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Abstract: The superior performance of the recent deep learning models comes at the cost of a
significant increase in computational complexity, memory use, and power consumption. Filter
pruning is one of the effective neural network compression techniques suitable for model deployment
in modern low-power edge devices. In this paper, we propose a loss-aware filter Magnitude and
Similarity based Variable rate Filter Pruning (MSVFP) technique. We studied several filter selection
criteria based on filter magnitude and similarity among filters within a convolution layer, and based
on the assumption that the sensitivity of each layer throughout the network is different, unlike
conventional fixed rate pruning methods, our algorithm using loss-aware filter selection criteria
automatically finds the suitable pruning rate for each layer throughout the network. In addition,
the proposed algorithm adapts two different filter selection criteria to remove weak filters as well as
redundant filters based on filter magnitude and filter similarity score respectively. Finally, the iterative
filter pruning and retraining approach are used to maintain the accuracy of the network during
pruning to its target float point operations (FLOPs) reduction rate. In the proposed algorithm,
a small number of retraining steps are sufficient during iterative pruning to prevent an abrupt drop
in the accuracy of the network. Experiments with commonly used VGGNet and ResNet models on
CIFAR-10 and ImageNet benchmark show the superiority of the proposed method over the existing
methods in the literature. Notably, VGG-16, ResNet-56, and ResNet-110 models on the CIFAR-10
dataset even improved the original accuracy with more than 50% reduction in network FLOPs.
Additionally, the ResNet-50 model on the ImageNet dataset reduces model FLOPs by more than 42%
with a negligible drop in the original accuracy.

Keywords: convolution neural network; filter pruning; weight pruning; loss-aware pruning; pruning
criterion

1. Introduction

Deep neural networks (DNNs) have achieved remarkable performance in many ap-
plications such as object detection, image segmentation, medical imaging, surveillance
systems, etc. Mainly the emergence of fast graphics processing units (GPUs) with huge
memory bandwidth and computational power enabled the development of accurate and
large-size DNNs. The number of layers in modern DNNs with wider and deeper archi-
tectures can reach tens of thousands with billions of parameters [1]. However, it comes
at the cost of increased model size, memory use, power consumption, and heavy com-
putation requirements. Bianco et al. [2] presents a nice ball chart reporting evolution of
DNN models in terms of accuracy on the ImageNet-1k [3] validation set with respect to
the computational complexity over the past few years. It is challenging to deploy such
complex DNNs in portable devices with limited resources (e.g., memory, bandwidth, en-
ergy, etc.). Therefore, in order to deploy those models on resource-constrained low-power
edge devices (e.g., mobile phones, smart wearable devices, drones, robots, etc.), it is essen-
tial to reduce the computational cost and storage demand of modern DNNs. To achieve
this goal, several methods have been developed including model compression, neural
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architecture search (NAS) [4,5], hardware optimization [6,7], and algorithm hardware
co-design [8,9]. Among them, CNN model compression can be achieved with several
techniques such as pruning [10–16], quantization [17–19], knowledge distillation [20,21],
and tensor decomposition [22,23].

Pruning is a promising approach for neural network compression that can be divided
into two main categories, weight pruning (e.g., [10,11]), and filter pruning (e.g., [13,24,25]).
Weight pruning removes the individual entries in the filter or connection in fully connected
layers and the resulting network is unstructured and sparse. Filter pruning, on the other
hand, removes the unimportant or redundant filters from the network producing slimmed
yet structured model, still permitting dense matrix operations and suitable for any off-
the-shelf general-purpose hardware and libraries. Although weight pruning significantly
reduces the model size, specialized hardware and software are required to leverage the
full capacity of the resulting non-structured sparse model. In this paper, we focus on
filter pruning, which is also a preferred method for convolution neural network (CNN)
model compression and acceleration (FLOPs reduction) to provide a solution for model
deployment in devices with low computing power and memory requirements.

The key to filter pruning is the selection and removal of the least important filters in
terms of overall accuracy degradation. For this, we need to define the pruning policies,
which include pruning criteria and pruning rate. Filter ranking with certain criteria [13,24],
minimization of reconstruction error [26,27], and redundancy estimation using similarity
calculation [15,16] are the three main branches of filter pruning. Pruning unimportant filters
in terms of their magnitude via l1-norm (Li et al. [24]) or l2-norm (He et al. [13]) criteria is
the most commonly used filter pruning criteria. Besides filter magnitude, filter similarity
information is also an important filter selection criterion for removing redundant filters.
This paper utilizes both the filter magnitude and similarity information to remove both
unimportant and replaceable filters. It is important to determine the appropriate pruning
rate for each layer. Most existing methods use a single pruning rate for different layers.
However, the convolution layers in CNNs are not independent and filters in different
layers have different distributions and importance, therefore the fixed-rate pruning is not
suitable. The variable rate filter pruning across different convolutional layers is proved to
be an effective method in reconstructing the original accuracy. In this paper, we also use
different pruning rates for each convolution layer, which is in fact automatically identified
by the proposed iterative pruning algorithm. The main focus of any pruning algorithm
is to minimize network loss while removing as many filters as possible. Consequently,
in recent years loss-aware filter pruning methods are gaining popularity. The proposed
pruning algorithm, in every pruning iteration, globally searches for the set of filters from
the whole network which is least important in terms of overall network loss. The pruning
algorithms presented by He et al. [13,15,16] claim that soft filter pruning, i.e., keeping
track of pruned filters and updating them during training, has proven to be more effective
as compared to the conventional train-prune-retrain pipeline. But, the disadvantage is
that filter selection and pruning from the original network should be performed in every
training epoch resulting in increased computational cost. Therefore in this paper, we used
a hard filter pruning approach, i.e., whenever the filter is selected for pruning, the selected
filter along with its connections in the network are permanently removed. The advantage
of this approach is that once the pruning is completed the resulting slimmed network with
reduced complexity can be used for final retraining. Moreover, the proposed technique is
evaluated on relatively simple VGGNet to complex ResNet architectures using CIFAR-10
and ImageNet benchmark datasets.

The main contributions of this paper are summarized as follows:
• We analyze several magnitudes and similarity based filter selection criteria and

utilized both criteria in designing the pruning algorithm. The filters are pruned in a
hard manner, i.e., if the filter is selected for pruning, it is permanently removed and
the network is rearranged for further processing.
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• Loss-aware variable rate pruning is used across different layers of the network which
is more effective compared to fixed-rate pruning. The optimal pruning rate for each
layer is automatically identified.

• To show the effectiveness of the proposed pruning algorithm the commonly used
VGGNet and ResNet are evaluated on CIFAR-10 and ImageNet benchmark datasets.
Detailed analysis of the pruning and retraining process shows how to reduce the
overall cost of the pruning algorithm.

The remainder of this paper is organized as follows: Section 2 describes some relevant
prior work in network pruning. Then, we present a detailed process of the proposed
pruning algorithm, MSVFP, in Section 3. This section includes several filter selection
criteria along with a detailed pruning algorithm. In Section 4, a discussion on the exper-
imental evaluation of our method in comparison with state-of-the-art (SOTA) methods
is presented. We finally conclude the proposed algorithm in Section 5. Additionally, the
implementation code for this paper has been open sourced and available online
(https://github.com/ghimiredhikura/MSVFP-FilterPruning, accessed on 6 December 2022).

2. Related Works

The key idea in pruning is to remove the least important weights, filters, or even a
whole layer from the CNNs. The weight or connection pruning eliminates the unimportant
connections from the network resulting in an unstructured sparse network [10–12,28].
The filter or channel pruning eliminates the entire filter or channel retaining the original
structure of the network [13,14,16,24–27,29]. In contrast to filter pruning, sparse networks
after weight pruning require specialized hardware or software in order to achieve practical
acceleration. Besides conventional weight and filter pruning, the recently developed 1× N
pruning scheme by Lin et al. [30] removes the consecutive N output kernels with the
same input channels in order to accelerate the neural network via parallelized block-wise
vectorized operations on general central processing units (CPUs). The joint optimization
techniques presented by Wang et al. [31] and Han et al. [10] utilize other compression
techniques such as quantization and NAS along with pruning for better compression results.
A recent state of approaches to pruning in the literature is presented by Blalock et al. [32],
in which authors also provide the standardized benchmark and matrices to compare the
pruning results among different pruning schemes.

2.1. Weight Pruning

The early work on weight pruning prunes the weights below the threshold using itera-
tive connection pruning and fine-tuning. The pioneering work by LeCun et al. [33] utilizes
the second derivatives (Hessian matrix) of the loss function to prune each non-essential
weight. In the era of deep learning, the popular work on weight pruning by Han et al. [28]
demonstrates that plenty of weights below the threshold can be simply removed from
DNNs to achieve a significant compression ratio. The lottery ticket hypothesis (LTH),
presented by Frankle et al. [11], is another popular approach in weight pruning that shows
that dense, randomly-initialized neural network contains subnetworks (“winning tickets”)
when trained in isolation. Specifically, each pruned subnetwork is trained from scratch,
but the weights are initialized as the same initial weights used in the original network. Sev-
eral variants of LTH, such as Generalized LTH [34], Dual LTH [35], etc., are also developed
for weight pruning. While Han et al. [10,28] uses the constant global magnitude threshold
for weight pruning in the whole network, Ding et al. [12] uses the global compression ratio
to find the appropriate per-layer sparsity ratio. Aghasi et al. [36] formulated the connection
pruning as a convex optimization problem.

Although weight pruning can remove a significant number of connections without
damaging the original capacity of the network, it requires specialized hardware or soft-
ware to speed up inference. Due to irregular sparsity in weight matrices, it has limited
applications on general-purpose hardware.

https://github.com/ghimiredhikura/MSVFP-FilterPruning
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2.2. Filter Pruning

The main importance of filter pruning is to define some criteria to select unimportant
filters. Li et al. [24] calculate filter magnitude in terms of l1-norm is used to remove low-
norm filters. Again, He et al. [13] used l2-norm to remove the filters in a soft manner
and suggest that l2-norm criteria work slightly better than l1-norm criteria. Another
soft filter pruning, FPGM [15], prunes redundant filters using filter Euclidean similarity
criteria rather than pruning less important filters using magnitude criteria. A similar
soft pruning technique presented by He et al. [16] adaptively selects the most suitable
criteria for pruning via a meta-attribute of the network at the current state. The global
filter ranking algorithm, LeGR [37], can remove the required amount of bottom-ranked
filters to achieve a target pruning rate. ThiNet [26] formulated pruning as an optimization
problem, which prunes filters in the current layer and minimizes the reconstruction error in
the next layer. In contrast to ThiNet [26], NISP [27] focus on minimizing the reconstruction
error in the final response layer while pruning filters in the current layer. He et al. [14]
trained the differentiable criteria sampler to learn the most appropriate pruning criteria for
different layers. Also, Bayesian optimization-based variable rate one-shot filter pruning
is recently presented by Kim et al. [29], in which optimal pruning rates for each layer are
automatically identified. Recently, GFI-AP [25] extensively studies the filter importance
criteria for each layer and proposes that variable rate pruning across convolution layers
outperforms fixed rate filter pruning. Instead of selecting pruning filters using magnitude
or similarity criteria, Lin et al. [38] formulated the information preserving of pretrained
CNN filters as a matrix sketch problem, but they still use the fixed rate pruning for all
pruning layers in the network.

Filter pruning or structured pruning does not have limitations on specialized hardware
or software as entire filters are pruned and the original structure of the network still remains
intact. Therefore filter pruning is more favorable as compared to weight pruning.

3. Pruning Methodology

In this section, we will introduce several filter selection criteria, the overall algo-
rithm, and the tools used in the proposed technique. Researchers tend to use either filter
magnitude-based criteria or filter similarity-based criteria for filter selection and removal.
In this paper, we take advantage of both criteria and at the same time, we use automatically
calculated loss-aware dynamic pruning rates for each layer in the convolutional network.
The following subsections will describe each of these steps in detail.

3.1. Preliminaries

In this paper, we used similar mathematical notations as in [16]. Let us assume a
neural network has L layers. Ni and Ni+1 are the number of input and output chan-
nels in the ith convolution layer, respectively. Suppose Fi,j ∈ RNi×K×K is the jth filter in
the ith convolution layer, where K is the kernel size of the filter. Therefore, for the ith
layer, network consists set of filters denoted as Fi,j, 1 ≤ j ≤ Ni+1 and parameterized by
W (i) ∈ RNi+1×Ni×K×K, 1 ≤ i ≤ L. For simplicity, let us represent all 3-D filters Fi,j in ith
convolution layer as one dimensional vector X ∈ RNi+1×Mi , which means in ith convolution
layer there are Ni+1 filter vectors and each vector has length Mi = Ni × K× K.

3.2. Filter Selection Criterion

In the proposed algorithm our main focus is to iteratively select and remove the most
unimportant group of filters from convolution layers so that it will have minimal effect on
the accuracy loss during inference. Therefore at first, we will need to rank the importance
of filters within a layer using information from the filter itself. The filter magnitude using
norm or the measure of geometric similarity among filters are two widely used criteria to
rank the filter’s importance. We studied several of those criteria as follows.

(a) Filter Magnitude. In the early days of weight pruning, i.e., unstructured pruning,
researchers found that small weight values can be safely removed without hurting the
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network performance. The same goes for filter pruning, also known as structured pruning.
The filter norm values are used to calculate the overall filter magnitudes. Li et al. [24]
extensively demonstrated that filters with small norm values are less important as compared
to large norm filters and they can be safely removed. In this paper, we also used filter
norms to estimate filter magnitudes. If we represent jth filter Xj as x ∈ R1×Mi , its lp-norm
is calculated as

‖Xj‖p =
p

√√√√ Mi

∑
m=1
|xm|p (1)

Either l1-norm or l2-norm can be used to get the filter magnitude and filters with low
norm values will be dropped during pruning.

(b) Filter Similarity. While filter magnitude using norm is a good measure for re-
moving unimportant filters, the network still may contain unnecessary filters but with a
large magnitude. He et al. [15,16] proposed that not only the filter magnitude but filter
similarity scores can be used to rank filters for pruning. The filter that has the largest
similarity score among all other filters in the layer can be safely removed because such a
filter is considered redundant and the information loss due to the removal of such a filter
can be easily recovered by the remaining filters in the layer. Therefore, in this paper, we
also utilize the filter similarity measures in addition to norm-based magnitude criteria for
removing unimportant filters. Here we studied three different filter similarity estimation
methods having different properties from each other.

Euclidean Similarity. The similarity measurement using Euclidean distance depends
upon the magnitude of two vectors. The Euclidean similarity between two filter vectors
x ∈ R1×Mi and y ∈ R1×Mi is calculated as

Deucl(x, y) =

√√√√ Mi

∑
m=1
|xm − ym|2 (2)

Cosine Similarity. Cosine similarity measures the cosign of angles between two vectors
that determine if two vectors are pointing in the same direction. The Cosine similarity
between two filter vectors x ∈ R1×Mi and y ∈ R1×Mi is calculated as

Dcos(x, y) = 1− ∑Mi
m=1(xm × ym)

∑Mi
m=1 x2

m ×∑Mi
m=1 y2

m
(3)

Normalized Cross Correlation (NCC) Similarity. Unlike cosign similarity, NCC is invariant
to scale and shift. In image processing, NCC is a good measure for template matching
which is robust to exposure and lighting. Therefore, in this paper, NCC is also studied
to measure the similarity between filters. The NCC similarity between two filter vectors
x ∈ R1×Mi and y ∈ R1×Mi is calculated as

Dncc(x, y) = 1− 1
Mi

Mi

∑
m=1

(xm − µx)(ym − µy)

σxσy
(4)

where µx, µy are the mean and σx, σy are the standard deviation of vector x and y.
The goal of filter selection using similarity criteria is to find a filter that is most similar

to all other filters within the layer. The similarity score for each filter will be calculated
using one of the similarity estimation methods described above. Let us consider we choose
Euclidean distance (Equation (2)) to calculate the similarity value between two filter vectors.
The final similarity score for jth filter is estimated as an average of similarity values with all
other remaining filters in the layer. This score will be used to decide if we can remove this
filter during pruning. Therefore, the similarity score for a jth filter in a ith convolutional can
be formulated as
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S(Xj) =
∑

Ni+1
p=1,p 6=j D(Xj,Xp)

Ni+1 − 1
(5)

where D(Xj,Xp) is the similarity value between jth and pth filter calculated using
Equations (2), or (3), or (4).

3.3. Pruning Algorithm

As stated earlier, at each pruning iteration, after selecting the set of unimportant filters
using filter important estimation criteria, the pruning is carried out from the particular
convolution layer in which network loss is minimal. This means we use a greedy search
approach to find the optimal set of filters at each pruning iteration, which results in variable
rate pruning for each layer. During pruning, in each pruning iteration, the loss estimation
using the full training dataset is computationally expensive, therefore randomly sampled
small subset of the training dataset is used for this purpose.

Given a dataset D, D′ is the randomly sampled small subset of this dataset. We
denote W ′(i) as the filter of the ith layer after pruning, and N′i+1, the number of filters
after pruning. Now, the estimation of accuracy loss during each pruning step is denoted
as Loss(D′|W ′). In each pruning iteration, we temporarily prune each layer and select
the layer with minimal accuracy loss. The number of filters to be pruned in each step
is calculated as Ni+1 × αs, where αs is the step pruning rate. In order to avoid excessive
pruning from the single convolutional layer, we limit the maximum pruning rate of a layer
as αmax. For example, if αmax = 70%, at max Ni+1 × 70% filters can be pruned from ith
convolutional layer.

The filter magnitude and filter similarity score are two different criteria for measuring
filter importance. In our paper, we take advantage of both criteria to get optimal accuracy
of the model after pruning. We design the pruning algorithm in such a way that we can
input the partition rate for desired pruning ratio into two criteria. The ultimate goal of
network pruning is to reduce the FLOPs in the network. Therefore instead of filter pruning
rate, our algorithm directly takes the FLOPs reduction rate (P) as the desired pruning rate
and pruning is carried out iteratively until the desired FLOPs reduction rate is achieved.
If f f lop(W ′) is the total FLOPs of pruned networkW ′, the FLOPs reduction rate over the
original network is calculated as

P ′ = 1−
f f lop(W ′)
f f lop(W)

(6)

At first, unimportant, low-magnitude filters are pruned using norm-based criteria (e.g.,
l1-norm), and in the next step, redundant filters are pruned using similarity-based criteria
(e.g., Euclidean similarity). The reason behind pruning low-magnitude filters at first is that
the similarity criterion is able to remove redundant filters even if their magnitude is large.
If the pruning weight for magnitude criteria is wmag among two criteria, a total of P ×wmag
FLOPs reduction is achieved using magnitude criteria, and the remaining P × (1− wmag)
FLOPs reduction is achieved using similarity criteria. Therefore according to the value
of wmag we can decide what portion of filters are removed using filter norm magnitude
criteria or filter similarity criteria to achieve the target pruning rate. For example, if we set
wmag = 0.5, almost the same number of filters will be removed using each criterion.

The detailed pruning steps of the proposed approach are summarized in Algorithm 1.
Given the training dataset (D) and pretrained model (W), the algorithm iteratively prunes
a certain percentage of filters from each selected layer until the target FLOPs reduction
rate is achieved. As we partition pruning among two filter selection criteria, if the current
FLOPs reduction rate is in the range from 0 to P × wmag (Line 5), magnitude based pruning
(Line 6–11) is used. During this process, the algorithm scans through each layer (Line 6)
and temporarily prunes a small set of filters (Ni+1 × αs) in order to generate the set of
candidate pruned modelsW∗(i) (Line 9). For each layer, we limit the maximum number of
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pruning filters to Ni+1× αmax (Line 7) to avoid excessive pruning from a single convolution
layer. Similarly, if the current FLOPs reduction rate is in the range from P × wmag to P
(Line 12), the filter similarity based pruning (Line 13–18) is used to generate set of candidate
pruned models. Now, for the current pruning iteration, the pruned model that has minimal
accuracy loss among candidates is selected (Line 20) and pruning is made permanent.
In order to prevent the large accuracy drop during pruning, after each βP FLOPs reduction
rate, the pruned model will be fine-tuned for a small number of epochs (epoch f t) (Line 22).
Once desired pruning rate is achieved, the pruned model will be retrained for several
epochs (epochrtend − epochrtstart) to get the final pruned model (Line 27).

Algorithm 1 Algorithm of MSVFP

Input: training data (D), pretrained model (W)
1: Given: target FLOPs reduction rate (P), step pruning rate (αs), max pruning rate

(αmax), weighted for magnitude criteria (wmag), fine-tune FLOPs reduction interval (βP ),
number of finetune epochs during pruning (epoch f t), final retrain start epoch number
(epochrtstart), final retrain end epoch number (epochrtend)

2: Initialization: W ′ ←W , P ′ ← 0, P ′temp ← 0
3: Randomly sample dataset D′ from D
4: while P ′ < P do
5: if P ′ ≤ P × wmag then
6: for i← 1 to L do
7: if N′i+1 ≥ Ni+1 × αmax then
8: Calculate magnitude of filters using Equation (1) inW ′(i)
9: W∗(i) ← Prune Ni+1 × αs filters with lowest magnitude values

10: end if
11: end for
12: else
13: for i← 1 to L do
14: if N′i+1 ≥ Ni+1 × αmax then
15: Calculate similarity score of filters using Equation (5) inW ′(i)
16: W∗(i) ← Prune Ni+1 × αs filters with highest similarity scores
17: end if
18: end for
19: end if
20: W ′ ← arg min

W∗(i)
(Loss(D′|W∗(i))

21: Calculate P ′ using Equation (6)
22: if P ′ −P ′temp ≥ βP then
23: Fine-tuneW ′ to recover weights (epoch← 1 to epoch f t)
24: P ′temp ← P ′
25: end if
26: end while
27: Re-trainW ′ until convergence (epoch← epochrtstart to epochrtend)
Output: pruned model (W ′)

4. Experimental Results
4.1. Experimental Settings

Datasets and Baseline Architectures. To demonstrate the effectiveness and perfor-
mance of our pruning technique we conducted experiments on two commonly used
datasets, CIFAR-10 [39] dataset, and ImageNet [3] benchmark dataset. The CIFAR-10
dataset contains 50 k training images and 10k validation images of size 32× 32 catego-
rized into 10 classes. The ImageNet dataset contains 1.28 million training images and
50 k validation images categorized into 1k classes. We mainly focus on pruning the multi-
branch residual network structures (ResNet [40]) and evaluated them on both CIFAR-10
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and ImageNet datasets. Moreover, we have also pruned a relatively easy single-branch
VGGNet [41] and evaluated it on the CIFAR-10 dataset. The VGGNets are based on
the most essential features of CNN and contain sequential convolutions. For example,
the VGG-16 network used in our experiment consists of 16 sequential convolutional layers
and three fully connected layers. On the other hand, ResNet is designed with residual
blocks. The concept of shortcut connection in residual blocks is the main strength of
this type of network solving the vanishing gradient problem and allowing us to design
deeper architectures.

Training Setting. For training ResNet and VGGNet on the CIFAR-10 dataset, we use
the same training settings as in [42,43] and [15,24], respectively. Training ResNet on the
ImageNet dataset we used the default parameter setting from He et al. [40] and the same
data augmentation strategies used in official PyTorch [44] examples. After pruning, while
retraining the pruned network, the starting learning rate is set to 10% of the original learning
rate, while keeping the other settings the same as in baseline training. Although the same
number of training epochs are used in retraining the pruned network, we empirically found
that pruned network converges in less number of epochs as compared to baseline training.

Pruning Setting. We use the deep learning framework PyTorch [44] along with a
structural pruning tool developed by Fang [45] for pruning and fine-tuning the neural
network. In every pruning iteration, the pruned filters are permanently removed and the
network is rearranged for the next pruning iteration. The maximum pruning rate for each
layer is empirically set to αmax = 0.7, i.e., in each layer we limit the maximum number of
pruned filters to 70% of the original number of filters in that layer. This value makes sense
because by allowing too many filters to be removed from a single layer it will be difficult to
recover the baseline accuracy of the pruned model. Again, reducing the maximum limit to
a smaller value will limit the freedom for filter selection from a suitable layer in the network
as we will experiment with up to the 54% FLOPs reduction rate. We set αs = 0.1, which
means, in each pruning iteration we empirically prune 10% of the filters from the selected
pruning layer. During pruning, after every βP = 0.3 (i.e., 3%) network FLOPs reduction
rate, the pruned network is fine-tuned for a small number of epochs, which ranges from 1
to 3. This makes sure that network accuracy will not drop abruptly during pruning which
also helps the loss-aware filter selection to work effectively.

Evaluation Matrices. The primary goal of a structured pruning algorithm is to directly
reduce the computational requirement of the model without requiring any specialized hard-
ware. This can be achieved by reducing the required FLOPs of the model. The proposed
algorithm directly takes the FLOPs reduction rate as the target pruning rate. Given the
target pruning rate, average top-1 accuracy along with standard deviation from three
experiments on the CIFAR-10 dataset is used to evaluate the capability of the pruning.
As suggested by Joo et al. [46], we used both final accuracy and accuracy drop w.r.t. base-
line accuracy for performance evaluation. In addition, we used average from scratches [46]
with distinct baselines rather than using a single baseline while averaging the results from
different experiments. Again, on the ImageNet dataset, both top-1 and top-5 accuracy are
used to evaluate the performance. Unlike CIFAR-10 dataset, in the case of the ImageNet
dataset, we report results from a single experiment in order to limit the time and resource
requirements in training and pruning.

4.2. VGGNet on CIFAR-10

Table 1 shows the result of pruning VGG-16 on the CIFAR-10 dataset achieving a 34%
FLOPs reduction rate using different filter selection criteria. The first row in the table is the
baseline accuracy of pretrained network before pruning. We experiment with the pruning
of this pretrained network using different filter selection criteria and empirically found that
norm magnitude and euclidean similarity criteria are effective in retaining the accuracy of
the model. According to the provided wmag value in Algorithm 1 the proposed pruning
algorithm will use either magnitude criteria or similarity criteria or a combination of both.
From the Table 1, we can see that among similarity criteria, euclidean similarity produces
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a better result. The magnitude information seems to be the crucial information even in
similarity-based filter selection criteria because cosine and NCC similarity are invariant to
filter magnitude. The best result is obtained while removing half of the network FLOPs
with l1-norm criteria and another half with euclidean similarity criteria for the given FLOPs
reduction rate. As we can see in the Table 1, the original accuracy of the pruned model is
recovered with just 40 fine-tune epochs, and if we further increase the fine-tune epochs, the
accuracy of the pruned model surpassed the baseline accuracy. Table 2 shows comparison
of accuracy results with other similar state-of-the-art pruning methods. With a similar
pruning rate, the proposed algorithm achieved 94.02% accuracy of the pruned network
which is better as compared to results reported by PFEC [24], MFP [16], and FPGM [15].
Note that PFEC [24], and FPGM [15] use fixed-rate pruning while our method use loss-
aware variable rate pruning. Furthermore, even after reducing the VGGNet FLOPs by
more than 50% using the proposed algorithm, the pruned network is still able to retain its
original accuracy.

Table 1. Pruning VGGNet on the CIFAR-10 dataset using different filter selection criteria and a
different number of fine-tune epochs. ’FT epochs’ means ’Fine-tune epochs’.

Method wmag
Top-1 Acc (%)

40 FT Epochs 80 FT Epochs 160 FT Epochs

Baseline - 93.79 ± 0.23 93.79 ± 0.23 93.79 ± 0.23

Pruned
(l1-norm) 1.0 93.60 ± 0.14 93.71 ± 0.14 93.92 ± 0.01

Pruned (eucl) 0.0 93.60 ± 0.14 93.84 ± 0.06 93.92 ± 0.03
Pruned (cos) 0.0 93.48 ± 0.23 93.64 ± 0.12 93.69 ± 0.15
Pruned (ncc) 0.0 93.51 ± 0.15 93.69 ± 0.27 93.73 ± 0.07
Pruned (l1-norm
+ eucl) 0.5 93.75± 0.06 93.89 ± 0.03 94.02 ± 0.04

Note that bold numbers in the table indicate the best result.

Table 2. Comparison of VGGNet pruning on the CIFAR-10 dataset.

Method Baseline Top-1
Acc. (%)

Pruned Top-1
Acc. (%)

Top-1 Acc. Drop
(%) FLOPs (↓) (%)

PFEC [24] 93.58 ± 0.03 93.28 ± 0.03 0.30 34.2
FPGM [15] 93.58 ± 0.03 94.00 ± 0.13 −0.42 34.2
MFP [16] 93.58 ± 0.03 93.76 ± 0.08 −0.18 34.2
MSVFP(ours) 93.79 ± 0.23 94.02 ± 0.04 −0.23 35.1
MSVFP(ours) 93.79 ± 0.23 93.84 ± 0.08 −0.05 50.7

Note that bold numbers in the table indicate the best result.

4.3. ResNet on CIFAR-10

At first, as shown in Table 3, we test our pruning algorithm on ResNet-20 using the
CIFAR-10 dataset with different filter selection criteria while reducing network FLOPs by
54.5%. Similar to VGGNet pruning (Table 1), while pruning the ResNet-20 model (Table 3),
using single filter selection criteria, we found that l1-norm and euclidean similarity based
criteria are on the top among other filter selection criterion. Now, when we use both l1-norm
and euclidean similarity based criteria with equal weight the best pruning result is obtained
(see last row of Table 3). Therefore, we use equally weighted l1-norm and euclidean
similarity based filter selection criteria (wmag = 0.5) to evaluate our MSVFP algorithm
also on ResNet-32, ResNet-56, and ResNet-110 models with the CIFAR-10 datasets. These
depths are selected to show the robustness of the proposed pruning algorithms across small
to large ResNet models and are commonly used depths in the literature. Table 4 shows
the effectiveness of our method in comparison with several other state-of-the-art methods.
Only top-1 accuracy is shown in the table. Pruning methods such as SFP [13], FPGM [15],
and MPF [16] use soft filter pruning, which means, pruning is carried out at the end of
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each training epoch and those pruned filters are still updated in the next training epochs.
It is claimed that this process is easier to retain the model performance even after pruning.
In contrast, we use hard filter pruning, i.e., once the filter is selected for pruning in every
pruning iteration it will be removed permanently and network connections are rearranged.
The advantage is that, once pruning is completed, slimmed model requiring fewer FLOPs
will go through the final fine-tuning process. Although using hard filter pruning, with
53.4% FLOPs reduction on the ResNet-32 model, the proposed MSVFP retains its baseline
accuracy. Similarly, with more than 52% FLOPs reduction on ResNet-56 and ResNet-110,
the proposed MSVFP even improves the baseline accuracy with margins of 0.11% and
0.23% respectively. Overall, while evaluating our pruning method for ResNet on the
CIFAR-10 dataset with four different depths, in the case of ResNet-20 and ResNet-32, only
FPGM [15] produce slightly better results than our method and in the case of ResNet-56 and
ResNet-110, our method outperforms several other popular methods in literature including
FPGM [15] while pruning with similar pruning rates.

Table 3. Pruning ResNet-20 on the CIFAR-10 dataset using different filter selection criteria.

Method wmag Top-1 Acc. (%)

Baseline - 92.34 ± 0.09

Pruned (l1-norm) 1.0 91.72 ± 0.15
Pruned (eucl) 0.0 91.61 ± 0.27
Pruned (cos) 0.0 90.76 ± 0.22
Pruned (ncc) 0.0 90.77 ± 0.27
Pruned (l1-norm + eucl) 0.5 91.78 ± 0.17

Note that bold numbers in the table indicate the best result.

Table 4. Comparison of pruned ResNet models on the CIFAR-10 dataset. FLOPs (↓) (%) represents,
the FLOPs reduction rate between the baseline model and pruned model. “Acc. drop” is the top-1
accuracy difference between the baseline model and pruned model.

Depth Method Baseline Acc. (%) Pruned Acc. (%) Acc. Drop (%) FLOPs (↓) (%)

20

MIL [47] 91.53 91.43 0.10 20.3
SFP [13] 92.20 ± 0.18 90.83 ± 0.31 1.37 42.2
FPGM [15] 92.20 ± 0.18 91.99± 0.15 0.21 54.0
MSVFP(ours) 92.34 ± 0.09 91.78 ± 0.17 0.56 54.5

32

MIL [47] 92.33 90.74 1.59 31.2
SFP [13] 92.63 ± 0.70 92.08 ± 0.08 0.55 41.5
FPGM [15] 92.63 ± 0.70 92.82 ± 0.03 −0.19 53.2
LFPC [14] 92.63 ± 0.70 92.12 ± 0.32 0.51 52.6
MFP [16] 92.63 ± 0.70 91.85 ± 0.09 0.78 53.2
GFI-AP [25] 92.54 92.09 ± 0.15 0.45 42.5
MSVFP(ours) 92.73 ± 0.60 92.72 ± 0.50 0.01 53.4

56

PFEC [24] 93.04 93.06 −0.02 27.6
SFP [13] 93.59 ± 0.58 93.35 ± 0.31 0.24 52.6
FPGM [15] 93.59 ± 0.58 93.26 ± 0.03 0.33 52.6
HRank [48] 93.26 93.17 0.09 50.0
NPPM [49] 93.04 93.40 −0.36 50.0
LFPC [14] 93.59 ± 0.58 93.34 ± 0.08 0.25 52.9
MFP [16] 93.59 ± 0.58 93.56 ± 0.16 0.03 52.6
MSVFP(ours) 93.48 ± 0.45 93.59 ± 0.11 -0.11 52.7

110

PFEC [24] 93.53 93.30 0.23 38.6
MIL [47] 93.63 93.44 0.19 34.2
SFP [13] 93.68 ± 0.32 93.86 ± 0.21 −0.18 40.8
Rethink [50] 93.77 ± 0.23 93.70 ± 0.16 0.07 40.8
FPGM [15] 93.68 ± 0.32 93.85 ± 0.11 −0.17 52.3
HRank [48] 93.50 93.36 0.14 58.2
LFPC [14] 93.68 ± 0.32 93.07 ± 0.15 0.61 60.3
MFP [16] 93.68 ± 0.32 93.31 ± 0.08 0.37 52.3
MSVFP(ours) 93.69 ± 0.22 93.92 ± 0.52 −0.23 52.4

Note that bold numbers in the table indicate the best result.
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4.4. ResNet on ImageNet

We evaluate our pruning method with ResNet-18, ResNet-34, and ResNet-50 models
on the ILSVRC-2012 (ImageNet) dataset. Each model is evaluated with two different FLOPs
reduction rates to show the robustness of the proposed pruning method. The ResNet-18 and
ResNet-34 model is evaluated with 41% and 45% FLOPs reduction rate whereas ResNet-50
is evaluated with 42% and 53% FLOPs reduction rate. For all experiments on the ImageNet
dataset, we used combination l1-norm and euclidean similarity based filter selection criteria
with partition ratio wmag = 0.5 in Algorithm 1. The choice of those criteria and partition rate
is motivated by the results in Table 1 and Table 3 for VGGNet and ResNet models pruning
on the CIFAR-10 dataset. Table 5 demonstrate the superiority of our method with several
other state-of-the-art pruning methods such as SFP [13], FPGM [15], MetaPruning [51],
MFP [16], LFC [52], FuPruner [53], GFI-AP [25] etc. when pruning ResNet on ImageNet
dataset. The SFP [13], FPGM [15], and MFP [16] have competitive results with our method
but use time-consuming soft filter pruning. Also, an extra step is required to get slimmed
pruned model after final finetune as filters are not removed permanently during pruning.
In contrast, our method is simple, and the same training routine as the original model
training can be used for retraining the pruned model. From Table 5, we can see that,
with similar pruning rates, for the ResNet models with depths 18, 34, and 50, our method
consistently outperforms other listed methods in the table. Notably, for the ResNet-50
model, although our baseline accuracy is the highest among others, pruning with 42.4%
FLOPs reduction rate, there is only a 0.15% top-1 accuracy drop. Similarly, in the case of
the ResNet-34 model, when pruning with 41.1% FLOPs reduction rate, only our method
exceeds 73% top-1 accuracy. Again, in the case of the ResNet-50 model, with 42.4% FLOPs
reduction rate, our method is the first to exceed 76% top-1 accuracy. We also notice that as
depth increases accuracy drop w.r.t. baseline model accuracy decreases. For example, with
41% FLOPs reduction rate, for the ResNet-18 model, top-1 accuracy is dropped by 2.16%,
whereas for the ResNet-34 model, the top-1 accuracy drop is only 0.85%. Moreover, for the
ResNet-50 model, with only a 1.11% top-1 accuracy drop, we can achieve almost 54% FLPOs
reduction rate.

Table 5. Comparison of pruned ResNet models on ImageNet dataset. “FLOPs (↓) (%)” represents the
FLOPs reduction rate between the baseline model and pruned model. “Acc. (↓) (%)” represents the
accuracy difference between the baseline model and pruned model.

Baseline Pruned Top-1 Acc. Baseline Pruned Top-5 Acc. FLOPs
Depth Method Top-1 Acc. Top-1 Acc. (↓) Top-5 Acc. Top-5 Acc. (↓) (↓)

(%) (%) (%) (%) (%) (%) (%)

18

MIL [47] 69.98 66.33 3.65 89.24 86.94 2.30 34.6
SFP [13] 70.28 67.10 3.18 89.63 87.78 1.85 41.8
FPGM [15] 70.28 68.41 1.87 89.63 88.48 1.15 41.8
FuPruner [53] 69.76 68.24 1.52 89.08 88.21 0.87 41.8
MFP [16] 70.28 68.31 1.97 89.63 88.28 1.35 41.8
MSVFP(ours) 70.65 68.49 2.16 89.73 88.44 1.29 41.4
MSVFP(ours) 70.65 68.43 2.22 89.73 88.40 1.33 45.4

34

PFEC [24] 73.23 72.17 1.06 - - - 24.2
SFP [13] 73.92 71.83 2.09 91.62 90.33 1.29 41.1
FPGM [15] 73.92 72.63 1.29 91.62 91.08 0.54 41.1
FuPruner [53] 73.32 72.14 1.18 91.42 90.66 0.75 41.1
MSVFP(ours) 74.04 73.20 0.84 91.70 91.14 0.56 41.1
MSVFP(ours) 74.04 73.07 0.97 91.70 91.21 0.49 45.3
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Table 5. Cont.

Baseline Pruned Top-1 Acc. Baseline Pruned Top-5 Acc. FLOPs
Depth Method Top-1 Acc. Top-1 Acc. (↓) Top-5 Acc. Top-5 Acc. (↓) (↓)

(%) (%) (%) (%) (%) (%) (%)

50

ThiNet [26] 72.88 72.04 0.88 91.14 90.67 0.47 36.7
SFP [13] 76.15 74.61 1.54 92.87 92.06 0.81 41.8
FPGM [15] 76.15 75.50 0.65 92.87 92.32 0.21 42.2
MetaPruning [51] 76.60 75.40 1.20 - - - 51.2
LFC [52] 75.30 73.40 1.90 92.20 91.40 0.80 50.0
MFP [16] 76.15 75.67 0.48 92.87 92.81 0.06 42.2
MFP [16] 76.15 74.86 1.29 92.87 92.43 0.44 53.5
GFI-AP [25] 75.95 74.07 1.88 - - - 51.9
MSVFP(ours) 76.64 76.49 0.15 93.15 92.90 0.25 42.4
MSVFP(ours) 76.64 75.53 1.11 93.15 92.60 0.55 53.5

Note that bold numbers in the table indicate the best result.

4.5. Ablation Study
4.5.1. Magnitude Criteria Weighted w.r.t. Similarity Criteria

The proposed algorithm uses both magnitude and similarity criteria for filter selection
during pruning. Therefore it is required to pass the parameter defining the pruning ratio
for magnitude-based pruning and similarity-based pruning to match the final pruning
ratio. This is defined by wmag parameter which ranges from 0 to 1. If we set wmag to 0,
only similarity-based criteria is used for filter selection. Similarly, if we set wmag to 1, only
magnitude criteria is used for filter selection. We experiment with different values of wmag
for VGGNet pruning on the CIFAR-10 dataset, which is show in Figure 1. It is found that
setting wmag value around 0.5 produce the best results. Therefore, for all experiments in
this paper, we set wmag to 0.5, which means we set equal weight for magnitude criteria and
similarity criteria.

Figure 1. VGGNet validation accuracy across various values of wmag on the CIFAR-10 dataset.

4.5.2. Analysis of Pruning and Fine-Tuning

We analyze the pruning and fine-tuning process in detail for the ResNet-18 model
using the ImageNet dataset. Figure 2 shows the validation accuracy across 0 to 100 training
epochs. Once the baseline training is completed, as shown in Figure 3, iterative pruning is
carried out to achieve desired FLOPs reduction rate. In order to maintain the validation
accuracy, fine-tuning is performed at least for one training epoch after every 3% FLOPs
reduction rate, which is obtained empirically. The starting learning rate for fine-tuning is set
to 10% of the original learning rate. From Figure 3 we can see that after the first 3% FLOPs
reduction, and after fine-tuning, the validation accuracy drops from 70.65% to 63.26%. This
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drop is obvious because also in Figure 2 we see that at the same learning rate, the original
network accuracy is also around 64%. During pruning, the accuracy maintains above 61%
achieving a 54% FLOPs reduction rate, and finally reaches 68.43% after completion of the
final fine-tuning. Figure 3 also shows how abruptly accuracy drops if fine-tuning is not
performed during pruning. That means in Algorithm 1, if we skip Lines 22 ∼ 25, accuracy
drops to almost 1% as soon as we reach FLOPs reduction rate to 40%. As shown in Figure 2,
we start final fine-tuning from 25th epoch, because during pruning we also run fine-tuning
at least 15 times. Therefore it is not necessary to start fine-tuning from 0th epoch. Also,
it is seen that pruned model converges in the early epoch and fine-tuning is not required
until the 100th epoch. Therefore, a much less number of training epochs are required for
fine-tuning the slimmed model compared to the baseline training.

Figure 2. Validation accuracy across training epochs while baseline training and fine-tuning the
pruned ResNet-18 model on the ImageNet dataset.

Figure 3. Validation accuracy while pruning the baseline ResNet-18 model on the ImageNet dataset
across different FLOPs reduction rates. After every 3% FLOPs reduction, fine-tuning is performed for
one epoch to prevent the accuracy drop.

5. Conclusions and Future Work

In this paper, we propose a simple yet effective variable rate filter pruning method
for deep CNN acceleration, named MSVFP. The proposed method utilizes both magnitude
and similarity-based filter selection criteria while preventing abrupt accuracy loss during
pruning. The optimal set of filters in terms of model overall loss is selected and pruned
from the specific layer of the network until the target pruning rate is achieved. The pruning
algorithm is designed in such a way that in every pruning iteration pruning CNN layer
and the set of filters to be pruned are automatically selected. Consequently, instead of
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fixed rate pruning, at the end of the pruning process, filters from each layer with different
pruning rates are removed. The pruning results on the small and large-scale benchmark
datasets with different CNN architectures show that MSVFP advances several popular
state-of-the-art methods. In the case of VGG-16 pruning on the CIFAR-10 dataset, even
after pruning more than 50% of the network FLOPs, there is no accuracy drop. Again,
while pruning ResNet-56 and ResNet-110 on the CIFAR-10 dataset with more than 52%
FLOPs reduction rate, the top-1 accuracy of the pruned model even advances by 0.11% and
0.23%, respectively. Also, while pruning the ResNet-50 model on the ImageNet benchmark
dataset with more than 53% FLOPs reduction rate, there is only 1.11% top-1 and 0.55%
top-5 accuracy drop w.r.t. baseline accuracy.

In the future, we will focus on replacing the traditional train-prune-retrain method
used in this paper with a more advanced pruning-while-training technique utilizing a
similar filter selection strategy. Again, although we tried to minimize computation cost
using a small subset of the training dataset for loss estimation due to pruning, it will be
better to completely remove the involvement of the training dataset during the pruning
process. In the proposed algorithm we manually partition the whole filter selection criteria
among the magnitude criteria and similarity criteria. In future work, instead of manual
partitioning, we may also consider the automatic selection of optimal filter selection criteria
from the pool of available criteria, as different layers have various peculiarities and the
distribution of filters across layers and networks with various benchmark datasets is also
different. Moreover, it will be interesting to see the effectiveness of the proposed method
on more advanced CNN applications such as object detection, image segmentation, face
recognition, etc.
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