opinions through short text conversation. The short text data comprise sparse
word co-occurrences; it is challenging for unsupervised text mining to uncover categories,
concepts or subjects within the data [89]. During the last few years, deep learning methods
have shown much power to extract features autonomously and automatically from raw
data [100]. In general, a deep learning model is constructed of many layers of neural
networks. Each layer comprises numerous basic signal-processing units known as neurons.
The basic structure of neurons is depicted in Figure 12.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 39

Feature extraction is a technique used in machine learning to improve the efficacy of learn-
ing algorithms by transforming training data and augmenting them with extra features to
make machine learning algorithms much more adequate.

Deep learning is one of several strategies utilized for short text. Recently, short text
has grown on social media platforms, where people can share information and assemble
societal opinions through short text conversation. The short text data comprise sparse
word co-occurrences; it is challenging for unsupervised text mining to uncover categories,
concepts or subjects within the data [89]. During the last few years, deep learning methods
have shown much power to extract features autonomously and automatically from raw
data [100]. In general, a deep learning model is constructed of many layers of neural net-
works. Each layer comprises numerous basic signal-processing units known as neurons.
The basic structure of neurons is depicted in Figure 12.

Figure 12. Basic structure of a neural network.

A neuron can take an input signal and produce an output signal using the neuron’s
strategies it has learned. Raw information is gradually processed as it passes through mul-
tiple interconnected layers of neurons. The structure of a multi-neuron neural network is
illustrated in Figure 13. The artificial neuron network uses a massive scale of basic units
to handle input in a similar way that the human brain does. Recently, deep text represen-
tation has been learned using supervised deep learning techniques [25], depending on
shallow-to-deep auto-encoders utilizing recurrent neural networks (RNNs) [101], CNNs
[101], long short term memory (LSTM), bidirectional long short term memory (Bi-LSTM)
and recursive tree LSTM [102]. Nevertheless, in many applications, a dense representation
should be discovered in an unsupervised fashion to identify clusters, concepts or topics
in the short text. Two elementary procedures, convolution and pooling, form the basis of
deep neural network models. In text data, the convolution procedure is the product of a
sentence vector and a weight matrix, with each element contributing to the whole. When
attempting to extract features, convolution operations are performed. Features with a neg-
ative impact can be ignored, and only feature values with a significant effect on the work
at hand are taken into account, thanks to pooling operations. The most common pooling
operation is called ‘max pooling’. It involves picking the highest value in a particular filter
space [103]. In this section, the literature is extensively reviewed to measure the similarity
of short text based on deep learning measures. The most common models are listed below.

Figure 12. Basic structure of a neural network.

A neuron can take an input signal and produce an output signal using the neuron’s
strategies it has learned. Raw information is gradually processed as it passes through
multiple interconnected layers of neurons. The structure of a multi-neuron neural network
is illustrated in Figure 13. The artificial neuron network uses a massive scale of basic units to
handle input in a similar way that the human brain does. Recently, deep text representation
has been learned using supervised deep learning techniques [25], depending on shallow-
to-deep auto-encoders utilizing recurrent neural networks (RNNs) [101], CNNs [101], long
short term memory (LSTM), bidirectional long short term memory (Bi-LSTM) and recursive
tree LSTM [102]. Nevertheless, in many applications, a dense representation should be
discovered in an unsupervised fashion to identify clusters, concepts or topics in the short
text. Two elementary procedures, convolution and pooling, form the basis of deep neural
network models. In text data, the convolution procedure is the product of a sentence vector
and a weight matrix, with each element contributing to the whole. When attempting to
extract features, convolution operations are performed. Features with a negative impact
can be ignored, and only feature values with a significant effect on the work at hand are
taken into account, thanks to pooling operations. The most common pooling operation is
called ‘max pooling’. It involves picking the highest value in a particular filter space [103].
In this section, the literature is extensively reviewed to measure the similarity of short text
based on deep learning measures. The most common models are listed below.

Convolutional Neural Networks

It is a popular deep learning approach; specific techniques use CNNs as feature
extractors. Recently, the CNN has improved performance in many NLP applications,
including relation classification [104], phrase modelling [105] and other traditional NLP
tasks [106,107]. This is because the CNN is the most popular nonbiased model and applies
convolutional filters to capture local features. A reliable feature function that extracts
higher-level characteristics from constituent words or n-grams became necessary with the
widespread use of word embeddings due to its capacity to represent words in a dispersed
space. The self-taught CNN (STC2) was proposed by Xu et al. [25] to learn implicit features
from short texts for short text representation. Short text representation learning has also
been implemented using neural-network-based techniques. The proposed model needs

Appl. Sci. 2023, 13, 342 18 of 38

two different raw representations of short text: binary coding representations of short
text-based dimensionality reduction on term-frequency vectors and word embedding
representations of short texts pre-trained from large external corpora. The input for CNNs
is word-embedding representations of short texts, and the binary codes are utilized as
data labels to train the CNN model. After the CNN is trained successfully, the deep
representations for short text are taken from the last hidden layer of the CNN. However,
short texts are usually sparse, so the deep features learned by neural network-based
techniques may not accurately represent the short text.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 39

Figure 13. Structure of a multi-neural network.

Convolutional Neural Networks
It is a popular deep learning approach; specific techniques use CNNs as feature ex-

tractors. Recently, the CNN has improved performance in many NLP applications, in-
cluding relation classification [104], phrase modelling [105] and other traditional NLP
tasks [106,107]. This is because the CNN is the most popular nonbiased model and applies
convolutional filters to capture local features. A reliable feature function that extracts
higher-level characteristics from constituent words or n-grams became necessary with the
widespread use of word embeddings due to its capacity to represent words in a dispersed
space. The self-taught CNN (STCଶ) was proposed by Xu et al. [25] to learn implicit features
from short texts for short text representation. Short text representation learning has also
been implemented using neural-network-based techniques. The proposed model needs
two different raw representations of short text: binary coding representations of short text-
based dimensionality reduction on term-frequency vectors and word embedding repre-
sentations of short texts pre-trained from large external corpora. The input for CNNs is
word-embedding representations of short texts, and the binary codes are utilized as data
labels to train the CNN model. After the CNN is trained successfully, the deep represen-
tations for short text are taken from the last hidden layer of the CNN. However, short texts
are usually sparse, so the deep features learned by neural network-based techniques may
not accurately represent the short text.

Recurrent Neural Networks
Recently, neural networks such as recursive neural networks (RecNN) [108] and

RNN [109] have demonstrated superior performance in creating text representations via
word embedding. RecNN has high temporal complexity in building the textual tree,
whereas RNN, which uses the hidden layer computed at the last word to represent the
text, is a biased model in which later words are more prominent than early words [110].
By contrast, non-biased models may extract the learnt representation of a single text from
all of the words in the text using non-dominant learning weights [25]. In recent years,
RNNs have seen widespread adoption in research focusing on sequential data types, such
as text, audio and video. However, when the input gap is wide, the RNN cannot learn
important information from the input data. The problem of long-term dependencies is
well-handled by the LSTM after gate functions are introduced into the cell structure [111].

Long Short-Term Memory
The LSTM networks are a subclass of RNNs. RNNs can remember the previous

words, capturing the context, which is crucial for processing text input. RNNs have the
issue of long-term reliance because not all the past content is relevant to the following

Figure 13. Structure of a multi-neural network.

Recurrent Neural Networks

Recently, neural networks such as recursive neural networks (RecNN) [108] and
RNN [109] have demonstrated superior performance in creating text representations via
word embedding. RecNN has high temporal complexity in building the textual tree,
whereas RNN, which uses the hidden layer computed at the last word to represent the
text, is a biased model in which later words are more prominent than early words [110]. By
contrast, non-biased models may extract the learnt representation of a single text from all
of the words in the text using non-dominant learning weights [25]. In recent years, RNNs
have seen widespread adoption in research focusing on sequential data types, such as text,
audio and video. However, when the input gap is wide, the RNN cannot learn important
information from the input data. The problem of long-term dependencies is well-handled
by the LSTM after gate functions are introduced into the cell structure [111].

Long Short-Term Memory

The LSTM networks are a subclass of RNNs. RNNs can remember the previous
words, capturing the context, which is crucial for processing text input. RNNs have the
issue of long-term reliance because not all the past content is relevant to the following
word/phrase. To counteract this issue, LSTMs are developed. Owing to the gates in
LSTMs, the network can pick and choose which bits of information to remember [111].
The LSTM framework is widely used for determining how similar two sections of text are
semantically [112]. To predict the similarity of sentences, Tien et al. [113] utilized a network
that combines LSTM and a CNN to create sentence embedding using pre-trained word
embeddings. Tai et al. [114] suggested an LSTM design to measure the semantic similarity
between two supplied sentences. Tree-LSTM is then trained over the parse tree to provide
sentence representations. A neural network is trained with these phrase representations
and determines the absolute distance and angle between the vectors.

Appl. Sci. 2023, 13, 342 19 of 38

Bidirectional Long Short-Term Memory

Bidirectional RNNs are just two independent RNNs combined. This structure enables
the networks to contain both backward and forward sequence information at each time step.
Bi-LSTMs use two LSTMs that run in parallel in order to fully capture the context [102].
By running the inputs in two directions, one from the past into the future and the other
from the future into the past, one may preserve information from both the past and the
future simultaneously, making this method superior to the more common unidirectional
one. Like NLP, there are occasions when knowing what comes next is just as important as
knowing what came before. To estimate the model’s semantic similarity, He and Lin [115]
presented a hybrid architecture based on Bi-LSTM and CNN to fully capture the context.
The approach takes advantage of Bi-LSTM to perform context modelling. Two LSTMs’
hidden states are used to generate vectors that are then compared using a comparison unit,
resulting in a model of paired word interactions.

Mueller and Thyagarajan presented a MaLSTM [72], which is a Siamese deep neu-
ral network that uses LSTM networks with connected weights as sub-modules to learn
presentations for sentences. MaLSTM receives sentence pairs, initially expressed as word
embedding vectors, as inputs. MaLSTM is trained to utilize a loss function based on the
Manhattan distance to learn new representations for sentences.

Bidirectional Encoder Representations in Transformers (BERT)

It is a computational method that allows machine learning models to be trained on
textual data. BERT learns contextual embeddings for words as a result of the training
procedure [116]. Following the computationally expensive pretraining, BERT can be fine-
tuned with lower resources on smaller datasets to optimize its performance on specific tasks.
It refers to bidirectional encoder representations in transformers. In contrast with modern
theories of language representation [117], pretraining deep bidirectional representations
from the unlabelled text is the goal of BERT, and it does so by concurrently conditioning the
left and right context across all layers [118]. For this reason, the pre-trained BERT model
may be fine-tuned with a single extra output layer to provide state-of-the-art models for
various tasks, including Q&A and language inference, without significant task-specific
architecture alterations.

Many different types of NLP tasks have been improved using language model pre-
training [119]. Paraphrasing [120] and natural language inference [121] are examples
of sentence-level tasks that aim to predict relationships between sentences by analysing
them holistically. Named entity recognition and Q&A are examples of token-level tasks
that require models to produce fine-grained output at the token level [122], as shown in
Figure 14.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 39

Figure 14. Pre-training and fine-tuning procedures for BERT [116].

In Table 3, the deep learning similarity measure works of literature are illustrated
and summarized.

Table 3. Analysis of the studies on the deep learning similarity measures.

Method Technique Year Dataset ACC NMI Ref.

RecNN K-means

2017

StackOverflow 0.4079 0.4058

[25]

Biomedical 0.3705 0.3385

Bi-LSTM K-means
StackOverflow 0.4493 0.4093

Biomedical 0.356 0.3403

STC2 K-means
StackOverflow 0.5114 0.4908

Biomedical 0.43 0.3818

SG-DHNMF /
2020

Tweets 0.86

[89]
StackOverflow 0.65

CNN /
Tweets 0.79

StackOverflow 0.5
TE-GSDMM K-means++ 2022 Web Service 0.514 [123]

BERT

K-means 2021

Tweets 0.8126 0.867

[124]

StackOverflow 0.6253 0.5962

STN-GAE
Tweets 0.4049 0.3546

StackOverflow 0.4049 0.4492

SCA-AE
Tweets 0.8485 0.8919

StackOverflow 0.7655 0.6599
TAE K-means 2022 StackOverflow 62.8 [19]

BERT+ Mean K-means
2022

AG News 0.6467 0.4151
[125] BERT+ Mean DEC AG News 0.8038 0.538

BERT+ Mean IDEC AG News 0.8019 0.5383

Figure 14. Pre-training and fine-tuning procedures for BERT [116].

In Table 3, the deep learning similarity measure works of literature are illustrated
and summarized.

Appl. Sci. 2023, 13, 342 20 of 38

Table 3. Analysis of the studies on the deep learning similarity measures.

Method Technique Year Dataset ACC NMI Ref.

RecNN K-means

2017

StackOverflow 0.4079 0.4058

[25]

Biomedical 0.3705 0.3385

Bi-LSTM K-means
StackOverflow 0.4493 0.4093

Biomedical 0.356 0.3403

STC2 K-means
StackOverflow 0.5114 0.4908

Biomedical 0.43 0.3818

SG-DHNMF /

2020

Tweets 0.86

[89]
StackOverflow 0.65

CNN /
Tweets 0.79

StackOverflow 0.5

TE-GSDMM K-means++ 2022 Web
Service 0.514 [123]

BERT

K-means 2021

Tweets 0.8126 0.867

[124]

StackOverflow 0.6253 0.5962

STN-GAE
Tweets 0.4049 0.3546

StackOverflow 0.4049 0.4492

SCA-AE
Tweets 0.8485 0.8919

StackOverflow 0.7655 0.6599

TAE K-means 2022 StackOverflow 62.8 [19]

BERT+ Mean K-means

2022

AG News 0.6467 0.4151

[125]BERT+ Mean DEC AG News 0.8038 0.538

BERT+ Mean IDEC AG News 0.8019 0.5383

3.3. Dimensionality Reduction

It is commonly used in machine learning and big data analytics because it aids in
analysing large, high-dimensional datasets. It can benefit tasks like data clustering and
classification [126]. Recently, dimensional-reduction methods have emerged as a promising
avenue for improving clustering accuracy [127]. Text sequences in term-based vector
models have many features. As a result, memory and time complexity consumption are
prohibitively expensive for these methods. To address this issue, many researchers use
dimensionality reduction to reduce the feature-space size [101]. Existing dimensionality
reduction algorithms are discussed in depth in this section.

3.3.1. Principal Component Analysis (PCA)

It is the most common technique in data analysis and dimensionality reduction, and
almost all scientific disciplines use it. PCA seeks to find the most meaningful basis for
re-expressing a given dataset [101]. This entails identifying new uncorrelated variables
and maximizing variance to maintain as much variation as possible [128]. This new basis
is expected to reveal hidden structures in the dataset and filter out noise [129]. PCA
has numerous applications, including dimensionality reduction, feature extraction, data
compression and visualization.

A dataset with observations on p numerical variables for each of n entities or individ-
uals is the standard context for PCA as an exploratory data analysis tool. These data values
define p n-dimensional vectors x1, . . . , xp, or equivalently, an x× p data matrix X, with
the jth column containing the vector xj of observations of the jth variable. We are looking

Appl. Sci. 2023, 13, 342 21 of 38

for a linear combination of the columns of matrix X with the slightest variance. The linear
combination can be written as the following equation (see Equation (3)) [128]:

∑P
j=1 ajxj = Xa, (3)

where a represents a vector of constants a1, a2, . . . , ap. This linear combination’s variance is
given as Equation (4):

Var(xa) = aTsa , (4)

where S represents the sample covariance matrix. The goal is to find the linear combination
with the least amount of variance. This is equivalent to maximizing Equation (5):

aTsa − λ
(

aTa− 1
)

, (5)

where λ is a Lagrange multiplier.
ICA is a statistical modelling method that expresses observed data as a linear trans-

formation [130]. A statistical ‘latent variables’ model can be used to rigorously define
ICA [131]. Assume we find n linear mixtures x1, . . . , xn of n independent components. The
xj for all j can be computed as in Equation (6):

xj = aj1s1 + aj2 s2 + . . . + ajnsn (6)

Sometimes we require the columns of matrix A; denoting them by aj, the model can
also be written as Equation (7):

X = ∑n
i=1 ajsi (7)

3.3.2. Linear Discriminant Analysis (LDA’)

It is a standard data-mining algorithm used for supervised or unsupervised learning.
LDA is commonly used for dimensionality reduction [132]. It determines the projection
hyperplane with the lowest interclass variance and the most significant distance between
the projected means of the classes [133]. LDA is beneficial when the within-class frequencies
are unequal and their performances have been assessed using randomly generated test data.

Let us say Xj ∈ Rd×nj , which are d-dimensional samples, and yi ∈ {1, 2, · · · , k}
denotes the class label of the i− th sample, where n is the number of documents, d is the
data dimensionality and k is the number of classes. Equations (8)–(10) calculate the number
of samples in each class:

n = ∑k
j=1 nj (8)

nj = ∑
x∈wi

(x− µi)(x− µi)
T (9)

µi =
1
Ni

∑
x∈wi

x (10)

In discriminant analysis [134], three scatter matrices are defined as within-class,
between-class and total scatter matrices, as shown in Equations (11)–(13):

Sw =
1
n ∑k

j=1 ∑
x∈Xj

(
x− c(j)

)(
x− c(j)

)T
(11)

Sb =
1
n ∑k

j=1 nj

(
c(j) − c

)(
c(j) − c

)T
(12)

St =
1
n ∑n

i=1 (xi − c)(xi − c)T (13)

Appl. Sci. 2023, 13, 342 22 of 38

where c(j) It is the centroid of the j− th class and c is the global centroid. It follows from the
definition that St = Sb + Sw. Furthermore, trace (Sw) measures the within-class cohesion,
and tracing (Sb) measures the between-class separation.

3.3.3. T-Distributed Stochastic Neighbour Embedding (t-SNE)

T-SNE is a method for reducing dimensionality. Dimensionality reduction is significant
in extracting the essential features from a complex set of expression profiles from various
samples. This method is commonly used for low-dimensional feature space visualiza-
tion [135]. This entails mapping the high-dimensional state-vectors onto a low-dimensional
space (typically a plane) while maintaining critical information about the relatedness of the
component samples. SNE converts high-dimensional Euclidean distances into conditional
probabilities representing similarities [136]. The conditional probability pj|1 is computed
as follows:

pj|1 =
exp

(
−‖xi − xj‖2/2σ2

i

)
∑k 6=1 exp

(
−‖x1 − xk‖2/2σ2

1

) , (14)

where σi is the variance of the Gaussian that is centred on datapoint xi. To calculate the
similarity of point yj with yi, the following is calculated:

qj|1 =
exp

(
−‖yi − yj‖2

)
∑k 6=1 exp

(
−‖y1 − yk‖2

) (15)

SNE uses a gradient descent method to minimize the sum of Kullback–Leibler divergences
over all data points. Cost function C is denoted by Equation (16):

C = ∑i KL(Pi‖Qi) = ∑
i

∑
j

pj|i log
pj|i
qj|i

(16)

SNE performs a binary search for the value of Qi to produce a Pi with the user-specified
fixed perplexity. The perplexity is defined as Equation (17):

perp(pi) = 2H(pi) , (17)

where H(pi) It is the Shannon entropy of Pi measured in bits, as shown in Equation (18):

H(Pi) = −∑
j

pj|i log2 pj|i (18)

The minimization of the cost function is performed using a gradient descent method, as
illustrated in Equation (19):

δC
δyi

= 2 ∑j

(
pj|i − qj|i + pi|j − qi|j

)(
yi − yj

)
(19)

The spring force between yi and yj is proportional to its length and stiffness, which is the

mismatch
(

pj|i − qj|i + pi|j − qi|j

)
between the pairwise similarities of the data points and

the map points.
In addition, to determine the changes in the coordinates of the map points at each itera-

tion of the gradient search, the current gradient is added to an exponentially decaying sum
of previous gradients. The gradient update with a momentum term is given mathematically
by the following Equation (20):

Y (t) = Y (t−1) + η
δC
δY + α(t)

(
Y (t−1) −Y (t−2)

)
, (20)

Appl. Sci. 2023, 13, 342 23 of 38

where Y (t) represents the solution at iteration t, η represents the learning rate and α(t)
represents momentum at iteration t.

3.3.4. Uniform Manifold Approximation and Projection (UMAP)

It is an embedding method for dimensionality reduction and a newly proposed mul-
tivariate learning method for adequately representing the local structure while better
incorporating the global structure [137]. UMAP scales well with massive datasets. UMAP
uses a high-dimensional graph representing the data points to generate the fuzzy topologi-
cal structure. The created high-dimensional graph is a weighted graph, with edge weights
indicating the probability that two points are related. UMAP computes the similarity
between high-dimensional data points using an exponential probability distribution, as
given in Equation (21) [126]:

pi|j = exp

(
−

d
(
xi, xj

)
− ρi

σi

)
, (21)

where d
(

xi, xj
)

represents the distance between the i− th and j− th data points, and ρi
is the distance between the i− th data point and its first nearest neighbor(s). When the
weight of the graph between i and j nodes is greater than the weight between j and i nodes,
UMAP employs a high-dimensional probability symmarization, as shown in Equation (22):

pij = pi|j + pj|i − pi|j pj|i (22)

UMPA in the graph must indicate k, the number of nearest neighbours, where k is calculated
by Equation (23):

k = 2∑i pij (23)

UMAP uses a probability measure for modelling distance in few dimensions, as shown in
Equation (24):

qij =
(

1 + a
(
yi − yj

)2b
)−1

(24)

For default UMAP, a ≈ 1.93 and b ≈ 0.79. UMAP employs binary cross-entropy (CE)
as a cost function due to its ability to capture the global data structure, as illustrated in
Equation (25):

CE(P, Q) = ∑i ∑j

[
pij log

(
pij

qij

)
+
(
1− pij

)
log

(
1− pij

1− qij

)]
, (25)

where P represents the probability similarity of high-dimensional data points and Q repre-
sents low-dimensional data points.

3.4. Similarity and Distance Measure

The similarity measure determines the similarity between diverse terms, such as
words, sentences, documents or concepts. The goal of determining similarity measures
between two terms is to determine the degree of relevance by matching the conceptually
similar terms but not necessarily lexicographically similar terms [138].

Generally, the similarity measure is a significant and essential component of any
clustering technique. This is because it makes it easier to measure two things, group the
most similar elements and entities together and determine the shortest distance between
them [139,140]. In other words, distance and similarity have an inverse relationship, so
they are used interchangeably. In general, similarity/distance measures are computed
using the vector representations of data items.

Document similarity is vital in text processing [141]. It calculates the degree to which
two text objects may be identical. Nonetheless, the similarity and distance measures are
used as a retrieval module in information retrieval. Similarity measurements include

Appl. Sci. 2023, 13, 342 24 of 38

cosine, Jaccard and inner products; distance measures include Euclidean distance and KL
divergence [142]. An analysis of the literature studies shows that several similarity metrics
have been developed. However, none of the similarity metrics appears to be the most
effective for any research [143].

3.4.1. Cosine Similarity

It is one of the primary measures utilized to compute the similarity between two terms.
The cosine similarity is used with documents in several applications, including text mining,

IR and text clustering [144]. We choose the documents
→
t a and

→
tb, to define the similarity

between the two documents using the cosine similarity method. We used Equation (26) for
cosine similarity, as shown below:

Cosine similarity b
(→

ta ,
→
tb

) →
ta .
→
tb∣∣∣→ta

∣∣∣× ∣∣∣→tb

∣∣∣ . (26)

where
→
ta and

→
tb are interpreted as m-dimensional vector models by using the term set T

{t1 . . . tm}. They represent all terms with weights together in the document by a specific
dimension that is also non-negative. Therefore, the cosine similarity scale runs between
0 and 1.

Cosine similarity is one of the main qualities and essential characteristics, independent
of the document length, which makes it distinct and characterized by cosine similarity.
For instance, if we have two copies of the same document and want to determine the
cosine similarity between them, we will combine document d to create the new pseudo
document d0. Consequently, the cosine similarity between documents d and d0 is equal to
1. According to the evidence presented here, these two documents are the same.

3.4.2. Jaccard Coefficient

The Tanimoto coefficient or Jaccard coefficient is a common statistical coefficient
found in NLP [144]. The Jaccard coefficient is a measurement unit that determines how
similar two items are by dividing the intersection of the objects by their union. The Jaccard
coefficient is applied to the text document to compare the sum of the weight of terms found
in either of the two documents and the total weight of shared words, but they must not be
shared terms. Equation (27) is a presentation of the mathematically correct definition of the
Jaccard coefficient:

Jaccard
(→

ta ,
→
tb

)
=

→
ta .
→
tb∣∣∣→ta

∣∣∣2 + ∣∣∣→tb

∣∣∣2 −→ta .
→
tb

(27)

The Jaccard coefficient is a measure of similarity with a range of [0, 1]; when
→
ta and

→
tb

are mutually exclusive, the coefficient is 0, and when they are equivalent, it is 1.

3.4.3. Euclidean Distance

Euclidean distance, also known as the Euclidean metric, is a frequently used distance
measure in clustering algorithms, including clustering text and is the default measure of
distance in the K-means algorithm [144]. For instance, to calculate the distance between

two documents, da and db are represented by their term vectors
→
ta and

→
tb successively;

the term set is T = {t1 . . . tm}. Equation (28) calculates the Euclidean distance between
two documents:

Euclidean
(→

ta ,
→
tb

)
=
√

∑m
t=1

∣∣wt,a − wt,b
∣∣2 (28)

Appl. Sci. 2023, 13, 342 25 of 38

3.5. Clustering Algorithms

Clustering methods divide a collection of documents into groups or subsets. Cluster
algorithms seek to generate internally coherent clusters yet distinct from one another. In
other words, documents inside one cluster must be similar as feasible, whereas documents
in different clusters should be as diverse as possible. The clustering method splits many
text messages into many significant clusters. Clustering has become a standard strategy
in information retrieval and text mining [145]. Concurrently, text clustering faces various
challenges. On the one hand, a text vector is a high-dimensional vector, typically rang-
ing in the thousands or even the ten thousand dimensions. On the other hand, the text
vector generally is sparse, making it challenging to identify the cluster centre. Cluster-
ing has become an essential means of unsupervised machine learning, attracting many
researchers [146,147].

In general, there are three types of clustering algorithms: hierarchical-based clustering,
partition-based clustering and density-based clustering. We quickly discuss a few tradi-
tional techniques for each category; clustering algorithms have been extensively studied in
the literature [148,149].

3.5.1. Hierarchical Algorithms

Hierarchical algorithms create a hierarchy of clusters. Hierarchical clustering algo-
rithms have become the standard method for document clustering [150] by combining
the ideal measure similarities such as cosine similarity, Jaccard similarity coefficient and
Dice coefficient.

The most popular text clustering technique that produces nested groups in the form
of a hierarchy is called hierarchical clustering. To use this strategy, the category must be
hierarchical. Generally, the relevant objects will be updated if the category changes. The
output of using a hierarchical clustering method is a single-category tree. A sample of
hierarchical clustering is shown in Figure 15; each class node has several child nodes, and
a brother node is a division of its parent nodes.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 27 of 39

Figure 15. Sample of hierarchical clustering.

This can form extended, almost identical clusters. For clusters of comparable sizes,
the complete-link approach is preferable (in volume). The similarity between two groups
can be defined as the degree to which their two most similar objects and most distinct
[150,151].

As a result, this method allows for data classification at various granularities. In gen-
eral, hierarchical clustering is accurate. However, each class must integrate and compare
the overall similarity of all classes to choose the two more similar classes, which is com-
parably slow. Another problem of hierarchical clustering is that once a stage merge or
split is finished, it cannot be halted, making it impossible to correct a mistake [147]. The
hierarchical clustering techniques may be classified into two groups based on the for-
mation of the category tree methods: the top-down split technique and the bottom-up in-
tegration technique [151].

Bottom-up (merge-up) hierarchical clustering starts with a single item. It begins with
an item as a solitary category and then consistently combines two or more appropriate
categories. The hierarchical clustering does not loop as long as the stop criteria are fulfilled
(the number of parameters is generally K, where K = Number of clusters). The bottom-up
hierarchical clustering method is viewed as constructing the tree, consisting of data on the
class hierarchy and the degree of similarity between all classes. Hierarchical clustering has
the following advantages: it may be used with any shape, degree of similarity or distance
and it features an inherently adaptable clustering granularity. One drawback of hierar-
chical clustering is the ambiguous termination condition: once the clustering is complete,
it should define the human experience. Often, this technique cannot be rebuilt to provide
better results, and the faults produced cannot be corrected [147,151].

The top-down (split-down) hierarchical clustering technique begins with a single
completed item and splits it into multiple categories. The standard method is to construct
a minimal spanning tree on related graphs, and then, at each step, choose a side closest to
(or farthest from) the spanning tree in terms of similarity and eliminate it. It can create a
new category if one side is removed. The cluster may cease whenever the lowest similarity
reaches a certain threshold. The top-down technique often involves more computing than
the bottom-up method, making top-down method applications less common than the lat-
ter. A cluster in the top-down approach is split into two categories simultaneously, and
this process continues until the class is broken into (k) clusters.

Generally, both hierarchical clustering approaches are simple and adaptable enough
to tackle multi-granularity clustering issues. They can handle a wide variety of attributes
and can employ many kinds of distance or similarity measurements. The bottom-up and

Figure 15. Sample of hierarchical clustering.

This can form extended, almost identical clusters. For clusters of comparable sizes, the
complete-link approach is preferable (in volume). The similarity between two groups can
be defined as the degree to which their two most similar objects and most distinct [150,151].

As a result, this method allows for data classification at various granularities. In
general, hierarchical clustering is accurate. However, each class must integrate and com-
pare the overall similarity of all classes to choose the two more similar classes, which is

Appl. Sci. 2023, 13, 342 26 of 38

comparably slow. Another problem of hierarchical clustering is that once a stage merge or
split is finished, it cannot be halted, making it impossible to correct a mistake [147]. The
hierarchical clustering techniques may be classified into two groups based on the formation
of the category tree methods: the top-down split technique and the bottom-up integration
technique [151].

Bottom-up (merge-up) hierarchical clustering starts with a single item. It begins with
an item as a solitary category and then consistently combines two or more appropriate
categories. The hierarchical clustering does not loop as long as the stop criteria are fulfilled
(the number of parameters is generally K, where K = Number of clusters). The bottom-up
hierarchical clustering method is viewed as constructing the tree, consisting of data on the
class hierarchy and the degree of similarity between all classes. Hierarchical clustering
has the following advantages: it may be used with any shape, degree of similarity or
distance and it features an inherently adaptable clustering granularity. One drawback
of hierarchical clustering is the ambiguous termination condition: once the clustering is
complete, it should define the human experience. Often, this technique cannot be rebuilt to
provide better results, and the faults produced cannot be corrected [147,151].

The top-down (split-down) hierarchical clustering technique begins with a single
completed item and splits it into multiple categories. The standard method is to construct
a minimal spanning tree on related graphs, and then, at each step, choose a side closest
to (or farthest from) the spanning tree in terms of similarity and eliminate it. It can create
a new category if one side is removed. The cluster may cease whenever the lowest similarity
reaches a certain threshold. The top-down technique often involves more computing than
the bottom-up method, making top-down method applications less common than the latter.
A cluster in the top-down approach is split into two categories simultaneously, and this
process continues until the class is broken into (k) clusters.

Generally, both hierarchical clustering approaches are simple and adaptable enough
to tackle multi-granularity clustering issues. They can handle a wide variety of attributes
and can employ many kinds of distance or similarity measurements. The bottom-up and
top-down hierarchical clustering approaches have these limitations: determining the algo-
rithm’s termination criteria and choosing the merge or split points are challenging. These
choices are crucial because after a set of items has been combined or divided, the subse-
quent phase operates on the newly created clusters, and this procedure cannot be undone;
the objects cannot be moved between the clusters. Furthermore, it is too challenging to
expand these clustering algorithms. If poor judgments are made during the merge or split
processes, it may impact the quality of the cluster findings [147,151].

3.5.2. Partitioned Algorithms

Partitioned clustering is a common technique that divides the data into K distinct
point sets, each of which has homogeneous points, by selecting the appropriate scoring
function and minimizing the distance between each end and the cluster centroid of each
cluster [152,153]. The evaluation function is the most critical aspect of partitioned clus-
tering. However, some elements of the method are pretty much like general algorithms.
Partitioned clustering is suitable for nourishing the cluster in the small-scale database to
identify the collection (each cluster class regarded as one cluster). The K-means algorithm is
one of the most common flat clustering algorithms and is one of the most well-known par-
titional clustering methods. James Mac Queen coined the term ‘K-means’ in 1967 [154,155].
Stuart Lloyd (1957) was the first to offer the standard method as a pulse-code modulation
approach. The K-means algorithm’s purpose is based on the input parameters K, which
split the dataset into K clusters. First, we select K objects as initial cluster centres, compute
the distance between each cluster centre and each object, assign it to the nearest cluster
and update the cluster averages. This process continues until the criterion function is
satisfied [156].

The K-means algorithm has a time complexity is O (knI), where (k) refers to the number
of clusters, (n) refers to the number of objects, and (I) refers to the number of iterations

Appl. Sci. 2023, 13, 342 27 of 38

(which depending on the stopping condition, can typically be seen as being included by
a limited number). The cluster centroids and (kn) similarities between all objects and all
clusters must be calculated in each iteration [157].

The K-means algorithm requires specifying the number of clusters (K) as input, and
therefore, determining the optimal number is critical. However, the process can be per-
formed whilst varying numbers of clusters and clustering with the best results documented
(for example, measured by the objective function). A conventional partitioning technique
allows for cluster merging and splitting, and the conclusion should theoretically have the
most significant number of clusters [24].

K-medoids [151] is a partition clustering algorithm with significant similarities to the
K-means clustering algorithm. Nonetheless, K-medoids differs from K-means because the
centre of a cluster is an actual data object with K-medoids. K-means requires calculating
the mean vector for the data objects in a cluster. Thus, the K-means algorithm can only be
applied to a Euclidean feature space. The K-means++ algorithm [158] is an improvement
on the original K-means algorithm, which uses randomized seeding approaches to attain
higher accuracy and less complexity.

3.5.3. Density-Based Clustering Methods

The spatial density of the data objects is used to find clusters in density-based cluster-
ing algorithms [149]. The goal of data partitioning density is to identify groups of dense
data points that cluster together in Euclidean space. A cluster is defined as a densely
linked component which grows in any direction to increase density. One advantage of
density-based algorithms compared with the partition-based clustering approaches is that
they can detect groups with more dense and natural forms. Furthermore, these approaches
can find outliers in a dataset in a natural way [159]. The difference between the two types
of clustering algorithms is shown in Figure 16.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 29 of 39

Figure 16. The difference between density-based clustering and partition-based clustering meth-
ods.

The standard method for density-based clustering type is DBSCAN [26]. It uses two
parameters Minpts and ∈ to determine the following rules:
• The main data object (a data object which has more than MinPts neighbours in its

neighbourhood).
• A neighbourhood of a data object 𝑥 is denoted by (N (x) = y ∈ X | d (x,y) < ∈).
• The density of the accessible data objects shows that two data items, x and y, can be

reached via a set of core data objects.

3.6. Performance Evaluation Measure
This step provides an overview of the performance measures used to evaluate the

proposed model. These performance measures involve comparing the clusters created by
the proposed model with the proper clusters. The assessment of clustering results is often
called cluster validation. Cluster validity can be employed to identify the number of clus-
ters and determines the corresponding best partition. Many suggestions have been made
for measuring the similarity between the two clusters [160,161]. These measures may be
used to evaluate the effectiveness of various data clustering techniques applied to a given
dataset. When assessing the quality of a clustering approach, these measurements are typ-
ically related to the different kinds of criteria being considered. The term ‘internal assess-
ment’ refers to assessing the clustering outcome using only the data clustered by itself
[162].

These methods often give the algorithm the perfect score, producing values with a
higher degree of similarity inside a cluster and a low degree between clusters. The out-
comes of external assessment clustering are evaluated based on data not utilized for clus-
tering, such as known-class labels and external benchmarks. It is noteworthy these exter-
nal benchmarks are composed of a group of things that have already been categorized,
and typically, these sets are created by human specialists. These assessment techniques
gauge how well the clustering complies with the established benchmark classes [163,164].
We review several performance evaluations measures that are used to evaluate the per-
formance of the cluster as follows:

3.6.1. Homogeneity (H)
It calculates the ratio of data points in each predicted cluster that belong to the same

ground-truth class, as shown in Equation (29).

H = ൝ 1, if 𝐻(𝐾, 𝐶) = 01 − ு(஼|௄)ு(஼) otherwise (29)

Figure 16. The difference between density-based clustering and partition-based clustering methods.

The standard method for density-based clustering type is DBSCAN [26]. It uses
two parameters Minpts and ∈ to determine the following rules:

• The main data object (a data object which has more than MinPts neighbours in
its neighbourhood).

• A neighbourhood of a data object x is denoted by (N (x) = y ∈ X | d (x,y) < ∈).
• The density of the accessible data objects shows that two data items, x and y, can be

reached via a set of core data objects.

3.6. Performance Evaluation Measure

This step provides an overview of the performance measures used to evaluate the
proposed model. These performance measures involve comparing the clusters created
by the proposed model with the proper clusters. The assessment of clustering results is
often called cluster validation. Cluster validity can be employed to identify the number
of clusters and determines the corresponding best partition. Many suggestions have been

Appl. Sci. 2023, 13, 342 28 of 38

made for measuring the similarity between the two clusters [160,161]. These measures
may be used to evaluate the effectiveness of various data clustering techniques applied to
a given dataset. When assessing the quality of a clustering approach, these measurements
are typically related to the different kinds of criteria being considered. The term ‘internal
assessment’ refers to assessing the clustering outcome using only the data clustered by
itself [162].

These methods often give the algorithm the perfect score, producing values with
a higher degree of similarity inside a cluster and a low degree between clusters. The
outcomes of external assessment clustering are evaluated based on data not utilized for
clustering, such as known-class labels and external benchmarks. It is noteworthy these
external benchmarks are composed of a group of things that have already been categorized,
and typically, these sets are created by human specialists. These assessment techniques
gauge how well the clustering complies with the established benchmark classes [163,164].
We review several performance evaluations measures that are used to evaluate the perfor-
mance of the cluster as follows:

3.6.1. Homogeneity (H)

It calculates the ratio of data points in each predicted cluster that belong to the same
ground-truth class, as shown in Equation (29).

H =

{
1, if H(K, C) = 0

1− H(C|K)
H(C) otherwise

(29)

3.6.2. Completeness (C)

It calculates the ratio of predicted clusters with an accurate alignment with the ground-
truth class, which is illustrated in Equation (30).

C =

{
1, if H(K, C) = 0

1− H(C|K)
H(K) otherwise

(30)

where C is the ground truth clustering, and H(C|k) is the conditional entropy of the class
distribution given the clustering results obtained by the employed clustering method.

3.6.3. V-Measure (V)

It calculates the harmonic mean of completeness and homogeneity by using Equation (31),
which illustrates the balance between completeness and homogeneity [165].

V =
2 ∗ H ∗ C

H + C
(31)

3.6.4. Adjusted Rand Index Score (ARI)

It is the corrected-for-chance version of the Rand index that views the clustering
process as a sequence of decisions to quantify the similarity between the achieved clustering
results and the ground truth, as shown in Equation (32).

RI =

∑i,j

(
nij
2

)
−

(
∑i ai

2

)Σjbj
2


(

n
2

)

1
2

(
Σi

(
ai
2

)
+ Σb

(
bj
2

))
−

(
∑i ai

2

)Σjbj
2


(

n
2

)
(32)

Appl. Sci. 2023, 13, 342 29 of 38

where nij = |Xi ∩Yi| The X and Y refer to two groupings X ={x1, x2, · · · , xr} and
Y = {Y1, Y2, · · · , Ys}. Additionally, n refers to elements, ai = ∑s

j=1 nij and bj = ∑r
i=1 nij.

3.6.5. Normalized Mutual Information (NMI)

It is a metric for validating clustering methods that quantify the amount of statis-
tical information shared between ground truth and the predicted cluster assignments,
irrespective of the absolute cluster label values. Clustering may be viewed as a sequence
of pair-wise decisions in which two elements are placed in the same cluster if they have
similarities [166]. It is calculated as shown in Equation (33):

NMI(X, Y) =
I(X, Y)√

H(X) + H(Y)
, (33)

where NMI(X, Y) is the mutual information between X and Y and H is the entropy.

3.6.6. Adjusted Mutual Information (AMI)

AMI normalizes mutual information based on the adjust index. Mutual information
quantifies the percentage of information exchanged by two partitions [167]. It is computed
as illustrated in Equation (34):

AMI(X, Y) =
MI(X, Y)− E(MI)√

H(X) + H(Y)− E(MI)
, (34)

where MI, E and H indicate the mutual information between clusters.

3.6.7. Purity (P’)

It is the measured degree of incidence of text data from one class in each cluster. The
purity of a given cluster j of size nj is defined as shown in Equation (35):

pj =
1
nj

maxnji, (35)

where nji is the number of class documents i assigned to cluster j. pj is defined as the
proportion of the whole cluster size that comprises the most important class of documents
allocated to that cluster. The total weighted sum of individual cluster purities yields the
overall purity of the clustering solution, as illustrated in Equation (36).

p = ∑j

nj

N
pj (36)

N denotes the total number of documents in the document collection. When the purity
values are higher, the clustering solution is superior.

3.6.8. F-Measure

It is another popular external validation metric known as ‘clustering accuracy’. The
F-measure, an information retrieval statistic, influenced the calculation of this accuracy. If
we compare clusters, a clear and simple technique would be to compute the precision (P),
recall (R) and the F-measure, commonly used in the IR literature, to assess retrieval success.

The P is calculated using our clustering notation as follows (Equation (37)) [165]:

P
(

Cp, C+
p+

)
=

∣∣∣Cp ∩ C+
p+

∣∣∣∣∣Cp
∣∣ , (37)

Appl. Sci. 2023, 13, 342 30 of 38

where the R is calculated as in Equation (28):

R
(

Cp, C+
p+

)
=

∣∣∣Cp ∩ C+
p+

∣∣∣∣∣∣C+
p+

∣∣∣ (38)

Then, the F-measure value of the cluster is the harmonic mean of P and R, as shown in
Equation (39):

F
(

Cp, C+
p+

)
=

2
1

P
(

Cp ,C+
p+

) + 1
R
(

Cp ,C+
p+

) =
2P
(

Cp, C+
p+

)
R
(

Cp, C+
p+

)
P
(

Cp, C+
p+

)
+ R

(
Cp, C+

p+

) (39)

4. Challenges of Short Text Clustering

Short texts contain several issues, including a lack of information due to documents
that include few words [1]. Short texts are used in various applications, including mi-
croblogs, Facebook, Twitter, Instagram, mobile messages and news comments. These texts
are usually about 200 characters long, which is very short [168]. For instance, Twitter
determines the length of each tweet to be no more than 280 characters [16,169,170], and
Instagram sets a 2200 characters maximum caption length [17]. A short mobile message is
limited to 70 characters. To be precise, short texts exhibit the following problems:

1. Lack of information: A short text has only a few words, leading to a lack of information
and poor document representation. Each short text does not include sufficient informa-
tion on word co-occurrence, and most texts are likely created for only one topic [171].

2. Sparsity: The length of a short text is limited. This short text can represent a wide range
of topics, and each user uses unique word choice and writing style [172]. A given
topic has a wide range of content, so determining its features is difficult.

3. High dimensionality: Representing the short text using standard text representation
methods, such as TF-IDF vectors or BOW [27], leads to high-dimensional features that
are less distinct for measuring distance. In addition, the computational time required
is extensive [18,28,29].

4. Informal writing and misspelling: Short text is used in many applications, such
as comments on microblogs, which contain noise and many misspellings, and the
presence of a particular language style [47]. In other words, users of social media
platforms such as Twitter tend to use informal, straightforward and simple words
to share their opinions and ideas. As an illustration, many people on Twitter may
write ‘4you’ rather than ‘for you’ when posting tweets. In addition, users may create
new abbreviations and acronyms to simplify the language: ‘Good9t’ and ‘how r u’ are
widespread on social networks. Furthermore, the online questions and search queries
do not use the grammar seen in official documents.

According to [173], the lack of information and sparsity considerably impact short
text clustering performance. The typical clustering algorithms cannot be applied directly
to short texts because of the many variations in the word counts of short texts, and the
limited number of words in each post. For example, the accuracy of using the traditional
K-means [24] algorithm to group short text is lower than when using K-means to group
longer text [25]. This issue complicates feature space extraction from the short text for
text clustering.

5. Conclusions

STC is a complex problem, as web users and social media applications produce
an increasing number of short texts containing only a few words. Sparsity, high dimen-
sionality, lack of information and noise in data are common problems in STC. Finding and
developing clustering algorithms have become crucial issues. With a better understanding

Appl. Sci. 2023, 13, 342 31 of 38

of what the current text representation techniques are and how to use them successfully,
we can improve the efficiency of the existing STC algorithms.

Our study summarizes the published literature that focuses on STC. The summary
presents the applications of STC. We provide an overview of STC and describes the various
stages of STC in detail. We present the approaches used in the short text representation,
their pros and cons and the impacts of applying different methods to short texts. In addition,
we explain the essential methods of deep learning used with text. Several methods perform
well in some studies but poorly in others, such as TF-IDF vectors and BOW, which lead to
sparse and high-dimensional feature vectors that are less distinctive for measuring distance.
Further research can address related issues in short text representation and avoid poor
clustering accuracy.

We believe in promising research directions in the field of STC. The focuses are on the
following aspects. Problems with low performance for text representation can be solved
using multi-representation and feature ranking. These two strategies are influential in en-
hancing the quality of text representation by extracting more information from the short text
but with only significant features. In addition, using dimensional reduction is an essential
step in STC to deal with time and memory complexity. Of note, the representation of the
short text has a vast area that makes short text problems a promising area of research.

Author Contributions: Drafted the original manuscript, conceptualization, literature analysis, M.H.A.;
conceptualization and methodology, S.T.; investigation, supervision, and validation N.O. and N.S.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Malaysian Fundamental Research Grant Scheme under
research code: FRGS/1/2020/ICT02/UKM/02/6.

Acknowledgments: The authors gratefully acknowledge the financial support of the Laboratory of
the Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia, and
the Ministry of Higher Education and Scientific Research, Iraq.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations

In this review, the following abbreviations are used:
Abbreviations The Details
STC Short Text Clustering
Q&A Questions and Answers
TF-IDF Term frequency inverse-document-frequency
BOW Bag of Words
IR Information Retrieval
IoT Internet of Things
NLP Natural language processing
TF Term frequency
VSM Vector space model
LDA Latent Dirichlet Allocation
D Document
DMM Dirichlet Multinomial Mixture
LSA Latent Semantic Analysis
Glove Global Vectors for Word Representation
CNN Convolutional Neural Networks
RNN Recurrent Neural Networks
LSTM Long Short-Term Memory
Bi-LSTM Bi-directional long short-term memory

Appl. Sci. 2023, 13, 342 32 of 38

BERT Bidirectional Encoder Representations in Transformers
PCA Principal Component Analysis
LDA’ Linear Discriminant Analysis
S-SNE T-distributed Stochastic Neighbor Embedding
UMAP Uniform Manifold Approximation and Projection
K number of clusters
H Homogeneity
C Completeness
V V-Measure (V)
ARI Adjusted Rand Index score
NMI Normalized Mutual Information
P’ Purity
R Recall
P Precision
N Number of documents
F F-measure

References
1. Yang, S.; Huang, G.; Ofoghi, B.; Yearwood, J. Short text similarity measurement using context-aware weighted biterms. Concurr.

Comput. Pract. Exp. 2020, 34, e5765. [CrossRef]
2. Zhang, W.; Dong, C.; Yin, J.; Wang, J. Attentive representation learning with adversarial training for short text clustering. IEEE

Trans. Knowl. Data Eng. 2021, 34, 5196–5210. [CrossRef]
3. Yu, Z.; Wang, H.; Lin, X.; Wang, M. Understanding short texts through semantic enrichment and hashing. IEEE Trans. Knowl.

Data Eng. 2015, 28, 566–579. [CrossRef]
4. Lopez-Gazpio, I.; Maritxalar, M.; Gonzalez-Agirre, A.; Rigau, G.; Uria, L.; Agirre, E. Interpretable semantic textual similarity:

Finding and explaining differences between sentences. Knowl. Based Syst. 2017, 119, 186–199. [CrossRef]
5. Ramachandran, D.; Parvathi, R. Analysis of twitter specific preprocessing technique for tweets. Procedia Comput. Sci. 2019, 165,

245–251. [CrossRef]
6. Vo, D.-V.; Karnjana, J.; Huynh, V.-N. An integrated framework of learning and evidential reasoning for user profiling using short

texts. Inf. Fusion 2021, 70, 27–42. [CrossRef]
7. Feng, W.; Zhang, C.; Zhang, W.; Han, J.; Wang, J.; Aggarwal, C.; Huang, J. STREAMCUBE: Hierarchical spatio-temporal hashtag

clustering for event exploration over the Twitter stream. In Proceedings of the 2015 IEEE 31st International Conference on Data
Engineering, Seoul, Korea, 13–17 April 2015; pp. 1561–1572.

8. Ailem, M.; Role, F.; Nadif, M. Sparse poisson latent block model for document clustering. IEEE Trans. Knowl. Data Eng. 2017, 29,
1563–1576. [CrossRef]

9. Liang, S.; Yilmaz, E.; Kanoulas, E. Collaboratively tracking interests for user clustering in streams of short texts. IEEE Trans.
Knowl. Data Eng. 2018, 31, 257–272. [CrossRef]

10. Carpineto, C.; Romano, G. Consensus clustering based on a new probabilistic rand index with application to subtopic retrieval.
IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2315–2326. [CrossRef]

11. Wang, T.; Brede, M.; Ianni, A.; Mentzakis, E. Detecting and characterizing eating-disorder communities on social media. In
Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017;
pp. 91–100.

12. Song, G.; Ye, Y.; Du, X.; Huang, X.; Bie, S. Short text classification: A survey. J. Multimed. 2014, 9, 635. [CrossRef]
13. Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [CrossRef]
14. Zhang, C.; Lei, D.; Yuan, Q.; Zhuang, H.; Kaplan, L.; Wang, S.; Han, J. GeoBurst+ Effective and Real-Time Local Event Detection

in Geo-Tagged Tweet Streams. ACM Trans. Intell. Syst. Technol. (TIST) 2018, 9, 1–24.
15. Yang, S.; Huang, G.; Xiang, Y.; Zhou, X.; Chi, C.-H. Modeling user preferences on spatiotemporal topics for point-of-interest

recommendation. In Proceedings of the 2017 IEEE International Conference on Services Computing (SCC), Honolulu, HI, USA,
25–30 June 2017; pp. 204–211.

16. Alsaffar, D.; Alfahhad, A.; Alqhtani, B.; Alamri, L.; Alansari, S.; Alqahtani, N.; Alboaneen, D.A. Machine and deep learning
algorithms for Twitter spam detection. In Proceedings of the International Conference on Advanced Intelligent Systems and
Informatics, Cairo, Egypt, 26–28 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 483–491.

17. Shanmugam, S.; Padmanaban, I. A multi-criteria decision-making approach for selection of brand ambassadors using machine
learning algorithm. In Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering
(Confluence), Uttar Pradesh, India, 28–29 January 2021; pp. 848–853.

18. Hadifar, A.; Sterckx, L.; Demeester, T.; Develder, C. A self-training approach for short text clustering. In Proceedings of the 4th
Workshop on Representation Learning for NLP (RepL4NLP-2019), Florence, Italy, 2 August 2019; pp. 194–199.

http://doi.org/10.1002/cpe.5765
http://doi.org/10.1109/TKDE.2021.3052244
http://doi.org/10.1109/TKDE.2015.2485224
http://doi.org/10.1016/j.knosys.2016.12.013
http://doi.org/10.1016/j.procs.2020.01.083
http://doi.org/10.1016/j.inffus.2020.12.004
http://doi.org/10.1109/TKDE.2017.2681669
http://doi.org/10.1109/TKDE.2018.2832211
http://doi.org/10.1109/TPAMI.2012.80
http://doi.org/10.4304/jmm.9.5.635-643
http://doi.org/10.1126/science.1242072

Appl. Sci. 2023, 13, 342 33 of 38

19. Jin, J.; Zhao, H.; Ji, P. Topic attention encoder: A self-supervised approach for short text clustering;SAGE, United Kingdom. J. Inf.
Sci. 2022, 48, 701–717. [CrossRef]

20. Jinarat, S.; Manaskasemsak, B.; Rungsawang, A. Short text clustering based on word semantic graph with word embedding
model. In Proceedings of the 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th
International Symposium on Advanced Intelligent Systems (ISIS), Toyama, Japan, 5–8 December 2018; pp. 1427–1432.

21. Liu, W.; Wang, C.; Chen, X. Inductive Document Representation Learning for Short Text Clustering; Springer: Berlin/Heidelberg,
Germany, 2021.

22. Qiang, J.; Qian, Z.; Li, Y.; Yuan, Y.; Wu, X. Short text topic modeling techniques, applications, and performance: A survey. IEEE
Trans. Knowl. Data Eng. 2020, 34, 1427–1445. [CrossRef]

23. Wei, C.; Zhu, L.; Shi, J. Short Text Embedding Autoencoders with Attention-Based Neighborhood Preservation. IEEE Access 2020,
8, 223156–223171. [CrossRef]

24. Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [CrossRef]
25. Xu, J.; Xu, B.; Wang, P.; Zheng, S.; Tian, G.; Zhao, J. Self-taught convolutional neural networks for short text clustering. Neural

Netw. 2017, 88, 22–31. [CrossRef]
26. Mistry, V.; Pandya, U.; Rathwa, A.; Kachroo, H.; Jivani, A. AEDBSCAN—Adaptive Epsilon Density-Based Spatial Clustering of

Applications with Noise. In Progress in Advanced Computing and Intelligent Engineering; Springer: Berlin/Heidelberg, Germany,
2021; pp. 213–226.

27. Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988, 24, 513–523. [CrossRef]
28. Xu, J.; Wang, P.; Tian, G.; Xu, B.; Zhao, J.; Wang, F.; Hao, H. Short text clustering via convolutional neural networks. In Proceedings

of the 1st Workshop on Vector Space Modeling for Natural Language Processing, Denver, CO, USA, 5 June 2015; pp. 62–69.
29. Liu, K.; Bellet, A.; Sha, F. Similarity learning for high-dimensional sparse data. In Artificial Intelligence and Statistics; PMLR: San

Diego, CA, USA, 2015; pp. 653–662.
30. Wahid, A.; Gao, X.; Andreae, P. Multi-objective multi-view clustering ensemble based on evolutionary approach. In Proceedings

of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 1696–1703.
31. Bindhu, V.; Ranganathan, G. Hyperspectral image processing in internet of things model using clustering algorithm. J. ISMAC

2021, 3, 163–175.
32. AL-Jumaili, A.H.A.; Mashhadany, Y.I.A.; Sulaiman, R.; Alyasseri, Z.A.A. A Conceptual and Systematics for Intelligent Power

Management System-Based Cloud Computing: Prospects, and Challenges. Applied Sciences. 2021, 11, 9820. [CrossRef]
33. Oyelade, J.; Isewon, I.; Oladipupo, F.; Aromolaran, O.; Uwoghiren, E.; Ameh, F.; Achas, M.; Adebiyi, E. Clustering algorithms:

Their application to gene expression data. Bioinform. Biol. Insights 2016, 10, BBI-S38316. [CrossRef] [PubMed]
34. Güçdemir, H.; Selim, H. Integrating multi-criteria decision making and clustering for business customer segmentation. Ind.

Manag. Data Syst. 2015, 115, 1022–1040. [CrossRef]
35. Biabiany, E.; Bernard, D.C.; Page, V.; Paugam-Moisy, H. Design of an expert distance metric for climate clustering: The case of

rainfall in the Lesser Antilles. Comput. Geosci. 2020, 145, 104612. [CrossRef]
36. Bu, F.; Hu, C.; Zhang, Q.; Bai, C.; Yang, L.T.; Baker, T. A cloud-edge-aided incremental high-order possibilistic c-means algorithm

for medical data clustering. IEEE Trans. Fuzzy Syst. 2020, 29, 148–155. [CrossRef]
37. Ding, Y.; Fu, X. Topical Concept Based Text Clustering Method. In Advanced Materials Research; Trans Tech Publications Ltd.:

Lausanne, Swizerland, 2012; Volume 532, pp. 939–943.
38. Li, R.; Wang, H. Clustering of Short Texts Based on Dynamic Adjustment for Contrastive Learning. IEEE Access 2022, 10,

76069–76078. [CrossRef]
39. Froud, H.; Benslimane, R.; Lachkar, A.; Ouatik, S.A. Stemming and similarity measures for Arabic Documents Clustering.

In Proceedings of the 2010 5th International Symposium on I/V Communications and Mobile Network, IEEE Xplore, Rabat,
Morocco, 3 December 2010; pp. 1–4.

40. Agrawal, U.; Soria, D.; Wagner, C.; Garibaldi, J.; Ellis, I.O.; Bartlett, J.M.; Cameron, D.; Rakha, E.A.; Green, A.R. Combining
clustering and classification ensembles: A novel pipeline to identify breast cancer profiles. Artif. Intell. Med. 2019, 97, 27–37.
[CrossRef] [PubMed]

41. Allahyari, M.; Pouriyeh, S.; Assefi, M.; Safaei, S.; Trippe, E.D.; Gutierrez, J.B.; Kochut, K. A brief survey of text mining:
Classification, clustering and extraction techniques. arXiv 2017, arXiv:1707.02919.

42. Howland, P.; Park, H. Cluster-preserving dimension reduction methods for document classification. In Survey of Text Mining II;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–23.

43. Al-Omari, O.M. Evaluating the effect of stemming in clustering of Arabic documents. Acad. Res. Int. 2011, 1, 284.
44. Jia, C.; Carson, M.B.; Wang, X.; Yu, J. Concept decompositions for short text clustering by identifying word communities. Pattern

Recognit. 2018, 76, 691–703. [CrossRef]
45. Mohotti, W.A.; Nayak, R. Corpus-based augmented media posts with density-based clustering for community detection. In

Proceedings of the 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), Volos, Greece, 5–7
November 2018; pp. 379–386.

46. Lau, J.H.; Baldwin, T. An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv
2016, arXiv:1607.05368.

http://doi.org/10.1177/0165551520977453
http://doi.org/10.1109/TKDE.2020.2992485
http://doi.org/10.1109/ACCESS.2020.3042778
http://doi.org/10.1016/j.patrec.2009.09.011
http://doi.org/10.1016/j.neunet.2016.12.008
http://doi.org/10.1016/0306-4573(88)90021-0
http://doi.org/10.3390/app11219820
http://doi.org/10.4137/BBI.S38316
http://www.ncbi.nlm.nih.gov/pubmed/27932867
http://doi.org/10.1108/IMDS-01-2015-0027
http://doi.org/10.1016/j.cageo.2020.104612
http://doi.org/10.1109/TFUZZ.2020.3022080
http://doi.org/10.1109/ACCESS.2022.3192442
http://doi.org/10.1016/j.artmed.2019.05.002
http://www.ncbi.nlm.nih.gov/pubmed/31202397
http://doi.org/10.1016/j.patcog.2017.09.045

Appl. Sci. 2023, 13, 342 34 of 38

47. Yang, S.; Huang, G.; Cai, B. Discovering topic representative terms for short text clustering. IEEE Access 2019, 7, 92037–92047.
[CrossRef]

48. Jin, O.; Liu, N.N.; Zhao, K.; Yu, Y.; Yang, Q. Transferring topical knowledge from auxiliary long texts for short text clustering. In
Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, Scotland, UK,
24–28 October 2011; pp. 775–784.

49. Mehrotra, R.; Sanner, S.; Buntine, W.; Xie, L. Improving lda topic models for microblogs via tweet pooling and automatic labeling.
In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin,
Ireland, 28 July–1 August 2013; pp. 889–892.

50. Aggarwal, C.C.; Zhai, C. A survey of text clustering algorithms. In Mining Text Data; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 77–128.

51. Palanivinayagam, A.; Nagarajan, S. An optimized iterative clustering framework for recognizing speech. Int. J. Speech Technol.
2020, 23, 767–777. [CrossRef]

52. Kanimozhi, K.; Venkatesan, M. A novel map-reduce based augmented clustering algorithm for big text datasets. In Data
Engineering and Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2018; pp. 427–436.

53. Obaid, H.S.; Dheyab, S.A.; Sabry, S.S. The impact of data pre-processing techniques and dimensionality reduction on the accuracy
of machine learning. In Proceedings of the 2019 9th Annual Information Technology, Electromechanical Engineering and
Microelectronics Conference (IEMECON), Jaipur, India, 13–15 March 2019; pp. 279–283.

54. Croft, W.B.; Metzler, D.; Strohman, T. Search Engines: Information Retrieval in Practice; Addison-Wesley Reading: London UK, 2010;
Volume 520.

55. Cambazoglu, B.B. Review of “Search Engines: Information Retrieval in Practice” by Croft, Metzler and Strohman. Inf. Process.
Manag. 2010, 46, 377–379. [CrossRef]

56. Kaur, J.; Buttar, P.K. A systematic review on stopword removal algorithms. Int. J. Future Revolut. Comput. Sci. Commun. Eng. 2018,
4, 207–210.

57. Al-Shalabi, R.; Kanaan, G.; Jaam, J.M.; Hasnah, A.; Hilat, E. Stop-word removal algorithm for Arabic language. In Proceedings of
the 2004 International Conference on Information and Communication Technologies: From Theory to Applications, Damascus,
Syria, 19–23 April 2004; p. 545.

58. Singh, J.; Gupta, V. A systematic review of text stemming techniques. Artif. Intell. Rev. 2017, 48, 15–217. [CrossRef]
59. Asha, P.; Albert Mayan, J.; Canessane, A. Efficient Mining of Positive and Negative Itemsets Using K-Means Clustering to Access

the Risk of Cancer Patients. Int. Conf. Soft Comput. Syst. 2018, 73, 373–382.
60. Spirovski, K.; Stevanoska, E.; Kulakov, A.; Popeska, Z.; Velinov, G. Comparison of different model’s performances in task of

document classification. In Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, Novi
Sad, Serbia, 25–27 June 2018; pp. 1–12.

61. Singh, J.; Gupta, V. Text stemming: Approaches, applications, and challenges. ACM Comput. Surv. (CSUR) 2016, 49, 1–46.
[CrossRef]

62. Ahmed, M.H.; Tiun, S. K-means based algorithm for islamic document clustering. In Proceedings of the International Conference
on Islamic Applications in Computer Science and Technologies (IMAN 2013), Selangor, Malaysia, 1–2 July 2013; pp. 2–9.

63. Abdulameer, A.S.; Tiun, S.; Sani, N.S.; Ayob, M.; Taha, A.Y. Enhanced clustering models with wiki-based k-nearest neighbors-
based representation for web search result clustering. J. King Saud Univ. Comput. Inf. Sci. 2020, 34, 840–850. [CrossRef]

64. Khreisat, L. Arabic Text Classification Using N-Gram Frequency Statistics A Comparative Study. DMIN 2006, 2006, 78–82.
65. Zakaria, T.N.T.; Ab Aziz, M.J.; Mokhtar, M.R.; Darus, S. Semantic similarity measurement for Malay words using WordNet

Bahasa and Wikipedia Bahasa Melayu: Issues and proposed solutions. Int. J. Softw. Eng. Comput. Syst. 2020, 6, 25–40. [CrossRef]
66. Yin, J.; Wang, J. A dirichlet multinomial mixture model-based approach for short text clustering. In Proceedings of the 20th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014;
pp. 233–242.

67. Sabah, A.; Tiun, S.; Sani, N.S.; Ayob, M.; Taha, A.Y. Enhancing web search result clustering model based on multiview multirepre-
sentation consensus cluster ensemble (mmcc) approach. PLoS ONE 2021, 16, e0245264. [CrossRef] [PubMed]

68. Fodeh, S.; Punch, B.; Tan, P.-N. On ontology-driven document clustering using core semantic features. Knowl. Inf. Syst. 2011, 28,
395–421. [CrossRef]

69. Osman, M.A.; Noah, S.A.M.; Saad, S. Ontology-Based Knowledge Management Tools for Knowledge Sharing in Organization—A
Review. IEEE Access 2022, 10, 43267–43283. [CrossRef]

70. Banerjee, S.; Ramanathan, K.; Gupta, A. Clustering short texts using wikipedia. In Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, 23–27 July 2007;
pp. 787–788.

71. Zakaria, T.N.T.; Ab Aziz, M.J.; Mokhtar, M.R.; Darus, S. Text Clustering for Reducing Semantic Information in Malay Semantic
Representation. Asia-Pac. J. Inf. Technol. Multimed. 2020, 9, 11–24.

72. Mueller, J.; Thyagarajan, A. Siamese recurrent architectures for learning sentence similarity. In Proceedings of the AAAI
Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.

73. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.

http://doi.org/10.1109/ACCESS.2019.2927345
http://doi.org/10.1007/s10772-020-09728-5
http://doi.org/10.1016/j.ipm.2009.12.009
http://doi.org/10.1007/s10462-016-9498-2
http://doi.org/10.1145/2975608
http://doi.org/10.1016/j.jksuci.2020.02.003
http://doi.org/10.15282/ijsecs.6.1.2020.4.0067
http://doi.org/10.1371/journal.pone.0245264
http://www.ncbi.nlm.nih.gov/pubmed/33449949
http://doi.org/10.1007/s10115-010-0370-4
http://doi.org/10.1109/ACCESS.2022.3163758

Appl. Sci. 2023, 13, 342 35 of 38

74. Zainodin, U.Z.; Omar, N.; Saif, A. Semantic measure based on features in lexical knowledge sources. Asia-Pac. J. Inf. Technol.
Multimed. 2017, 6, 39–55. [CrossRef]

75. Berger, H.; Dittenbach, M.; Merkl, D. Analyzing the effect of document representation on machine learning approaches in
multi-class e-mail filtering. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006
Main Conference Proceedings) (WI’06), Hong Kong, China, 18–22 December 2006; pp. 297–300.

76. Joachims, T. Text categorization with support vector machines: Learning with many relevant features. In European Conference on
Machine Learning; Springer: Berlin/Heidelberg, Germany, 1998; pp. 137–142.

77. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the International Conference on
Machine Learning, Beijing, China, 22–24 June 2014; Volume 32, pp. 1188–1196.

78. Wu, H.; Gu, X.; Gu, Y. Balancing between over-weighting and under-weighting in supervised term weighting. Inf. Process. Manag.
2017, 53, 547–557. [CrossRef]

79. Lan, M.; Tan, C.L.; Su, J.; Lu, Y. Supervised and traditional term weighting methods for automatic text categorization. IEEE Trans.
Pattern Anal. Mach. Intell. 2008, 31, 721–735. [CrossRef]

80. Jelodar, H.; Wang, Y.; Yuan, C.; Feng, X.; Jiang, X.; Li, Y.; Zhao, L. Latent Dirichlet allocation (LDA) and topic modeling: Models,
applications, a survey. Multimed. Tools Appl. 2019, 78, 15169–15211. [CrossRef]

81. Griffiths, T.L.; Steyvers, M. Finding scientific topics. Proc. Natl. Acad. Sci. USA 2004, 101, 5228–5235. [CrossRef]
82. Lu, H.-M.; Wei, C.-P.; Hsiao, F.-Y. Modeling healthcare data using multiple-channel latent Dirichlet allocation. J. Biomed. Inform.

2016, 60, 210–223. [CrossRef]
83. Miao, J.; Huang, J.X.; Zhao, J. TopPRF: A probabilistic framework for integrating topic space into pseudo relevance feedback.

ACM Trans. Inf. Syst. (TOIS) 2016, 34, 1–36. [CrossRef]
84. Panichella, A.; Dit, B.; Oliveto, R.; Di Penta, M.; Poshynanyk, D.; De Lucia, A. How to effectively use topic models for software

engineering tasks? An approach based on genetic algorithms. In Proceedings of the 2013 35th International Conference on
Software Engineering (ICSE), San Francisco, CA, USA, 18–26 May 2013; pp. 522–531.

85. Gudakahriz, S.J.; Moghadam, A.M.E.; Mahmoudi, F. An experimental study on performance of text representation models for
sentiment analysis. Inf. Syst. Telecommun. 2020, 29, 45–52.

86. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their composi-
tionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119.

87. Tiun, S.; Saad, S.; Nor, N.F.M.; Jalaludin, A.; Rahman, A.N.C.A. Quantifying semantic shift visually on a Malay domain-specific
corpus using temporal word embedding approach. Asia-Pac. J. Inf. Technol. Multimed. 2020, 9, 1–10. [CrossRef]

88. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.

89. Mohotti, W.A.; Nayak, R. Deep hierarchical non-negative matrix factorization for clustering short text. In International Conference
on Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 270–282.

90. Lu, H.-Y.; Yang, J.; Zhang, Y.; Li, Z. Polysemy Needs Attention: Short-Text Topic Discovery with Global and Multi-Sense
Information. IEEE Access 2021, 9, 14918–14932. [CrossRef]

91. Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R. Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci.
1990, 41, 391–407. [CrossRef]

92. Lee, Y.-Y.; Ke, H.; Huang, H.-H.; Chen, H.-H. Less is more: Filtering abnormal dimensions in glove. In Proceedings of the 25th
ACM International Conference Companion on World Wide Web, Montréal, Québec, Canada, 11–15 April 2016; pp. 71–72.

93. Hong, L.; Davison, B.D. Empirical study of topic modeling in twitter. In Proceedings of the First Workshop on Social Media
Analytics, Washington, DC, USA, 25 July 2010; pp. 80–88.

94. Gao, W.; Peng, M.; Wang, H.; Zhang, Y.; Xie, Q.; Tian, G. Incorporating word embeddings into topic modeling of short text. Knowl.
Inf. Syst. 2019, 61, 1123–1145. [CrossRef]

95. Phan, X.-H.; Nguyen, L.-M.; Horiguchi, S. Learning to classify short and sparse text & web with hidden topics from large-scale
data collections. In Proceedings of the 17th International Conference on World Wide Web, Beijing, China, 21–25 April 2008;
pp. 91–100.

96. Hu, X.; Sun, N.; Zhang, C.; Chua, T.-S. Exploiting internal and external semantics for the clustering of short texts using world
knowledge. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, 2–6
November 2009; pp. 919–928.

97. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
98. Aljalbout, E.; Golkov, V.; Siddiqui, Y.; Strobel, M.; Cremers, D. Clustering with deep learning: Taxonomy and new methods. arXiv

Prepr. 2018, arXiv:1801.07648.
99. Dara, S.; Tumma, P. Feature extraction by using deep learning: A survey. In Proceedings of the 2018 Second International

Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp.
1795–1801.

100. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]

101. Kowsari, K.; Jafari Meimandi, K.; Heidarysafa, M.; Mendu, S.; Barnes, L.; Brown, D. Text classification algorithms: A survey.
Information 2019, 10, 150. [CrossRef]

http://doi.org/10.17576/apjitm-2017-0601-04
http://doi.org/10.1016/j.ipm.2016.10.003
http://doi.org/10.1109/TPAMI.2008.110
http://doi.org/10.1007/s11042-018-6894-4
http://doi.org/10.1073/pnas.0307752101
http://doi.org/10.1016/j.jbi.2016.02.003
http://doi.org/10.1145/2956234
http://doi.org/10.17576/apjitm-2020-0902-01
http://doi.org/10.1109/ACCESS.2021.3052863
http://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://doi.org/10.1007/s10115-018-1314-7
http://doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://doi.org/10.3390/info10040150

Appl. Sci. 2023, 13, 342 36 of 38

102. Deepak, G.; Rooban, S.; Santhanavijayan, A. A knowledge centric hybridized approach for crime classification incorporating
deep bi-LSTM neural network. Multimed. Tools Appl. 2021, 80, 28061–28085. [CrossRef]

103. Chandrasekaran, D.; Mago, V. Evolution of semantic similarity—A survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–37. [CrossRef]
104. Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; Zhao, J. Relation classification via convolutional deep neural network. In Proceedings of the

COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland, 23–29 August
2014; pp. 2335–2344.

105. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A convolutional neural network for modelling sentences. arXiv 2014,
arXiv:1404.2188.

106. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing (almost) from scratch. J.
Mach. Learn. Res. 2011, 12, 2493–2537.

107. Abdullah, A.; Ting, W.E. Orientation and Scale Based Weights Initialization Scheme for Deep Convolutional Neural Networks.
Asia-Pac. J. Inf. Technol. Multimed. 2020, 9, 103–112. [CrossRef]

108. Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C.D.; Ng, A.Y.; Potts, C. Recursive deep models for semantic compositional-
ity over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
Washington, DC, USA, 18–21 October 2013; pp. 1631–1642.

109. Mikolov, T.; Kombrink, S.; Burget, L.; Černocký, J.; Khudanpur, S. Extensions of recurrent neural network language model. In
Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech
Republic, 22–27 May 2011; pp. 5528–5531.

110. Lai, S.; Xu, L.; Liu, K.; Zhao, J. Recurrent convolutional neural networks for text classification. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.

111. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.
2019, 31, 1235–1270. [CrossRef]

112. Chin, C.K.; Omar, N. BITCOIN PRICE PREDICTION BASED ON SENTIMENT OF NEWS ARTICLE AND MARKET DATA
WITH LSTM MODEL. Asia-Pac. J. Inf. Technol. Multimed. 2020, 9, 1–16.

113. Tien, N.H.; Le, N.M.; Tomohiro, Y.; Tatsuya, I. Sentence modeling via multiple word embeddings and multi-level comparison for
semantic textual similarity. Inf. Process. Manag. 2019, 56, 102090. [CrossRef]

114. Tai, K.S.; Socher, R.; Manning, C.D. Improved semantic representations from tree-structured long short-term memory networks.
arXiv 2015, arXiv:1503.00075.

115. He, H.; Lin, J. Pairwise word interaction modeling with deep neural networks for semantic similarity measurement. In Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 937–948.

116. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

117. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding with Unsupervised Learning; Technical
Report; OpenAI: San Francisco, CA, USA, 2018.

118. Pugachev, L.; Burtsev, M. Short text clustering with transformers. arXiv 2021, arXiv:2102.00541.
119. Howard, J.; Ruder, S. Universal language model fine-tuning for text classification. arXiv 2018, arXiv:1801.06146.
120. Dolan, B.; Brockett, C. Automatically constructing a corpus of sentential paraphrases. In Proceedings of the Third International

Workshop on Paraphrasing (IWP2005), Jeju Island, Korea, 14 October 2005.
121. Williams, A.; Nangia, N.; Bowman, S.R. A broad-coverage challenge corpus for sentence understanding through inference. arXiv

2017, arXiv:1704.05426.
122. Rajpurkar, P.; Zhang, J.; Lopyrev, K.; Liang, P. Squad: 100,000+ questions for machine comprehension of text. arXiv 2016,

arXiv:1606.05250.
123. Hu, Q.; Shen, J.; Wang, K.; Du, J.; Du, Y. A Web service clustering method based on topic enhanced Gibbs sampling algorithm for

the Dirichlet Multinomial Mixture model and service collaboration graph. Inf. Sci. 2022, 586, 239–260. [CrossRef]
124. Yin, H.; Song, X.; Yang, S.; Huang, G.; Li, J. Representation Learning for Short Text Clustering; Springer International Publishing:

Melbourne, VIC, Australia, 2021; pp. 321–335.
125. Subakti, A.; Murfi, H.; Hariadi, N. The performance of BERT as data representation of text clustering. J. Big Data 2022, 9, 1–21.

[CrossRef]
126. Allaoui, M.; Kherfi, M.L.; Cheriet, A. Considerably improving clustering algorithms using UMAP dimensionality reduction

technique: A comparative study. In International Conference on Image and Signal Processing; Springer: Berlin/Heidelberg, Germany,
2020; pp. 317–325.

127. Swesi, I.M.A.O.; Bakar, A.A. Feature clustering for PSO-based feature construction on high-dimensional data. J. Inf. Commun.
Technol. 2019, 18, 439–472. [CrossRef]

128. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci. 2016, 374, 20150202. [CrossRef]

129. Kurita, T. Principal component analysis (PCA). In Computer Vision: A Reference Guide; Springer: Tokyo, Japan, 2019; pp. 1–4.
130. Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [CrossRef]

[PubMed]

http://doi.org/10.1007/s11042-021-11050-4
http://doi.org/10.1145/3440755
http://doi.org/10.17576/apjitm-2020-0902-08
http://doi.org/10.1162/neco_a_01199
http://doi.org/10.1016/j.ipm.2019.102090
http://doi.org/10.1016/j.ins.2021.11.087
http://doi.org/10.1186/s40537-022-00564-9
http://doi.org/10.32890/jict2019.18.4.3
http://doi.org/10.1098/rsta.2015.0202
http://doi.org/10.1016/S0893-6080(00)00026-5
http://www.ncbi.nlm.nih.gov/pubmed/10946390

Appl. Sci. 2023, 13, 342 37 of 38

131. Comon, P. Independent component analysis, a new concept? Signal Process. 1994, 36, 287–314. [CrossRef]
132. Sugiyama, M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J. Mach. Learn. Res.

2007, 8, 1027–1061.
133. Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear discriminant analysis. In Robust Data Mining; Springer: Berlin/Heidelberg,

Germany, 2013; pp. 27–33.
134. Fukuaga, K. Introduction to statistical pattern classification. Pattern Recognit. 1990, 30, 1145–1149.
135. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
136. Cieslak, M.C.; Castelfranco, A.M.; Roncalli, V.; Lenz, P.H.; Hartline, D.K. t-Distributed Stochastic Neighbor Embedding (t-SNE): A

tool for eco-physiological transcriptomic analysis. Mar. Genom. 2020, 51, 100723. [CrossRef]
137. McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018,

arXiv:1802.03426.
138. Little, C.; Mclean, D.; Crockett, K.; Edmonds, B. A semantic and syntactic similarity measure for political tweets. IEEE Access

2020, 8, 154095–154113. [CrossRef]
139. Alian, M.; Awajan, A. Factors affecting sentence similarity and paraphrasing identification. Int. J. Speech Technol. 2020, 23, 851–859.

[CrossRef]
140. Alkoffash, M.S. Automatic Arabic Text Clustering using K-means and K-mediods. Int. J. Comput. Appl. 2012, 51, 5–8.
141. Lin, Y.-S.; Jiang, J.-Y.; Lee, S.-J. A similarity measure for text classification and clustering. IEEE Trans. Knowl. Data Eng. 2013, 26,

1575–1590. [CrossRef]
142. Huang, A. Similarity measures for text document clustering. In Proceedings of the Sixth New Zealand Computer Science Research

Student Conference (NZCSRSC2008), Christchurch, New Zealand, 14–18 April 2008; Volume 4, pp. 9–56.
143. Froud, H.; Lachkar, A.; Ouatik, S.A. Arabic text summarization based on latent semantic analysis to enhance arabic documents

clustering. arXiv 2013, arXiv:1302.1612. [CrossRef]
144. Amer, A.A.; Abdalla, H.I. A set theory based similarity measure for text clustering and classification. J. Big Data 2020, 7, 1–43.

[CrossRef]
145. Guangming, G.; Yanhui, J.; Wei, W.; Shuangwen, Z. A Clustering Algorithm Based on the Text Feature Matrix of Domain-Ontology.

In Proceedings of the 2013 Third International Conference on Intelligent System Design and Engineering Applications, Hong
Kong, China, 16–18 January 2013; pp. 13–16.

146. Abualigah, L.M.Q. Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering; Springer: Berlin/Heidelberg,
Germany, 2019.

147. Liu, F.; Xiong, L. Survey on text clustering algorithm-Research present situation of text clustering algorithm. In Proceedings
of the 2011 IEEE 2nd International Conference on Software Engineering and Service Science, Beijing, China, 15–17 July 2011;
pp. 196–199.

148. Reddy, C.K.; Vinzamuri, B. A survey of partitional and hierarchical clustering algorithms. In Data Clustering; Chapman and
Hall/CRC: New York, NY, USA, 2018; pp. 87–110.

149. Bhattacharjee, P.; Mitra, P. A survey of density based clustering algorithms. Front. Comput. Sci. 2021, 15, 1–27. [CrossRef]
150. Roux, M. A comparative study of divisive and agglomerative hierarchical clustering algorithms. J. Classif. 2018, 35, 345–366.

[CrossRef]
151. Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Open: New York, NY, USA, 2017.
152. Popat, S.K.; Emmanuel, M. Review and comparative study of clustering techniques. Int. J. Comput. Sci. Inf. Technol. 2014, 5,

805–812.
153. Elavarasi, S.A.; Akilandeswari, J.; Sathiyabhama, B. A survey on partition clustering algorithms. Int. J. Enterp. Comput. Bus. Syst.

2011, 1, 1–13.
154. Agarwal, S.; Yadav, S.; Singh, K. Notice of Violation of IEEE Publication Principles: K-means versus K-means++ Clustering

Technique. In Proceedings of the 2012 Students Conference on Engineering and Systems, Allahabad, India, 16–18 March 2012.
155. Xu, H.; Yao, S.; Li, Q.; Ye, Z. An improved k-means clustering algorithm. In Proceedings of the 2020 IEEE 5th International

Symposium on Smart and Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS-SWS), Piscataway, NJ, USA, 17–18 September 2020; pp. 1–5.

156. Vora, P.; Oza, B. A survey on k-mean clustering and particle swarm optimization. Int. J. Sci. Mod. Eng. 2013, 1, 24–26.
157. Bock, H.-H. Clustering methods: A history of k-means algorithms. In Selected Contributions in Data Analysis and Classification;

Springer: Berlin/Heidelberg, Germany, 2007; pp. 161–172.
158. Chan, J.Y.; Leung, A.P. Efficient k-means++ with random projection. In Proceedings of the 2017 International Joint Conference on

Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 94–100.
159. Campello, R.J.; Kröger, P.; Sander, J.; Zimek, A. Density-based clustering. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1343.

[CrossRef]
160. Karaa, W.B.A.; Ashour, A.S.; Sassi, D.B.; Roy, P.; Kausar, N.; Dey, N. Medline text mining: An enhancement genetic algorithm based

approach for document clustering. In Applications of Intelligent Optimization in Biology and Medicine; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 267–287.

161. Durairaj, M.; Vijitha, C. Educational data mining for prediction of student performance using clustering algorithms. Int. J. Comput.
Sci. Inf. Technol. 2014, 5, 5987–5991.

http://doi.org/10.1016/0165-1684(94)90029-9
http://doi.org/10.1016/j.margen.2019.100723
http://doi.org/10.1109/ACCESS.2020.3017797
http://doi.org/10.1007/s10772-020-09753-4
http://doi.org/10.1109/TKDE.2013.19
http://doi.org/10.5121/ijdkp.2013.3107
http://doi.org/10.1186/s40537-020-00344-3
http://doi.org/10.1007/s11704-019-9059-3
http://doi.org/10.1007/s00357-018-9259-9
http://doi.org/10.1002/widm.1343

Appl. Sci. 2023, 13, 342 38 of 38

162. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020,
arXiv:2010.16061.

163. Qiang, J.; Li, Y.; Yuan, Y.; Wu, X. Short text clustering based on Pitman-Yor process mixture model. Appl. Intell. 2018, 48, 1802–1812.
[CrossRef]

164. Punitha, S.; Jayasree, R.; Punithavalli, M. Partition document clustering using ontology approach. In Proceedings of the 2013
International Conference on Computer Communication and Informatics, Coimbatore, Tamil Nadu, India, 4–6 January 2013;
pp. 1–5.

165. Rosenberg, A.; Hirschberg, J. V-measure: A conditional entropy-based external cluster evaluation measure. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), Prague, Czech Republic, 5 June 2007; pp. 410–420.

166. Radu, R.-G.; Rădulescu, I.-M.; Truică, C.-O.; Apostol, E.-S.; Mocanu, M. Clustering documents using the document to vector
model for dimensionality reduction. In Proceedings of the 2020 IEEE International Conference on Automation, Quality and
Testing, Robotics (AQTR), Cluj-Napoca, Romania, 21–23 May 2020; pp. 1–6.

167. Zhu, Z.; Gao, Y. Finding cross-border collaborative centres in biopharma patent networks: A clustering comparison ap-
proach based on adjusted mutual information. In International Conference on Complex Networks and Their Applications; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 62–72.

168. Li, L.; Goh, T.-T.; Jin, D. How textual quality of online reviews affect classification performance: A case of deep learning sentiment
analysis. Neural Comput. Appl. 2020, 32, 4387–4415. [CrossRef]

169. Feizollah, A.; Ainin, S.; Anuar, N.B.; Abdullah, N.A.B.; Hazim, M. Halal products on Twitter: Data extraction and sentiment
analysis using stack of deep learning algorithms. IEEE Access 2019, 7, 83354–83362. [CrossRef]

170. Karami, A.; Lundy, M.; Webb, F.; Dwivedi, Y.K. Twitter and research: A systematic literature review through text mining. IEEE
Access 2020, 8, 67698–67717. [CrossRef]

171. Yi, F.; Jiang, B.; Wu, J. Topic modeling for short texts via word embedding and document correlation. IEEE Access 2020, 8,
30692–30705. [CrossRef]

172. Hirchoua, B.; Ouhbi, B.; Frikh, B. Topic Modeling for Short Texts: A Novel Modeling Method. In AI and IoT for Sustainable
Development in Emerging Countries; Springer: Berlin/Heidelberg, Germany, 2022; pp. 573–595.

173. Mohotti, W.A.; Nayak, R. Discovering cluster evolution patterns with the Cluster Association-aware matrix factorization. Knowl.
Inf. Syst. 2021, 63, 1397–1428. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10489-017-1055-4
http://doi.org/10.1007/s00521-018-3865-7
http://doi.org/10.1109/ACCESS.2019.2923275
http://doi.org/10.1109/ACCESS.2020.2983656
http://doi.org/10.1109/ACCESS.2020.2973207
http://doi.org/10.1007/s10115-021-01561-9

	Introduction
	Applications of Short Text Clustering
	Components of Short Text Clustering
	Document Pre-Processing in Short Text Clustering
	Tokenization and Normalization
	Stop-Word Removal
	Stemming

	Document Representation
	Non-DL Measures
	Deep Learning Measures

	Dimensionality Reduction
	Principal Component Analysis (PCA)
	Linear Discriminant Analysis (LDA’)
	T-Distributed Stochastic Neighbour Embedding (t-SNE)
	Uniform Manifold Approximation and Projection (UMAP)

	Similarity and Distance Measure
	Cosine Similarity
	Jaccard Coefficient
	Euclidean Distance

	Clustering Algorithms
	Hierarchical Algorithms
	Partitioned Algorithms
	Density-Based Clustering Methods

	Performance Evaluation Measure
	Homogeneity (H)
	Completeness (C)
	V-Measure (V)
	Adjusted Rand Index Score (ARI)
	Normalized Mutual Information (NMI)
	Adjusted Mutual Information (AMI)
	Purity (P’)
	F-Measure

	Challenges of Short Text Clustering
	Conclusions
	References

