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Abstract: Brain tumor is a severe health condition that kills many lives every year, and several of
those casualties are from rural areas. However, the technology to diagnose brain tumors at an early
stage is not as efficient as expected. Therefore, we sought to create a reliable system that can help
medical professionals to identify brain tumors. Although several studies are being conducted on this
issue, we attempted to establish a much more efficient and error-free classification method, which
is trained with a comparatively substantial number of real datasets rather than augmented data.
Using a modified VGG-16 (Visual Geometry Group) architecture on 10,153 MRI (Magnetic Resonance
Imaging) images with 3 different classes (Glioma, Meningioma, and Pituitary), the network performs
significantly well. It achieved a precision of 99.4% for Glioma, 96.7% for Meningioma, and 100% for
Pituitary, with an overall accuracy of 99.5%. It also attained better results than several other existing
CNN architectures and state-of-the-art work.
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1. Introduction

A brain tumor is a mass developed by abnormal cell growth and division inside the
skull. Brain tumors are rare and can be fatal [1]. They come in a variety of shapes and
sizes and can arise in any place and with varying image intensities [2]. Depending on their
origin, brain tumors are classified as primary or metastatic. Primary cancer cells originate
in brain tissue [3], whereas metastatic cancer cells become malignant in any other part of
the body and spread to the brain [1]. A timely diagnosis of a brain tumor is critical for
optimal treatment planning and patient care.

Various medical imaging techniques are applied to collect information about tumors.
Imperative innovations incorporate Computed Tomography (CT), positron emission to-
mography (PET), Single-Photon-Emission Computed Tomography (SPECT), Magnetic
Resonance Spectroscopy (MRS), and Magnetic Resonance Imaging (MRI). These technolo-
gies can be used in conjunction to gather more specific information about tumors. MRI,
on the contrary, is the most commonly employed method because of its beneficial prop-
erties. MRI is a non-invasive in vivo imaging method that uses radiofrequency waves
to trigger target tissues, causing them to form internal images under the influence of a
superconducting magnet [4]. The scan delivers hundreds of 2D image slices with good soft
tissue contrast in MRI collection, while not using ionizing radiation [5,6]. During image
acquisition, excitation and repetition periods are modulated to create images of varied
MRI sequences.

The radiologists rely on their training and experiences to manually determine the
abnormality of the brain MRI, then categorize them into tumor types [7]. Early detection
and classification of brain tumors play a key role in the evaluation case and, consequently,
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contribute to the selection of the most appropriate treatment to save patients’ lives [8]. One
of the major difficulties of manual detection is the chance of misclassification of the tumor,
which can lead to the wrong treatments for the patients. In addition, as time plays an
important role, manual detection has no major advantage here. Therefore, the desire for an
automated and quick detection technique is expected [9].

The classification of brain tumors into subgroups is a more difficult scientific problem.
The factors causing the problems are brain tumors that vary widely in form, size, and
intensity [10], and tumors of different pathological categories that may seem identical [11].
We are keen on classifying abnormal types and normal brain images in this study. The MRI
dataset used in this study includes images of the brain without tumors, as well as three
different forms of brain tumors. Glioma, meningioma, and pituitary tumors account for
approximately 45%, 15%, and 15% of all brain tumors, respectively, in clinical practice [12].
This work is more sophisticated and demanding than conventional binary classification
(normal and abnormal), as not only can it identify the problem, it also has the ability to
categorize the abnormalities. Machine learning techniques are now frequently utilized in
medical imaging [6]. To estimate new topic labels in supervised techniques, an algorithm
is used to find a mapping function of input variables and their related output labels. The
primary goal is to find intrinsic patterns in training data using techniques, such as Artificial
Neural Network (ANN) [13], Support Vector Machine (SVM), and K-Nearest Neighbors
(KNN) [14]. Unsupervised learning, on the other hand, is based solely on input variables,
as shown by fuzzy c-means [15] and the Self-Organization Map (SOM) [16]. To establish
learning, the features of the training images must be extracted, which are typically grayscale,
texture, and statistical characteristics. These characteristics are called handmade features
and they require the expertise of a specialist with considerable knowledge and the ability
to select the most vital aspects. Furthermore, this operation takes a long time and is prone
to errors when dealing with large amounts of data [17].

Deep learning was recently introduced to the medical imaging area and has shown
substantial success in classification problems, specifically the multiclass classification prob-
lem with better accuracy [18–22]. Deep learning algorithms use a matrix of multiple layers
of asymmetric processing techniques to extract features.

Convolutional Neural Network (CNN) comprises several convolutional layers, pool-
ing layers, and fully connected layers for segmentation and feature extraction, reduc-
tion of the spatial size of the representation, and classification [23,24]. The frequently
used activation functions in CNN include ReLU (Rectified Linear Unit) [25], FReLU [26],
LeakyReLU [27], Swish [28], ACON (Activate or Not) [29], and SoftMax [30].

In this study, our goal was to create an artificial model which can predict the types of
tumors accurately within a few seconds. The proposed model is a modified CNN model,
inspired by the Visual Geometry Group (VGG) architecture, which performs significantly
well than many other architectures. Working with medical images is harder than usual,
because of the sensitivity of the results, as a wrong diagnosis can result in a life-threatening
condition. Therefore, our focus was primarily on getting a high accuracy that can exceed
the results of other commonly used architectures.

After the introduction, we discuss related works regarding our study and their research
analogy in the Related Works section. Training of the model, along with performance
measurements presented in the Materials and Methods section. We have analyzed the
result of our proposed architecture in the Results section, discussed the findings and
compared its performance with other methods in the Discussion section. Finally, we
conclude the paper in the Conclusions section.

2. Related Works

Various approaches have been developed in recent years to recognize brain tumors on
MRI images. SVM and Neural Networks (NN) are the most widely used techniques due to
their excellent performance over the past decade [31].
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A Probabilistic Neural Network (PNN) is used where the decision-making strategy
partitioned into extraction utilizing vital component investigation and classification using
PNN, with an accuracy ranging from 100% to 73% depending on the spread value [32].

A CNN-based deep learning model is proposed for categorizing various forms of brain
tumors, where the architecture has a classification accuracy of 96.13% for the categorization
of brain tumor types [33].

Extreme Learning Machine of Local Receptive Fields (ELM-LRF) is a new deep learn-
ing paradigm that covers two distinct structures in its body [31]. An ELM-LRF model
is created with four adjustable parameters, the convolution filter size r, the number of
convolution filters K, the pooling size, and the regulatory coefficient C. The proposed
ELM-LRF approach yielded a classification accuracy of 97.18% [34].

A Deep Neural Network (DNN) is used as a discriminator in a Generative Adversarial
Network (GAN) to extract powerful features and grasp the structure of MRI images in its
convolutional layers, resulting in 95.6% accuracy [35].

Multiple Kernel-Based Probabilistic Clustering (MKPC) is used to segment the image,
and a deep learning classifier is used to categorize it, achieving an accuracy of 0.83% [36].

A CNN technique is proposed, where the Fuzzy C-Means (FCM) method is used for
brain segmentation and texture and form properties from these segmented areas were
recovered before being sent into the SVM and DNN processors, with an accuracy of
97.4% [37].

A tiny kernel CNN model can also be used for the classification with 3 × 3 kernels
for all convolutional layers with 1 stride. This result continues to demonstrate a 90.67%
precision in the augmented dataset [38].

In a study, a DNN classifier combined with the Discrete Wavelet Transform (DWT)
achieved a good result of 96.77% in a tiny dataset [39].

A deep learning technique is provided to classify multimodal brain tumors using a
linear contrast augmentation approach. Before fusion, features are extracted using transfer
learning from two distinct CNN models. ELM is used to classify the robust properties
obtained by this technique [40].

Several researchers employed pre-trained CNN architectures and fine-tuned them
for brain tumor classification. The proposed categorization system extracts attributes
from brain MRI images using a pre-trained GoogLeNet. After that, by using proven
classifier models and a five-fold cross-validation technique, the experiment obtains 97%
accuracy [41].

The Grab cut method is used to properly segment the real lesion [17]. This study shows
segmentation utilizing Unet architecture with ResNet50 as a baseline. The application of
evolutionary methods (ResNet50, DenseNet201, MobileNet V2, and InceptionV3) and
reinforcement learning through transfer learning achieves an accuracy of 91.8%, 92.8%,
92.9%, 93.1%, and 99.6%, respectively, in the categorization of brain cancers.

A multi-level CNN model is introduced, where pre-trained models, such as ResNet-50,
VGG-16, and Inception V3, are used to generate trained parameters, achieving 99.89%
classification accuracy [42].

A hybrid deep learning model called DeepTumorNet is proposed, which is generated
by modifying the layers of GoogleNet architecture, with the addition of leaky ReLU
activation function. This architecture achieved 99.67% accuracy [43].

A differential deep convolutional neural network model is suggested, where the
differential feature maps of CNN are derived using differential operators, which resulted
in an accuracy of 99.25% [44].

Some of the other state-of-the-art work are shown in Table 1.
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Table 1. Some other state-of-the-art work.

Author(s) Concept Method Findings Gaps

Deepak, Ameer [41] Designed a model
to classify three

pathological types
of brain tumor.

Using deep transfer learning
and a pre-trained GoogLeNet
to extract features, a classifier

to classify the types.

For a small dataset,
higher classification

accuracy was observed.

Higher
misclassification in the

confusion matrix,
overfitting because of a

small dataset.

Emrah Irmak [45] Three types of
classification tasks

have been
performed.

Three CNN models perform
three classification tasks, in

which hyperparameters have
been manually optimized

using a grid.

Using the grid
optimizer is effective as

it could find the best
model for classification

types.

Three classification
systems for all three

types, a joint
multi-classification

system can decline its
necessity.

Sharif, Attique,
Musaed,

Khursheed,
Mudassar [18]

Brain tumor
classifications on
four types of MRI
images, such as

T1W, T1CE, T2W,
and Flair.

Selection of the most optimal
features using Modified

Genetic Algorithm (MGA) and
entropy-Kurtosis-based

techniques and trained by a
fine-tuned pre-trained

DenseNet201

Using a feature
selection technique

improved the result of
a publicly available

dataset.

Reducing certain key
features could have a

great impact, as it could
help the system achieve

accuracy.

3. Materials and Methods

Figure 1 shows the workflow of our proposed model. First, images are loaded to go
through several crucial pre-processing stages. Then, the dataset is split into two parts:
training and testing.
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Figure 1. A high-level workflow diagram of the proposed method.

3.1. Dataset

For this study, we were looking for a comparatively large dataset as we wanted to
avoid the data augmentation method. Furthermore, we needed a dataset that contained
normal and abnormal brain images and their subtypes. To address this problem, we
combined two publicly available Kaggle datasets [46,47]. We added a small amount of
data from various sources to enlarge the dataset. Finally, a dataset of 10,153 MRI images
was obtained for which the samples from each class are shown in Figure 2. The number of
images are 10,153. The number of data from each class are 2547, 2582, 2658, and 2396 for
Glioma, Meningioma, Pituitary, and No Tumor, respectively. The data ranges from 2.3 k to
2.6 k. There is no major issue with data imbalance within the dataset, therefore we did not
have to implement any kind of extra techniques to handle this insignificant data imbalance.
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Figure 2. Images of the normal brain and the other three types of brain tumors—Glioma, Meningioma
and Pituitary.

3.2. Preprocessing

The images in the dataset needed to go through some pre-processing stages before
training the proposed model. The images were of different sizes. To train our model and
get the best accuracy, we resized the image into 200 × 200 × 1 pixels. As a result, it gives
better performance and straightforward calculation. We choose to decrease the MRI picture
size from an average of 256 × 256 × 1 (the highest being at the size of 500 × 500 × 1) to
200 × 200 × 1 due to the computational restrictions of fitting the complete image to the
model here. The required size is chosen so that all parts of the skull are captured, and the
images have a centering effect after cropping and resizing. We used the same orientation
of the raw data. We have used grayscale images, and to ensure that no images contained
any unwanted colors, we have turned them into grayscale images before proceeding any
further. Before splitting the data set, we shuffled the dataset and split it into two parts,
training and testing, where the training dataset is 80% and the testing dataset is 20%. The
dataset is divided here into 80% for training and 20% for testing. We did not perform
any data validation separately, however, we have used that 20% testing data as validation
during training.

3.3. Proposed Model

Figure 3 shows the architecture of the proposed model. Here, we have implemented
a similar structure to the VGG-16 architecture. VGG-16 is a deep CNN architecture that
contains numerous different layers. The VGG model inspired us to utilize several (deeper
architecture) convolution layers to use a restricted receptive field, followed by a max
pooling layer to decrease image dimensionality by decreasing the number of pixels in the
convolution layer output.

CNN is a very deep architecture for a large number of image datasets for image
recognition [48]. It gives a particularly good accuracy in large-scale image processing. In
our model, there are 21 layers, where the first 20 layers use the ReLU (Rectified Linear Unit)
function, and the last one is the SoftMax function.

Overfitting is a common problem in machine learning while training a large model
with a high number of parameters and a relatively small training dataset. Dropout regular-
ization is a technique for combating overfitting. We have used dropout layers to reduce
overfitting. The moving edges of hidden node neurons that make up the hidden layers
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are randomly set at 0 while updating the training phase [35]. In the proposed model, we
found that 20% dropout gives the most accurate values. In Figure 4, all nodes relate to
the output layer. After dropping out, some of the nodes are avoided to help our model to
reduce overfitting.
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In our proposed model, we have used a Stochastic Gradient Descent (SGD) optimizer.
SGD subtracts the weights from the gradient multiplied by the learning rate. SGD has strong
theoretical foundations and is still used in edge-training NNs, despite its simplicity [49].

θi = θi − α
∂L
∂θi

(1)
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Batch normalization is an effective CNN training technique that processes the input to
each layer for each mini-batch [50]. The function of batch normalization used here is

yi = γB.xi + βB (2)

In the proposed model, the last layer is softmax.
After finding the normalization in channel B for a mini-batch, an arbitrary value is

multiplied, which works as a scaling transformation, and another arbitrary value is added
to shift it. These values are set by 0/1 as default and get updated after each epoch. This
function reduces the problem with input value changing by stabilizing the values, thus
increasing the training speed in our model. We divide our batch into 42 images.

To build our model, we used different parameters and different layers. The summary
of the model is given in Table 2.

Table 2. The layers of the proposed model.

Layers Output Size Parameters

Conv2D None,200,200,3 1664
MaxPooling 2D None,100,100,64 0

BatchNormalization None,100,100,64 256
Conv2D None,100,100,128 204,928

MaxPooling 2D None,50,50,128 0
BatchNormalization None,50,50,128 512

Conv2D None,50,50,128 409,728
MaxPooling 2D None,25,25,128 0

BatchNormalization None,25,25,128 512
Conv2D None,25,25,256 819,456

MaxPooling 2D None,12,12,256 0
BatchNormalization None,12,12,256 1024

Convo2D None,12,12,256 1,638,656
MaxPooling None,6,6,256 0

BatchNormalization None,6,6,256 1024
Convo2D None,6,6,512 3,277,312

Maxpooling None,3,3,512 0
BatchNormalization None,3,3,512 2048

Flatten None, 4608 0
Dense layer None, 1024 4,719,616

Dropout 20% None, 1024 0
Dense layer None, 512 524,800

Dropout 20% None, 512 0
Dense layer None, 256 131,328

Dropout 20% None, 256 0
Dense layer None, 4 1024

Softmax None,4 0

After the input layer, there are six sets of layers in one set, which are Convo2D,
MaxPool, and batch normalization layers with different shapes. Then, there is a flatten
layer. After that, there are three dropout layers and three dense layers. In this case, it is a
multi-class.
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3.4. Pseudocode
Input:

Xt: Brain tumour pre-processed train dataset;
Xv: Brain tumour pre-processed test dataset;
ε: Number of epochs;
η: Learning Rate;
B: Batch Size;

Output:
Assessment Metrics (accuracy etc.) calculation on test dataset.

Start Procedure
Add_Conv2D (filters, kernel_size, padding, activation)
Add_MaxPool2D (pool_size)
Add_BatchNormalization ()
Add_Flatten ()
Add_Dense ()
Add_Dropout (0.2)
Optimizing with Stochastic gradient descent (η)

for all epochs in 1 to ε do
for B ∈ a random batch from Xt do

model_fit with test data (Xv)
append (Accuracy)

Endfor
Endfor
Evaluate trained Model dataset -> totalAccuracy
return totalAccuracy

EndProcedure

4. Results

We have used modified VGGNet-CNN architecture for the proposed system. In total,
10,153 samples of MRI images with an input vector size of 200× 200 were used. The dataset
was partitioned into two sets, 80% training set and 20% testing set. For validation, 80%
of the data from the testing set were kept, and the rest were for the actual testing. We
tested the model with three epoch settings (10, 20, 30) and for each epoch condition, the
model was evaluated with three different learning rates, which are 0.001, 0.05, and 0.01.
The best precision of 99.5% was found with the following hyperparameters: epoch as 20,
momentum = 0.9, and learning rate as 0.01. The results are shown in Table 3.

Table 3. Accuracy comparison with different epochs and learning rates.

Epoch 10 20 30

Learning Rate Accuracy

0.001 98.8% 99% 99.2%
0.01 98.3% 99.5% 99.01%
0.05 97% 98.7% 99.3%

4.1. Performance Analysis

Figure 5a,b illustrate the training and validation accuracy/loss. At approximately
the 9th iteration, the accuracy reached nearly 100%, as observed in Figure 5a, where the
highest overall accuracy achieved throughout the testing phase is 99.6%. In Figure 5b, the
curve starts to decline steeply at first, although there are some fluctuations because of the
short batch size of 32. The fluctuations started to fade at approximately the 13th epoch and
remained at almost zero.



Appl. Sci. 2023, 13, 312 9 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 15 
 

the model with three epoch settings (10, 20, 30) and for each epoch condition, the model 
was evaluated with three different learning rates, which are 0.001, 0.05, and 0.01. The best 
precision of 99.5% was found with the following hyperparameters: epoch as 20, momen-
tum=0.9, and learning rate as 0.01. The results are shown in Table 3. 

Table 3. Accuracy comparison with different epochs and learning rates. 

Epoch 10 20 30 
Learning Rate Accuracy 

0.001 98.8% 99% 99.2% 
0.01 98.3% 99.5% 99.01% 
0.05 97% 98.7% 99.3% 

4.1. Performance Analysis 
Figure 5(a) and Figure 5(b) illustrate the training and validation accuracy/loss. At 

approximately the 9th iteration, the accuracy reached nearly 100%, as observed in Figure 
5(a), where the highest overall accuracy achieved throughout the testing phase is 99.6%. 
In Figure 5(b), the curve starts to decline steeply at first, although there are some fluctua-
tions because of the short batch size of 32. The fluctuations started to fade at approxi-
mately the 13th epoch and remained at almost zero. 

  

(a) (b) 

Figure 5. (a) Epoch vs. training and validation accuracy, and (b) Epoch vs. training and validation loss. 

4.2. Confusion Matrix 
The confusion matrix that evaluates the system's performance is shown in Figure 6. 

The predicted values or system output are represented on the X axis, whereas the true 
labels or ground truth are represented on the Y axis. This is used to calculate evaluation 
metrics, such as precision, recall, sensitivity, specificity, and accuracy using (3), (4), (5), (6), and 
(7), respectively, which are used to evaluate the models’ performance, such as [51]. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =                  (3) 

                                                                𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =                         

(4) 

Figure 5. (a) Epoch vs. training and validation accuracy, and (b) Epoch vs. training and valida-
tion loss.

4.2. Confusion Matrix

The confusion matrix that evaluates the system’s performance is shown in Figure 6.
The predicted values or system output are represented on the X axis, whereas the true
labels or ground truth are represented on the Y axis. This is used to calculate evaluation
metrics, such as precision, recall, sensitivity, specificity, and accuracy using (3), (4), (5), (6),
and (7), respectively, which are used to evaluate the models’ performance, such as [51].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 15 
 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =         (5) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =            (6) 

𝐹  𝑆𝑐𝑜𝑟𝑒 = 2. .         (7) 

 
Figure 6. Confusion matrix of the validation dataset.  

The confusion matrix, the F1 score, and the Mean Squared Error are used to evaluate 
the proposed system. Sensitivity, Specificity, Accuracy, Precision, and Recall are com-
puted using True Positive or TP (True Positive), False Negative or FN (False Negative), 
True Negative or TN (True Negative), and False Positive or FP (False Positive). The best 
score for precision, recall, and specificity are the bold values in Table 4. An accuracy of 
98.98% is achieved for Glioma, 99.13% for Meningioma, 99.95% for Pituitary, and 99.81% 
for No Tumor.  

Table 4. Performance analysis of the proposed model. 

Tumors TP TN FP FN Precision Recall Specificity Accuracy F1-Score 
Glioma 529 1510 3 18 0.994 0.967 0.988 98.98 0.98 

Meningi-
oma 

511 1532 17 
1 0.967 

0.998 0.999 99.13 0.98 

No  
Tumor 

455 1601 2 
2 0.996 

0.996 0.998 99.81 0.99 

Pituitary 543 1516 0 1 1.00 0.998 0.999 99.95 0.99 

5. Discussion 
The final architecture was formed by applying multiple parameters, including the 

changes in the dropout layers and optimization using SGD, to the VGG-16 configuration. 
Due to the multiple models and datasets used, it is difficult to compare the findings to 

Figure 6. Confusion matrix of the validation dataset.

precision =
tp

tp + f p
(3)



Appl. Sci. 2023, 13, 312 10 of 14

sensitivity =
tp

tp + f n
(4)

speci f icity =
tn

tn + f n
(5)

accuracy =
correct predictions

all predictions
(6)

F1 Score = 2.
precision.recall

precision + recall
(7)

The confusion matrix, the F1 score, and the Mean Squared Error are used to evaluate
the proposed system. Sensitivity, Specificity, Accuracy, Precision, and Recall are computed
using True Positive or TP (True Positive), False Negative or FN (False Negative), True
Negative or TN (True Negative), and False Positive or FP (False Positive). The best score
for precision, recall, and specificity are the bold values in Table 4. An accuracy of 98.98%
is achieved for Glioma, 99.13% for Meningioma, 99.95% for Pituitary, and 99.81% for
No Tumor.

Table 4. Performance analysis of the proposed model.

Tumors TP TN FP FN Precision Recall Specificity Accuracy F1-Score

Glioma 529 1510 3 18 0.994 0.967 0.988 98.98 0.98
Meningi-oma 511 1532 17 1 0.967 0.998 0.999 99.13 0.98

No Tumor 455 1601 2 2 0.996 0.996 0.998 99.81 0.99
Pituitary 543 1516 0 1 1.00 0.998 0.999 99.95 0.99

5. Discussion

The final architecture was formed by applying multiple parameters, including the
changes in the dropout layers and optimization using SGD, to the VGG-16 configuration.
Due to the multiple models and datasets used, it is difficult to compare the findings to other
approaches reported at the state-of-the-art. However, we did manage to compare existing
methods for detecting and classifying brain tumors in Table 5. We have applied the same
dataset to our proposed model which is used in the following studies. The approach taken
was segmentation-free.

Table 5. Comparison of the proposed structure with existing studies.

Serial Author Model Used Dataset Used Model
Accuracy

Our Model
Accuracy

1 Paul et al.
[52]

Fully Connected
Network (FCN), CNN

3064 T1-weighted contrast-enhanced images
with three kinds of brain tumor [44]. 91.43% 96.4%

2 Afshar et al.
[53]

CapsNets
incorporated with

coarse tumor
boundary

3064 T1-weighted contrast-enhanced images
with three kinds of brain tumor [44]. 90.89% 96.4%

3 Anaraki et al.
[54]

Genetic Algorithm
(GA)

3064 T1-weighted contrast-enhanced images
with three kinds of brain tumor, combined

with data from other sources
94.2% 95.3%

The authors of [54] adopted a GA to identify the network architecture, although the
prediction results did not implement the best one. In [53], the author incorporated the coarse
tumor boundary as an additional input to assist the network to produce better outcomes.
Furthermore, the authors of [52] applied only two convolutional layers, each having
64 kernels. Therefore, the proposed method predicts the best result when compared to
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other relevant past research on multi-class classification types, demonstrating the proposed
system’s reliability.

Additionally, in Table 6, after comparing the proposed model with existing models, it is
clear that our model provides the highest accuracy, while popular architectures, such as Effi-
cientNet and ResNet remain behind. Even though our model is not pre-trained, it achieved
99.5% accuracy, whereas the pre-trained EfficientNet and ResNet models generated between
87–99.3% accuracy, which proves the validity of the modified VGG architecture.

Table 6. Comparison of the proposed structure with existing popular architectures.

Model Precision Recall F1-Score(macro) Accuracy Pre-Trained

EfficientNetB0 [55] 0.942 0.941 0.941 0.941 NO
EfficientNetB0 [55] 0.993 0.993 0.993 0.993 YES

Resnet50 [56] 0.878 0.88 0.878 0.879 YES
Resnet152 [56] 0.889 0.885 0.885 0.885 YES

VGG16 [48] 0.980 0.980 0.980 0.980 NO
Modified-
VGGNet 0.997 0.988 0.985 0.995 NO

As the proposed model is a modified version of the VGG-16 architecture, after com-
paring the precision, recall, F1-score and accuracy, it can be seen that the modified VGGNet
is performing better than the base VGG-16 model in Table 7. The VGG-16 model has
been trained using the same hyperparameters we have used in the modified VGGNet. We
used learning rate = 0.01, momentum = 0.0 as hyperparameters for VGG-16 and modified
VGGNet experiments and for other CNN architectures (ResNet, EfficientNet), we used
learning rate = 0.001 and momentum = 0.9.

Table 7. Comparison of the proposed model with VGG-16.

Tumors Precision
(VGG-16)

Precision
(Proposed

Model)

Recall
(VGG-16)

Recall
(Proposed

Model)

F1-Score
(VGG-16)

F1-Score
(Proposed

Model)

Accuracy
(VGG-16)

Accuracy
(Proposed

Model)

Glioma 0.98 0.994 0.95 0.967 0.97 0.98
Meningioma 0.97 0.967 0.98 0.998 0.97 0.98 98% 99.5%
No Tumor 0.98 0.996 1.00 0.996 0.99 0.99
Pituitary 0.99 1.00 0.99 0.998 0.99 0.99

Even though the total parameters of our model are much higher than the existing
models, the evident advantage of having a large number of parameters is the ability to
describe far more intricate functions than those with fewer parameters. Deep Neural
Networks deal with a large number of training and testing parameters. The ability of
neural networks to fit different sorts of information as the number of parameters rises is
what makes them so powerful. Our model is versatile enough to describe the necessary
mapping because it has numerous parameters. However, because of overfitting, this
power is what causes the model to be weak. To avoid overfitting, models can always use
more regularization. By utilizing batch normalization and max pooling, we were able to
accommodate it. In our model, there are six blocks, and for each block, a conv2D layer
followed by a max-pooling layer, and a batch normalization were placed. A conv2D layer’s
filter or kernel applies an elementwise multiplication to the 2D input data by “sliding” over
it. It will therefore combine the outcomes into a single output pixel. The outcomes are
then down-sampled or pooled feature maps that stress the patch’s most prominent feature.
The output can then be normalized in the same manner and distributed among the feature
maps. The work was done by batch normalization. Instead of using the entire data set, it is
done in mini-batches. It facilitates learning by accelerating training and utilizing higher
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learning rates. Although it is slow because of this entire block, the approach appears to be
more effective than others.

6. Conclusion and Future Work

Since we could achieve an accuracy of 99.5%, this system can indeed be used for
industrial applications because of having such remarkable results. Compared to other
research on multiclass classification, like SVM and KNN of [11], CNN of [52,53], and
GA-CNN of [54], an accuracy of, respectively, 91.28%, 91.43%, 90.89%, and 94.2% were
achieved. With their dataset, we obtained an accuracy of 95.7%, 96.4%, 96.01%, and 95.3%,
respectively. However, with our modified VGG-16 and test set, we found a much better
accuracy of 99.5%. The system is yet to be trained to detect brain tumors at an early stage.
The identification is unquestionably crucial when it comes down to the health of a human
being. If detection faces a complication and generates false results, it might be fatal to
a person. One of the crucial limitations of this model is that it is comparatively slow as
it contains high numbers of parameters, which can be solved by utilizing various other
efficient existing models. Additionally, this model cannot detect the exact location of the
tumor. The model can be trained to work with 3D images, which will further make it
possible to locate the tumor’s position. It can also be trained to detect brain tumors at an
early stage.
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