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Abstract: Exposed coal measure soil (CMS) found in the mountains of Southern China is significantly
affected by the seasonal climate, which makes this region prone to frequent shallow landslides. In this
regard, very few studies have focused on the shear strength and microscopic characteristics of CMS
subjected to dry–wet cycling and temperature. The aim of this study was to experimentally investigate
the effects of dry–wet cycling and temperature on shear strength and microscopic parameters of
CMS. We carried out an unconsolidated undrained triaxial test and scanning electron microscopy of
CMS obtained from the K209 slope on the Chang-li highway. Our results indicated that the soil shear
strength and microstructure parameters significantly decreased before three dry–wet cycles. Above
35 ◦C, the temperature affected mainly the mean fractal dimension. The soil cohesion was negatively
correlated with the fractal dimension and positively correlated with the probability entropy. The
surface-crack occurred once the stress value of high temperature was greater than 0.57 MPa. Strain-
softening, swelling–shrinkage, low soil strength, and high soil temperature formed the main factors
underlying rainfall-induced K209 shallow landslides.

Keywords: coal measure soil; dry–wet cycles; shear strength; temperature; shallow landslides

1. Introduction

Coal measure soil (CMS) is a new type of soil encountered in slope engineering wherein
the coal-measure strata outcrop and undergo weathering. CMS is primarily distributed
in the hilly and mountainous areas of South China. In recent years, the coal-measure soil
(C-M-S) area has witnessed an increasing number of shallow landslides (generally less
than 2 m deep), and the failure surface is parallel to the slope surface. 30–50% of the
landslides had reoccurred even after treatment. As a matter of concern, frequent landslides
in the C-M-S area have resulted in substantial economic losses and sometimes even directly
endangered human lives. Moreover, during the construction and operation of highways in
such regions, a major challenge involves controlling the stability of the coal-measure-soil
(C-M-S) slope and preventing the occurrence of landslides or soil erosion. When compared
with other rock-soil slopes, CMS exhibits many complex properties, such as discontinuity,
nonlinear constitutive behavior, anisotropy, and heterogeneity [1,2]. The C-M-S structure
is such that it weathers and degrades easily when subjected to seasonal dry–wet cycles,
and the resulting situation satisfies the conditions for crack generation within the soil mass.
Moreover, this configuration is more prone to landslides under rainfall. Therefore, a close
examination of the mechanical properties and failure mechanisms under dry–wet cycling
is essential to assess and control the stability of C-M-S slopes.

Many researchers have studied the physical and mechanical characteristics of CMS.
Hu [3] applied the direct shear test to demonstrate that the shear strength of CMS exhibits
an obvious correlation with the initial moisture content. Here, we note that water and soil
interactions are the result of a combination of the soil macrostructure and microstructure. In
this regard, Zuo [4] acquired a C-M-S sample from the Chenzhou landslide to qualitatively
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expound the inducing factors and deformation mechanism. Along these research lines, the
discrete element method (DEM) is used to perform 3D numerical simulations of the triaxial
shear test for CMS [5]. Zhang [6] analyzed the effects of the particle shape and size on the
physical and mechanical characteristics of soil mass via numerical triaxial-test simulations.
Liao [7] researched the variation pattern and stress distribution characteristics of moisture
content in rainfall for C-M-S slopes. Here, we note that all these studies focus on the C-M-S
physical and mechanical properties of CMS under different water contents. However, very
few studies have examined the C-M-S strength behavior under dry–wet cycling.

Notably, dry–wet cycling is a familiar shallow-soil weathering degree determined
by short-term rainfall and sun exposure. The soil strength characteristics and microstruc-
tural features affected by dry–wet cycling have received widespread attention. Moreover,
surface-crack occurrence and development in rock soil are generally related to dry–wet
cycling [8,9]. Furthermore, dry–wet cycling is a crucial reason underlying the deteriora-
tion of microstructure and macro mechanics of a wide range of unsaturated soils, such
as expansive soil [10,11], loess [12], and red clay [13,14]. In recent years, researchers have
also studied the C-M-S strength characteristics subjected to dry–wet cycling [15,16]. In
this regard, Yang [17] studied the variability in the soil–water characteristic curve (SWCC)
of CMS under dry–wet cycling. Maio [18] proved that the suction had a positive effect
on the shear strength. Fredlund [19] analyzed the adsorption strength and shear strength
between soil particles affected by matric suction. Here, we note that C-M-S research has
mainly been confined to study the effects of dry–wet cycling on soil strength at normal tem-
perature. However, most previous studies have not accounted for summer temperatures
that can generate enhanced cracks in rock soil. Moreover, the combined effects of different
temperatures and dry–wet cycling on the C-M-S strength have been ignored.

As regards general studies on the effects of temperature on soil strength, some theories
and methods have been proposed. Mitchell carried out triaxial strength tests on saturated
silt in the temperature range 0–35 ◦C and found that the soil strength decreases with
increasing temperature [20]. Moreover, high temperature has been reported to reduce the
soil strength and enhance crack formation [21]. Cabalar found that higher temperature
leads to a jump in pore water pressure [22]. We determined that the strength of the red
clay and expansive soil decrease with increasing temperature (from −4 to 60 ◦C), and red
clay, in particular, exhibits higher heat sensitivity [23]. Moreover, Roshani described the
effect of temperature on the SWCC under isothermal environment [24]. However, the
above-mentioned studies focus on the influence of temperature on the strength of clay, silt,
red clay, and expansive soil. Studies on the effect of temperature on the C-M-S strength are
still scarce.

Meanwhile, extensive studies have indicated that changes in soil macroscopic mechan-
ics are generally related to the microstructural features [25,26]. Furthermore, water is a vital
cause of mechanical deterioration in unsaturated soils [27]. In this regard, scanning electron
microscopy (SEM) has become the most commonly used geotechnical technology in the
study of geotechnical microstructure. The microstructure and morphological characteristics
of CMS along the shear plane for different water contents are studied via SEM and direct
shear tests [28]. CMS contains a large number of clay minerals, which have expansive
characteristics [29]. In addition, surface soil degradation caused by seasonal dry–wet cycles
destroys the surface structures used for slope protection. Thus, it is important to under-
stand the soil-failure mechanism via analyzing the C-M-S microstructures and the variation
in the soil shear-strength parameters under dry–wet cycling. Moreover, the coupling effects
of dry–wet cycling and temperature on the microstructural features of CMS have not, thus
far, been investigated in detail.

This paper firstly performs surveys on the shear strength and microscopic parameters
of coal measure soil under dry-wet condition and seasonal climate in the mountains of
Southern China. In order to further explore the effects of dry–wet cycling and temperature
on the shear strength and microscopic parameters of CMS, an unconsolidated undrained
triaxial test and SEM test were carried out. Firstly, the effects of dry–wet cycling and



Appl. Sci. 2023, 13, 336 3 of 17

temperature on the shear strength of C-M-S samples were investigated. Then, the micro-
scopic parameter changes in the CMS after dry–wet cycling was studied. Finally, the crack
development relationship with the temperature-induced stress after dry–wet cycling and
the failure mechanism of the K209 landslide on the Chang-li highway were discussed.

2. Materials and Methods
2.1. Engineering Geological Properties

The geographical region considered in the study is located to the west of Jiangxi
Province, which is a subtropical zone. The region’s terrain consists of an interphase ar-
rangement of horst fault blocks, graben hills, and valley basins. The overlying layer of CMS
is formed by the Permian Longtan Formation (P2l) and Triassic Anyuan Formation (T3a).

Climatically, the weather changes in the study area are diverse. The annual average
temperature is 17–21 ◦C. The extreme maximum surface temperature is 61.6 ◦C, and the
lowest surface temperature is −8.8 ◦C [30]. Since 2013, many shallow landslides have
happened along the Chang-li highway (Figure 1). Furthermore, as shown in Figure 2, the
engineering classification of CMS can be estimated as powder sand soil SW according to
the engineering classification standards [31]. The physical properties of the CMS are listed
in Table 1. Moreover, this study considers the K209 landslide as an example to understand
the mechanism of C-M-S landslide.
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Table 1. C-M-S physical properties.

Landslide Sites Dry
Density/kg·m−3

Optimal
Moisture

Content/%
Liquid Limit/% Plastic Limit/%

K213 1.65 10.21 42.10 31.10
K209 1.70 9.54 39.30 27.50
K207 1.59 11.58 45.80 34.10
K195 1.67 10.12 47.50 33.40
K190 1.75 9.78 48.00 34.60
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2.2. Shear-Strength Testing Experimental Procedure

The CMS collected from K209 was placed in a plastic bag, sealed for storage, and
placed in an oven operating at 70 ◦C for 72 h. These preparation procedures of dried
samples were crushed, passed through a 2-mm sieve, adjusted to an optimal moisture
content of 9.54%, and fashioned into a standard triaxial specimen (39.1 mm diameter and
80 mm height), as per the standards applicable to Chinese standard GBT50123-2019 [32].

Triaxial tests were carried out after the C-M-S specimens were subjected to 5 dry–wet
cycles, which included a wetting step and a drying step. The development characteristics
of soil fissures were affected by the water-content variation. The dry–wet cycle under
atmospheric conditions was mainly caused by rainwater infiltration, rising groundwater
level and transpiration, which was similar to 1D moisture transfer. Polyvinyl chloride
wrapped on the laterally sides. We injected 10% of water by weight on the upper and lower
sides of the sample and stored water for 4 h. Then, the samples wrapped by Polyvinyl
chloride and rubber film were dried at 70◦C for 8 h in a climate chamber. The total period
of each dry–wet cycle was 12 h. The preparation procedure for the C-M-S specimens is
shown in Figure 3.
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Figure 3. Preparation procedure of C-M-S specimens.

The specimens were drawn in a vacuum and saturated for 4 h via continuous pumping.
The bulk density of the saturated specimen was estimated as 1.57 g/cm3. The specimen-
confining pressure was set to a constant loading rate of 0.2 kPa/min. Next, axial pressure
was applied to the upper and lower surfaces of the soil specimen at a constant axial strain
rate of 0.05 mm/min. Triaxial tests were performed on the specimens under three confining
pressures: 100, 200, and 300 kPa.
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The hydraulic behavior of unsaturated soils could be characterized by the soil-water
characteristic curves (SWCCs) under wetting and drying cycles. We performed the pressure
plate device method (axis translation technique) to obtain SWCC. The SWCC and van
Genuchten (1980) equation fit of the C-M-S specimens are shown in Figure 4. It was noted
that the air entry value of no cycle and 5 cycles is about 20 kPa and 11 kPa, respectively.
The dry–wet cycling resulted in the densification of C-M-S unsaturated soils, which led to
changes in SWCC.
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Figure 4. The SWCC of the C-M-S specimen.

Based on the climate of the study area, the temperature change experiment was carried
out under the condition of shear strength. The temperature condition of the specimen
was controlled by heating or cooling water in the triaxial pressure chamber. The heating
sheet was used to control the heating water, and the cooling sheet was used to control the
cooling water during the test. We set three different water temperatures within the pressure
chamber: 0 ◦C, 35 ◦C, and 70 ◦C. Temperature-controlled water was circulated from an
external tank to the pressure chamber. Water at three different water temperatures was
pumped to the pressure chamber by an electric pump and returned to the external tank by
a siphon system. Special cooling equipment and hot plates were used to control the water
temperature in the external water tank.

2.3. Quantitative Analyses of Soil-Sample Microstructure

To quantitative examine the effects of dry–wet cycling and temperature on the C-M-S
microstructure, we obtained the SEM images of the reserved specimens and processed
them with IPP 6.0 software (Figure 5a). Here, we noted that the microfracture transfixion
probability was bound up with the pore structure of the soil [33]. Thus, we considered
the two microscopic parameters of the plane fractal dimension and probability entropy.
These two microscopic parameters reflected the pore shape and particle arrangement
characteristics of the C-M-S specimens [34]. As described in Table 2, the dominant chemical
compositions of the C-M-S specimen were SiO2, K2O, CaO, and Al2O3.

Table 2. Chemical composition of the C-M-S specimen.

Specimen SiO2 K2O CaO Al2O3 F2O3 MgO Na2O Loss on
Ignition

CMS 32.54 17.24 15.20 14.58 2.24 1.40 0.75 16.05
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Here, we noted that the irregular and non-smooth geometry in nonlinear systems
have been widely used in fractal theory [25]. The degree of aggregation in soil mechanics
was lower when the plane fractal dimension was larger. The purpose of this study was
considered the plane fractal dimension Dρ to study the C-M-S microstructure fractal and
estimated this parameter via box-counting (Figure 5b). The plane fractal dimension of the
soil particle was a geometric object that indicates the aggregation of a soil in the plane space.
The value of plane fractal dimension was obtained by the ratio of the cubic box length
occupied by the total grid number occupied by the target, as per the following formula.

Dρ = −lim
ε→0

lgN(ε)

lg(ε)
(1)

where ε is the cubic box length, N(ε) is the total grid number occupied by the target.
Probability entropy Hn could be used to determine the order of the C-M-S pore unit.

A larger Hn value implied a greater degree of pore disorder in the CMS. This parameter
could be expressed as

Hn = −
n

∑
i=1

Fi(α) logn Fi(α) (2)

where Fi(α) denotes the incidence of pores in each directional angle interval α. Moreover,
Fi(α) =

nα
n , n denotes the total number of pore units and nα the number of pore units lying

along the orientation angle in the interval [0, π]. The Hn value can range from 0 to 1.

3. Test Result Analysis
3.1. Stress–Strain Curve

Upon conducting unconsolidated consolidated undrained (UU) triaxial tests, we
obtained the stress–strain curves of Fifty-four C-M-S specimens under different dry–wet
cycles and temperatures. The stress–strain curves under the three confining pressures
are plotted in Figure 6. The shear strength was considered as corresponding to the peak
deviator stress or the deviator stress corresponding to 15% axial strain (when there was no
peak) of the stress–strain curve.
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From Figure 6, we noted that the stress–strain curves exhibit a two-stage nonlinear
relationship: (a) Elastic–plastic stage: the stress–strain curve was nonlinear below the peak
deviator stress. (b) Strain softening stage: the deviator stress decreased with increasing
strain after the CMS reaches its peak deviator stress.

The shear strength index (cohesion c and net friction angle φ′) and microscopic pa-
rameters (plane fractal dimension Dρ and probability entropy Hn) under different dry–wet
numbers (N) and temperatures (T) are shown in Table 3. The peak deviator stress of the
CMS under different confining pressures was lower than 277.10 kPa. This result indicated
that the shear strength of the CMS was very low. Moreover, a higher temperature corre-
sponded to a lower peak deviator stress. For instance, at the confining pressure of 100 kPa
and 0 cycles, the deviator stress at 0 ◦C was 150.79 kPa, which was 1.34 times the stress at



Appl. Sci. 2023, 13, 336 8 of 17

70 ◦C (112.49 kPa). This result indicated that the temperature significantly degrades and
deforms the CMS. In addition, for a given confining pressure, the peak deviator stress of
the CMS sample decreased gradually with increasing temperature.

Table 3. The parameters of peak deviator stress and shear strength.

T N
Peak Deviator Stress/kPa

c φ
′
/◦ Dρ Hn

100 kPa 200 kPa 300 kPa

0 ◦C

0 150.79 234.94 277.10 36.50 14.00 1.324 0.299
1 131.01 190.77 255.16 26.80 13.71 1.330 0.275
2 101.67 168.07 225.20 16.30 13.65 1.336 0.242
3 87.62 150.85 203.04 12.60 12.94 1.344 0.232
4 74.51 135.06 175.21 11.10 11.65 1.350 0.227
5 69.24 129.66 163.75 10.70 11.07 1.351 0.225

35 ◦C

0 143.18 230.36 266.23 34.70 13.77 1.325 0.293
1 123.38 181.24 245.93 24.00 13.59 1.327 0.27
2 104.27 167.57 231.08 16.00 13.95 1.333 0.236
3 80.12 136.39 189.20 11.50 13.71 1.342 0.222
4 72.22 126.41 170.23 10.20 11.36 1.352 0.214
5 52.32 99.81 140.21 9.40 10.60 1.354 0.208

70 ◦C

0 112.49 225.10 254.87 30.30 13.89 1.328 0.289
1 97.37 176.34 232.32 21.30 13.36 1.335 0.262
2 87.37 153.77 212.45 15.70 12.89 1.338 0.231
3 78.08 148.76 207.23 11.00 13.36 1.347 0.221
4 70.13 132.56 186.99 9.50 12.36 1.356 0.215
5 50. 31 129.02 171.29 9.00 11.65 1.359 0.205

3.2. Effect of Dry-Wet Cycling and Temperature on Shear-Strength Parameters

To further explore the effects of dry–wet cycling and temperature on the shear strength
parameters, we plotted the curves of the cohesion and friction angle values obtained from
all tests for the C-M-S specimens in Figures 7 and 8. From Figure 7 we noted that the
C-M-S cohesion after dry–wet cycling was less than that of the intact CMS. The C-M-S
cohesion decreased with increasing in the N and stabilizes after a certain N. At 35 ◦C, the
soil cohesion decreased from 34.7 to 9.4 kPa as the N increased from 0 to 5, corresponding
to a 61.94% decline in cohesion over 5 cycles. This result revealed that the C-M-S cohesion
was strongly affected in the first three cycles. As can be observed in Figure 7, the cohesion
decreased with increasing temperature. The cohesion after the third cycle decreased from
12.6 to 11.0 kPa as the temperature was raised from 0 to 70 ◦C. It was also noteworthy that
the cohesion decreased by a greater degree at higher temperatures after the second cycle.
This was because each dry–wet cycle destroyed the soil structure, the temperature limited
stress drop, and the cohesion reduced faster [35]. The observed linear-reduction trend in
the cohesion could be expressed by the following formula:

cT = c0 + a1(T − T0) (3)

where T and T0 denote the temperature and initial temperature, respectively, cT and c0
denote the cohesion for temperature T and initial cohesion, respectively; a1 the fitting
coefficient.
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The cohesion of unsaturated soil c1 could be expressed as

c = cT + (ua − uw) tan φb (4)

where c is the cohesion of unsaturated soil, ua is the pore air pressure, uw is the pore water
pressure, φb is the friction angle.

Under the assumption that tan φb was independent of the temperature [36], the C-M-S
cohesion c was be expressed as

c = c0 + a1(T − T0) + (ua − uw) tan φb (5)

Shear strength τT f of the CMS subjected to a given temperature could be expressed as

τT f = c0 + a1(T − T0) + (ua − uw) tan φb + (σ− ua) tan φ′ (6)

where (σ− ua) denotes the normal net stress, τT f denote shear strength for temperature T
of the CMS, φ′ is the net friction angle.

From Figure 8, we noted that the friction angles for all specimens almost unchanged
with the values fluctuating between 14.00◦ and 10.60◦. This was probably because the
grain composition of the CMS did not vary under the application of dry–wet cycling and
temperature. The saturated sample was used in the triaxial test to make the grain gap
smaller, leading to a small change in the friction angle.

Comparing Figures 7 and 8, the effect of dry–wet cycling on the cohesion was greater
than that on the friction angle. The degradation of cohesion was more significant than the
friction-angle variation. To further understand how the shear-strength deterioration of the
CMS changed with dry–wet cycling and temperature, we next obtained the cohesion degra-
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dation degree D. The parameter D had been applied to measure changes in the material
strength owing to environmental conditions [37], and it could be expressed as follows:

D =

(
1− SN

SO

)
× 100% (7)

where D is the degradation degree of cohesion, N indicate the number of cycles, SN is
the C-M-S cohesion after dry–wet cycling, and So is the C-M-S cohesion not subjected to
dry–wet cycling.

From Table 2 and Equation (7), we could infer that the cohesion decreased with
increasing in N. For cycles 1, 2, 3, 4, and 5, the average degradation degrees of cohesion
were 29.04%, 52.47%, 65.34%, 69.61%, and 71.30%, respectively. The result suggested that
the cohesion significantly degraded at first, and then gradually degraded with the increase
of dry–wet number. It was obvious that after the third cycle, the particles of the CMS
tended to be evenly arranged, and the surface friction tended to be stable.

To quantitatively study the degradation of cohesion during dry–wet cycling, an
exponential-function-fitting analysis was conducted on the cohesion degradation degree.
The fitting results are presented in Figure 9 and Table 3. The fitting function could be
expressed as follows:

D(N) = a− b · exp
(
−N

d

)
(8)

where a is the final degradation degree, b is the parameter that controls the deterioration
rate (a larger b corresponds to faster cohesion degradation), and d is the fitting parameter.
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From Table 4, we noted that the correlation index R2 fitted by Equation (8) were mostly
greater than 0.9; thus, it was clear that Equation (8) suitably fitted the relationship between
the deterioration degree and the N.

Table 4. Fitting parameters of cohesion degradation.

Parameter 0 ◦C 35 ◦C 70 ◦C

a 84.18 73.47 72.74
b 84.45 74.60 73.80
d 1.97 1.43 1.50

R2 0.99 0.98 0.98

Under the assumption that tan φb was independent of N, we could rewrite cohesion
cN as

cN =

[
1− a + b · exp

(
−N

d

)][
c0 + (ua − uw) tan φb

]
(9)
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where cN and c0 denote the cohesion for N and initial cohesion, respectively a1 the fitting
coefficient; (ua − uw) is the suction, which is obtained by the pressure plate device method.

The change in shear strength τN f of the CMS with N can be expressed as

τN f =

[
1− a + b · exp

(
−N

d

)][
c0 + (ua − uw) tan φb

]
+ (σ− ua) tan φ′ (10)

where (σ− ua) denotes the normal net stress, τN f denote C-MS shear strength with N, φ′

is the net friction angle.

3.3. Quantitative Analysis of C-M-S Microstructure

The average variation in the microscopic parameters as a function of dry–wet cycle
and temperature is shown in Figure 10. From Figure 10 we noted that the mean pore fractal
dimension increased linearly and the mean probability entropy decreased exponentially
with increasing in N. This result indicated that the reaction of water with CMS led to soil-
defect expansion. The pore fractal dimension increased owing to the water-sensitivity of the
minerals; the flaky microcrystallites separated the pores into many micropores, soil-particle
aggregation decreased, and irregular collocation weakened. In general, microfractures re-
duced the C-M-S integrity, thereby leading to a greater degree of particle reorientation. The
observed average change in these microstructural parameters proved that dry–wet cycling
significantly affected the structure of the CMS. Meanwhile, from Figure 10, we noted that
the mean fractal dimension and mean probability entropy remain nearly unchanged when
the temperature was below 35 ◦C. Above 35 ◦C, the mean fractal dimension prominently
increased with increasing temperature, corresponding to a significant increase of the pore
number of particles under high temperature.
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Next, to explore the correlation between the microscopic and strength parameters of
the CMS, we considered the two microscopic parameters (fractal dimension and probability
entropy) and the cohesion degradation degree.

From Figure 11 we observed that the cohesion decreased with increase of the fractal
dimension, with this reduction exhibiting a quadratic trend. The fractal dimension was
characterized by the internal-structure porosity and arrangement, and the increase of fractal
dimension corresponds to the increase of particle porosity and greater dispersion of soil
particles. The cohesion of fine-particle soil was mainly owing to the liquid bridge force
generated by water bound between soil particles and the combined “connecting” forces due
to the cementation of capillary water and soil. The presence of bound water surrounding
soil particles reduced the cohesive force of the fine-particle soil. Consequently, we could
conclude that the liquid bridge force and connection force formed by the bound water were
greatly reduced under the conditions of dry–wet cycling and high temperature.
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In contrast, from Figure 11, we noted that the soil cohesion exhibited a positive
correlation with the probability entropy; this result indicated the significant unidirectional
influence of dry–wet cycling on the microstructure, which was reflected as a significantly
weakened pore orientation degree, weakened dictional arrangement, and reduced soil
probability entropy. The smaller probability entropy corresponded to a greater anisotropy
rate, which resulted in a decrease of the shear strength.

The quantitative relationship between cohesion c and the two microscopic parameters
could be expressed as:

c = 3.948× exp( Dρ

0.009 ) + 9.245
R2 = 0.935

}
(11)

c = 1722.530Hn
2 − 575.040Hn + 54.197

R2 = 0.9856

}
(12)

where c denotes the cohesion, Dρ denote C-M-S fractal dimension, Hn denote C-M-
Sprobability entropy.

4. Discussion
4.1. Microstructure Variation on Dry–Wet Cycling

Dry–wet cycling reduces the amount of particle aggregation and particle contact,
which can weaken the bonding between particles and fine pores. Moreover, dry–wet
cycling changes the C-M-S microstructure from the stable surface-to-surface contact to
the chain structure; this process is different from that reported by Han [29] as regards
microstructure change. In the study, we examined the change in microstructure from
surface-to-surface to surface-to-edge contact for different amounts of water. We found
that dry–wet cycling increases the edge-debris amount, degree of particle fragmentation,
and discontinuities. Notably, the C-M-S minerals are mainly composed of clay minerals;
the montmorillonite/illite concentration was 12.5%, accounting for 20.83% of the clay
mineral composition [17], thereby indicating that clay minerals are widely distributed
in CMS and exist in various forms. Here, we noted that clay minerals exhibit a high
swelling-shrinking ability under dry–wet cycling [38–40]. Next, water is a polar molecule
and solvent, and CMS contains a variety of soluble components such as clay minerals [41].
These components may amplify the interactions between water and CMS. With the increase
of N, the contact relationship gradually changes. The change of the contact relationship
between the basic structural units of particles leads to significant softening deformation
of CMS. The presence of water could lead to the generation of liquid bridge forces, which
could modify the clay-mineral interparticle forces [42]. Under dry–wet cycling, the water
molecules in clay minerals evaporated leading to soil shrinkage and structural change
under dry environments, the liquid-bridge of water accelerated the structural damage
under wet conditions [43]. After dry–wet cycling, the liquid-bridge and interparticle forces
cluster the clay-mineral particles. Therefore, the C-M-S porosity is more after dry–wet
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cycling. After a certain N, C-M-S mineral ions precipitate and the solution concentration
increases until saturation [44].

4.2. Temperature-Induced Stress

The development of cracks in the CMS reflects the soil sample affected by temperature.
From Figure 12, we observed six prominent cracks on the sample surface for the temperature
setting of 0 ◦C. At 35 ◦C, cracks began to develop and penetrate the soil, thereby generating
a small number of tiny cracks. The sample surface exhibited increased fragmentation
due to fissures. At 70 ◦C, the primary cracks on the surface were connected, and the soil
particles at the crack edges were dissolved. The cracks became blurred and more tiny
cracks were formed. Here, we focused on the prominent cracks in the C-M-S samples at
different temperatures. However, the smaller fissures gradually increased with increasing
temperature. Thus, we could conclude that the temperature effected the soil pore structure
mainly in the form of smaller-cracks development.
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Figure 12. Crack generation in C-M-S samples at different temperatures after three dry–wet cycles:
(a) T = 0 ◦C, (b) T = 35 ◦C, (c) T = 70 ◦C.

Next, to explore the reason for the temperature’s cracking of soil samples, we ana-
lyzed the thermal stress of the C-M-S sample. As per thermodynamic principles, thermal
expansion of the soil constrains the generated thermal stress. Soil expansion and stress are
caused by changes in temperature. The temperature-induced stress could be obtained as
follows [45]:

σX(Y) =
αE

1− µ

[
−T(Z) +

1
L− 0.01

∫ L

0.01
T(Z)dZ

]
(13)

where α denotes the thermal expansion coefficient of the CMS (α = 0.5 × 10−6/◦C), E the
Young’s modulus (E = 2 × 106 Pa), µ is the Poisson’s ratio (ν = 0.25), and L is the radius of
CMS sample, T(Z) is the distribution of temperature along the Z-axis.

The distribution of temperature along the Z-axis could be obtained as follows [41]:

T(Z) = T0

[
1− Z2

m

]
(14)

where T0 denotes the temperature at the surface andm the temperature-distribution coeffi-
cient.

When Z = 0.01 m, T(Z) = 35, and when Z =0.0 4 m, T(Z) = 70. Substituting these
boundary conditions into Equation (14), we could calculate the distribution of temperature
along the X-axis as follows:

T(Z) = 32.67
[
1 + 714.28Z2

]
(15)

σX(Y) =
4
3

[
47335.53Z2 − 32.66

]
(16)
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From Equations (15) and (16), we could infer that the temperature-induced stress distri-
bution along the X-direction. Figure 13 depicts the temperature-induced stress distribution
along the X-direction, plotted as per Equation (16), wherein we noted that the temperature
decreases with increase of the internal depth of the sample. The compressive stress at the
inner center had a maximum value of 0.44 Mpa, whereas the temperature-induced tensile
stress at the outer boundary had a maximum value of 0.57 Mpa. The zero-stress point was
located at Z = 0.015 m, which corresponded to the transition point between compressive
and tensile stress. It could be observed that when Z ∈ (0.015, 0.04), if the stress is greater
than the tensile strength, cracks occur and develop. The tensile stress on the surface of the
sample was relatively large, which explained the surface-crack increase after each dry–wet
cycle and high-temperature exposure.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 17 
 

where 0T  denotes the temperature at the surface and m  the temperature-distribution 
coefficient. 

When Z = 0.01 m, T(Z) = 35, and when Z =0.0 4 m, T(Z) = 70. Substituting these 
boundary conditions into Equation (14), we could calculate the distribution of tempera-
ture along the X-axis as follows: 

2( ) 32.67 1 714.28T Z Z = +   (15)

2
( )

4 47335.53 32.66
3X Y Zσ  = − 

 (16)

From Equations (15) and (16), we could infer that the temperature-induced stress 
distribution along the X-direction. Figure 13 depicts the temperature-induced stress dis-
tribution along the X-direction, plotted as per Equation (16), wherein we noted that the 
temperature decreases with increase of the internal depth of the sample. The compressive 
stress at the inner center had a maximum value of 0.44 MPa, whereas the tempera-
ture-induced tensile stress at the outer boundary had a maximum value of 0.57 MPa. The 
zero-stress point was located at Z = 0.015 m, which corresponded to the transition point 
between compressive and tensile stress. It could be observed that when 

(0.015 0.04)Z  ,∈ , if the stress is greater than the tensile strength, cracks occur and 
develop. The tensile stress on the surface of the sample was relatively large, which ex-
plained the surface-crack increase after each dry–wet cycle and high-temperature expo-
sure. 

 
 

(a) (b) 

Figure 13. Temperature-induced stress distribution: (a) temperature distribution in the X–Z plane 
(b) temperature-induced stress distribution. 

4.3. Failure Mechanism of the K209 Landslide 
We next applied the above analysis to understand the failure mechanism of the K209 

landslide. Strain softening, swelling–shrinkage, low strength, and high temperature of 
the CMS can be identified as internal factors underlying the K209 landslide. Because the 
C-M-S medium contained quartz, kaolinite, and other minerals, several mixed-layer clay 
minerals were formed. The crystal units of montmorillonite/illite were composed of a 
three-layered structure. Because of the weak van der Waals force corresponding to the 
interlayer connections, exchange cations and water molecules could easily enter the 
crystal cells. The presence of soluble salt ions increased the thickness of the diffuse dou-
ble layer of clay particles. In particular, the presence of sodium ions in CMS significantly 
increased the diffusion-layer thickness. In addition, the distance between the cells in-
creased with the thermal effect and the entry of water molecules, thus leading to soil 
expansion (Figure 14). When the repulsive forces were greater than the attractive forces 
between the clay platelets, the individual clay platelets separated from the surface of the 
soil and formed a suspension in water [46]. The microstructure of these minerals could be 
damaged during dry–wet cycling and exposed to high temperatures and rainfall; thus, 

Figure 13. Temperature-induced stress distribution: (a) temperature distribution in the X–Z plane
(b) temperature-induced stress distribution.

4.3. Failure Mechanism of the K209 Landslide

We next applied the above analysis to understand the failure mechanism of the K209
landslide. Strain softening, swelling–shrinkage, low strength, and high temperature of
the CMS can be identified as internal factors underlying the K209 landslide. Because the
C-M-S medium contained quartz, kaolinite, and other minerals, several mixed-layer clay
minerals were formed. The crystal units of montmorillonite/illite were composed of a
three-layered structure. Because of the weak van der Waals force corresponding to the
interlayer connections, exchange cations and water molecules could easily enter the crystal
cells. The presence of soluble salt ions increased the thickness of the diffuse double layer
of clay particles. In particular, the presence of sodium ions in CMS significantly increased
the diffusion-layer thickness. In addition, the distance between the cells increased with the
thermal effect and the entry of water molecules, thus leading to soil expansion (Figure 14).
When the repulsive forces were greater than the attractive forces between the clay platelets,
the individual clay platelets separated from the surface of the soil and formed a suspension
in water [46]. The microstructure of these minerals could be damaged during dry–wet
cycling and exposed to high temperatures and rainfall; thus, the soil porosity gradually
increases, resulting in reduced soil shear strength. Once the shear strength dropped to a
critical value, the sliding of the soil body was accelerated, thereby leading to a landslide. To
sum up, the combination of these peculiar features ultimately resulted in the deterioration
of the engineering properties of landslide soils.
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5. Conclusions

In this study, we explored the effects of temperature and dry–wet cycling on the shear
strength and microscopic parameters of C-M-S samples. Based on our results, we drew the
following conclusions:

1. Dry–wet cycling and high temperatures significantly affect the shear strength. CMS
exhibits obvious strain-softening properties. The soil cohesion is negatively correlated
with the fractal dimension and positively correlated with the probability entropy.

2. The cohesion degeneration significantly increases before three dry–wet cycles; this
degeneration can be satisfactorily described by an exponential equation function.
Moreover, the cohesion exhibits a negative correlation with temperature. However,
dry–wet cycling and temperature hardly influence the frictional angle.

3. Dry–wet cycling induces a significant change in the macroscopic properties of CMS.
With the increase of N, the pore fractal dimension increases and the probability
entropy decreases. The macroscopic mechanics of CMS are correlated with changes in
the macrostructure parameters. Above 35 ◦C, temperature affects mainly the mean
fractal dimension.

4. Temperature induces thermal tensile stresses on the sample surface. The surface-crack
occurs once the high-temperature stress value is greater than 0.57 MPa.

5. Strain softening, swelling–shrinkage, low strength, and high temperature are the
main factors affecting the engineering geology of C-M-S slopes; these factors form
the material basis for rainfall-induced K209 shallow landslides. On the other hand,
dry–wet cycling, temperature, and rainfall conditions are external factors that induce
C-M-S-slope landslides.
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