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Abstract: Optimisation-based methods are enormously used in the field of data classification. Particle
Swarm Optimization (PSO) is a metaheuristic algorithm based on swarm intelligence, widely used
to solve global optimisation problems throughout the real world. The main problem PSO faces is
premature convergence due to lack of diversity, and it is usually stuck in local minima when dealing
with complex real-world problems. In meta-heuristic algorithms, population initialisation is an
important factor affecting population diversity and convergence speed. In this study, we propose
an improved PSO algorithm variant that enhances convergence speed and population diversity by
applying pseudo-random sequences and opposite rank inertia weights instead of using random
distributions for initialisation. This paper also presents a novel initialisation population method
using a quasi-random sequence (Faure) to create the initialisation of the swarm, and through the
opposition-based method, an opposite swarm is generated. We proposed an opposition rank-based
inertia weight approach to adjust the inertia weights of particles to increase the performance of the
standard PSO. The proposed algorithm (ORIW-PSO-F) has been tested to optimise the weight of
the feed-forward neural network for fifteen data sets taken from UCI. The proposed techniques’
experiment result depicts much better performance than other existing techniques.

Keywords: feed-forward neural network; quasi-random sequence; opposition rank-based inertia
weight; particle swarm optimisation

1. Introduction

Data classification is widely used in machine learning to solve problems such as
spam email filtering, social network analysis, biological data analysis, diagnosing medical
diseases, image and speech recognition [1]. The classification process contains two steps:
the first step is training, which builds a model from the training samples, and the second
step is the model predicting the labels of unlabeled test samples. In the machine learning
field, an artificial neural network (ANN) is a classification problem-solving technique [2].
ANNs trained with Back-Propagation (BP) based on gradient descent technique generally
slow convergence, are stuck in local optima, and require more training time [3]. The use of
evolutionary algorithms in ANN teaching overcomes these shortcomings.

Swarm Intelligence is a field that consists of many individuals and deals with natural
and artificial systems [4]. These systems are coordinated through self-organisation and de-
centralised control. In particular, this area focuses on collective behaviour that is displayed
as a result of regional interactions between people and the environment [5]. Examples of
checking systems through swarm intelligence are ants and termite swarms, fish swarms,
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bird swarms, and terrestrial animal swarms [6]. The swarm intelligence population consists
of simple agents that are closer to the optimal outcome and interact with each other and
environments. Emerging intelligence that communicates with its ecosystem is based on
simple independent agents, is composed of other agents but behaves relatively individually
from all other agents. Independent agents do not follow global plans or the instruction
of other participants. Over the past two decades, swarm intelligence and nature-inspired
computing have generated a lot of interest in almost all fields of science, industry, and engi-
neering. Some human artifacts also belong to the field of swarm intelligence; in particular,
some multi-robot systems. They are written to solve data analysis [7] and optimisation
problems. Particle Swarm Optimization (PSO) [8], Cat Swarm Optimization (CSO) [9],
Artificial Bee Colony (ABC) [10], Cuckoo Search (CS) [11] and Bat algorithm (BA) [12]
belong to SI.

Particle Swarm Optimization (PSO) is a well-known example of swarm intelligence,
introduced by Kennedy and Eberhart in 1995 [13] to solve global optimisation problems.
Because of its simplicity and efficiency, it has been described in various engineering fields
and has become the most effective method for solving optimisation problems. In PSO,
different numbers of particles are known as a swarm, which search for the best possible
solutions in search space [13–15]. In PSO, individuals are known as particles searching
from one position to another; if any particle finds food without wasting time getting the
food and sharing information of its position with another particle, all particles have to
follow to reach that position [16]. Each particle follows the basic rule for determining its
previous best position or neighbour. Each particle finds the optimal solution in search
space. To enhance learning factors, minimise weights, and ANN architecture, the PSO
algorithm has been used [17]. Consequently, it is usually used in engineering fields with
practical applications. For example, PSO is commonly used for price forecasting, clustering,
planning optimisation parameter optimisation, image processing and the medical field [18].

The PSO algorithm suffers from premature convergence and diversity problems. If
PSO parameters are not properly set, then there are chances that it can get trapped in local
optimum due to lack of local exploitation, global exploration and diversity issues in the
search space [19]. To solve the combinatorial optimization problems, multiple modified
PSO variants are proposed in [20,21], such as multi-objective optimization [22], constraint
optimization [23], opposition-based variant [24], adaptive inertia weight [25] and mutation
operator [26]. In addition, many modifications have been made to the PSO algorithm to
improve its convergence. Inertia weight is introduced and gives more control over the
particle capabilities for exploration (searching the entire space to gain a solution) and
exploitation (searching the neighbourhood of the fittest solution).

Tizhoosh [27] introduced the concept of Opposition-Based Learning (OBL), which
has so far been used to accelerate backpropagation learning on neural networks [28] and
reinforcement learning. The purpose of OBL is to check the estimate (random guess) and
its corresponding opposite estimate (opposite guess) at the same time to obtain a more
approximate value for the current candidate solution [29]. It is used to generate opposite
populations that inspire the real world’s opposite. The probability of finding the best
solution is increased through the opposite solution. It improves algorithms’ performance
and finds the best possible solution in search space [30]. OBL is used in many areas, such as
agriculture for preserving water crops, soil purification, medical fields for disease diagnosis,
scheduling of agricultural work [31]. It is applied in many well-known algorithms such
as the Bat algorithm [32,33], PSO [34], Grey Wolf Optimizer (GWO) [35], Harmony Search
(HS) [36], Differential Evolution (DE) [37] and Artificial Neural Networks (ANNs).

The distribution of random numbers is divided into three major categories: probability
sequences, i.e., Exponential, Beta, Gamma, Lognormal, Quasi-random sequence, i.e., Halton,
Van der corput, Hamersley, Sobol, Faure [38], and the pseudo-random sequences Multiply
with-carry, Linear congruential generator, Mersenne twister, Philox, and Threefry [39]. A
probability sequence is a sequence of continuous probabilities according to a particular
distribution’s scale factor and shape [40]. Pseudo-random sequences and quasi-random
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sequences outperform for a globally optimal solution due to cover all search spaces. We
used QRS (Sobol sequence (S), Halton sequence (H), Faure sequence (F), Gaussian (G), and
Lognormal (LN)) for the initialisation of the population.

This behavior is more persevering and intolerable for multimodal problems, as it
contains many local and global optimums. The most considerable factor for this deprived
performance can be the insufficient distribution of the population in the search area, i.e., to
conclude that if the initial population does not search the complete search space adeptly,
it is difficult to locate the robust solution points, and thus the results omit the global best
solution. This problem can be overcome by adding the most structured and organized
random distribution for population initialization. Random number sequences vary with
respect to the nature of their morphological design, i.e., quasi-random sequences, pseudo-
random sequences, and probability distribution. Due to this fact, a novel initialisation
population method used a Quasi-random sequence (Faure) to create the initialisation of
the swarm, and through the opposition-based method, an opposite swarm was generated.
We proposed an Opposition rank-based inertia weight approach to adjust inertia weights
of particles to increase the performance of the standard PSO. The proposed algorithm
(ORIW-PSO-F) has been tested to optimise the weight of the feed-forward neural network
for fifteen data sets taken from UCI.

This paper proposes new variants of the PSO algorithm, Faure, with opposition-based
PSO-ranked inertia weight (ORIW-PSO-F). The proposed algorithms improve global search
ability and solve real-world classification problems. The proposed algorithms have two
main effective improvements in initialisation strategies (Faure) with Opposition based
learning and rank-based inertia weight. We present a new Quasi-random initialisation
strategy (Faure) to initialise the search space particles, and opposite particles generated
using Opposition-based learning. Particle inertia weight was updated with opposition
rank-based inertia weight-balancing exploration and exploitation. We trained artificial
neural networks using pseudo-random sequences on real-world classification problems.
From the well-known repository UCI, fifteen data sets were taken in order to compare the
performance of classifiers.

The simulation results show that the proposed variant ORIW-PSO-F provided better
results as compared to ORIW-PSO, ORIW-PSO-S, ORIW-PSO-H, ORIW-PSO-LN and ORIW-
PSO-G. The proposed study is useful in a wide range of computer domains, including
neural network training, classification problems, data mining, image processing, min-max
problems, game, single processing, multi-objective optimisation, and complex real-world
optimisation. It is also applicable to solving most numerical optimisation problems and
problems converted to optimisation problems.

The contributions of this work are summarized as follows:

• To propose a novel initialisation population method using a Quasi-random sequence
(Faure) to create the initialisation of the swarm, and through the opposition-based
method, an opposite swarm is generated and the proposed Opposition rank-based
inertia weight approach adjusts the inertia weights of particles;

• To find the best accuracy and compare its result with the previous state-of-the art
approaches.

The rest of the article is structured as follows: Section 2 discusses Materials and Meth-
ods, including an initialisation strategy, opposition rank inertia weight and the training,
and basic PSO working. Section 3 provides the results and discussion. Section 4 describes
conclusions and possible work, followed by the references section.

2. Materials and Methods
2.1. Related Work

In [39], the authors proposed a multi-mean PSO algorithm known as the MMPSO
algorithm for training multi-layer feed-forward neural networks (MLFNN). MMPSO finds
better solutions than PSO and MMPSO has multiple swarms to find the best solution that
is better than PSO.
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The authors [40] introduced a new, modified PSO algorithm with two main modifi-
cations. The first, known as a self-adaptive parameter, and the second, a strategy-based
method known as the SPS-PSO algorithm, optimise feed-forward neural networks by
feature selection. The SPS-PSO algorithm was applied to deal with the large-scale FFNN
optimisation problem and reduce the computational complexity. The authors present a
new variant of PSO (NMPSO) to solve nonlinear pattern classification problems [41]. The
proposed methodology structure is an ANN that offers optimal precision for a particular
problem. In addition, this study introduces a new method for selecting the maximum num-
ber of neurons (MNN). The architecture simultaneously develops transfer function types
and synaptic weights. The proposed method was tested to accuracy by solving synthetic
pattern recognition problems. Furthermore, the artificial neural network designed using
the proposed method was compared with ANN designed manually using backpropagation
and learning algorithms of Levenberg–Marquardt.

Experiments were performed using 10 datasets from UCI to check the performance of
the MMPSO algorithm [42]. As a result of the experiment, it was shown that the proposed
algorithm was executed more efficiently than other algorithms. An improved variant of the
PSO algorithm called LPSONS was presented in [43] to increase the optimisation speed
of the standard PSO algorithm to train ANNs. The proposed algorithm implemented the
PSO velocity operator with the Mantegna–Lévy distribution to improve the diversity of the
population and increase accuracy. Bottom of Form The proposed LPSONS algorithm was
used to optimise the feed-forward multi-layer perceptron (MLP) ANN training.

In [44], the authors presented the partial opposition-based learning with PSO, or
POPSO, algorithm to increase the performance of basic PSO. Partial opposition-based
learning (POBL) generates the opposite swarm of the original swarm. POPSO is used to
train the MLFNN for mining medical data classification problems. Compared to all other
algorithms, POPSO provides a better compromise between sensitivity and specificity when
classifying medical datasets. An ANN trained with the PSO algorithm has been used to
distinguish dengue hemorrhagic fever (DHF) and dengue fever (DF) patients from patients
recovering or not who have Parkinson’s disease [45]. Finally, NNPSO was tested with a
multi-layer neural network feed-forward network (MLPFFN) classifier to classify dengue
fever patients from recovered or non-recovered patients.

In [17], the authors presented the WELL sequence, also known as the Well Equidis-
tributed Long-period Linear with Particle swarm optimisation (WELL-PSO) to overcome
the limitation of the basic PSO algorithm. A novel quasi-random sequence initialisation
scheme, the WELL sequence is used to generate the initial population. The proposed
method also trains NN and offers better results than existing training algorithms (with
basic PSO methods and improved variants). The experimental results show that WELL-PSO
performs better on real-world classification problems than improved variant and standard
method PSO. PSO algorithms were combined with the forward feedback of the neural
network in the Cleveland Clinic database to reduce the 13 effective attributes to 8 factors
and optimise the accuracy and cost [46]. The researchers used the four different research
classification methods, and the results show that the feature selection in the neural network
FFBP and PSO algorithm is more effective. A modified PSO algorithm combined with a new
training algorithm was proposed by [47] for the time series problem. The training algorithm
has no exploded or vanished gradient problem because it does not require gradients. They
compared the accuracy of the proposed learning algorithm using a deep recurrent neural
network with LSTM and PSGM ANNs on ten-time series. The forecasting performance of
the proposed algorithm was superior to the other methods.

Khan et al. [48] proposed Advance Particle Swarm Optimization (APSO) using NN
to reduce training time and improve classification accuracy. In advance, Particle Swarm
Optimization (APSO) inertia weight is updated with constriction factor to avoid the local
optimal problem. The accuracy of the proposed algorithm was also checked with the differ-
ent numbers of a neuron [49]. The proposed algorithms perform faster convergence than
backpropagation neural networks. For short term price forecasting (STPF) and classification



Appl. Sci. 2023, 13, 283 5 of 18

purposes, the authors presented Fuzzy adaptive particle swarm optimisation (FA-PSO)
with Feed Forward Neural Networks (FFNN) in [50]. To prevent local optima, the proposed
algorithm uses dynamic inertia weight. Weights and biases were constructed using FAPSO
for FFNNs with fixed architecture. To predict the price of power, the proposed method
is used.

In [51], the authors present centripetal accelerated particle swarm optimisation (CAPSO)
combined with advanced PSO and Newton motion laws to evolve accuracy and ANN
learning. The authors trained a feed-forward multi-layer neural network (FFNN) with
the CAPSO algorithm to solve classification problems for diagnosing nine medical dis-
eases. The CAPSO algorithm exhibits superior classification accuracy compared to most
of the well-known algorithms used to diagnose nine medical disorders. Wahab et al. [52]
presented a method to train an ANN using the PSO algorithm to identify damage to
structures. The proposed algorithm was used to overcome ANN limitations by reducing
the computation time by applying the gradient descent method used in neural network
training. Numerical and experimental models using various damage conditions were used
to evaluate the effectiveness of the proposed algorithm. The proposed algorithm ANN-PSO
easily found damaged locations. Furthermore, PSO and its various improved variants have
been successfully applied in energy saving domains for multiple reasons, including the
appropriate size adjustment for energy systems with the use of PSO.

2.2. Research Methodology

This paper proposes new variants of Faure with opposition-based PSO ranked inertia
weight (ORIW-PSO-F) to balance exploration and exploitation and prevent stuck local
optima. We proposed two modifications to PSO algorithms: initialisation strategy is Faure
initialisation techniques with OBL, and opposition rank inertia weight is adjusting inertia
weight of the particle. The initialisation strategy uses the QRS approach and OBL to
initialise the initial population in PSO algorithms.

In this paper, there are three main contributions: initialisation strategies, Opposition-
based learning, and Opposition Rank-based inertia weight. OBL is used to generate the
opposite swarm of the current swarm and enhance the performance of algorithms. In OBL,
we used jumping probability 0.3 for opposite population generation. It must be pointed
out here that all variables were dynamically generated while accumulating the opposite
population due to generational jumping. In the current set, each variable used maximum
and minimum values to calculate the opposite points instead of the defined boundary
spacing. Opposition Rank-based inertia weight adjusted for each particle according to
its fitness rank. The lowest fittest particle had maximum inertia weight that moved fast
compared to the fittest particle.

2.3. Random Number Generator

A set of numbers that occur in an order in which values cannot be predicted based
on the past and present and the value cannot be predicted based on a specific uniformly
distributed set of numbers is called a random number. Random numbers are generated in
a uniform distribution by the built-in library function Rand(xmin, xmax). The continuous uni-
form probability density function determines the effect of uniformity for all sequences [53].
It generates a sequence based on the probability density function. The probability density
function is defined as:

f (t) =

{
1

p−q f or p < t < q
0 f or t < p or t > q

(1)

where p and q are the maximum likelihood parameters. The f (t) value is useless at the
boundary between p and q, as it has no effect on the integral of f (t) dt in any range. The
score likelihood function calculates the maximum likelihood parameter estimate. It is given
as follows:

l(p, q|t) = n log(q− p) (2)
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Flowchart chart show below in Figure 1.
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2.4. Quasi-Random Sequence

Low-discrepancy techniques are also deterministic point generators that mean the
point set with a high level of uniformity. The quasi-random sequence (QRS) approach
was used to generate a low discrepancy set, and it was neither random nor pseudo-
random. Quasi-random sequence generators reduce the discrepancy (non-uniformity)
from the distribution with an equal component of points in each sub-cube of a uniform
partition of the hypercube and fill the “holes” in any initial segment of the generated
QRS. This technique avoids clustering and can accelerate convergence; however, quasi-
random numbers are normally too uniform to pass randomness tests. QRS was used as
an initial value for the global optimisation problem. QRS explores more space than a
random sequence used in applied mathematics. QRS is used to initialise the population in
optimisation algorithms. Famous quasi-random sequences such as Sobol, Halton, Faure,
Gaussian, and Lognormal are used for the initialisation of population.

2.4.1. Sobol

An example of quasi-random sequences is the Sobol sequence. A set of direction
numbers has to be required to generate a Sobol sequence. Sobol provides the liberty while
selecting the initial direction numbers. By using Sobol sequences, we can generate results
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for selected dimensions. Base 2 generates a finer uniform partition of unit intervals for
these sequences. Sobol sequence is generated through the following equation and Figure 2:

c = c120 + c221 + c322 + . . . + cn2n−1 (3)
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2.4.2. Halton

Each dimension of the Halton sequence uses coprime bases, also known as van der
Corupt sequences. Halton sequences are of low discrepancy and deterministic, used in
the Monte Carlo simulation. It is an improved variant of the van der Corput sequence as
shown below in Figure 3.
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2.4.3. Gaussian

Another name of the normal distribution is the Gaussian distribution; mostly, data
occur near the mean, and hence it has a bell curve. For the representation of real-valued
random variables we used continuous-distribution-type Gaussian distribution, as shown
in Figure 4.
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2.4.4. Lognormal

The logarithm of the log normal distribution follows a normal distribution and type of
probability distribution. The log normal distribution is skewed to the right and applicable
when the growth rate is positive because the logarithm of value exists only when positive.
As shown in Figure 5.
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2.4.5. Faure

The Faure sequence is an approach to generating a Low Discrimination Sequence; it
enhances the most basic idea of the van der Corput sequence for higher dimension. The
basic method is to generate the sequence of the van der Corput methodology. Distribution
of 100 particles in the search space [0, 1] is shown in Figure 6 for Quasi sequence uniform
distribution while pseudo sequence is shown in Figure 7.
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2.5. Opposition Based Learning

The optimisation process will end when the optimal solution is near the random guess
and fast convergence. The optimisation process will take a lot of time when the optimal
solution is far from random guesses, and convergence will be slower. Random guesswork
and its counter-guessing can be generated simultaneously to increase the availability of the
optimal solution [54], and whereas a metaheuristic algorithm enhances a problem with the
best solution, the initial solution is usually randomly generated [55]. However, using OBL
achieves a better candidate start date and has a better chance of finding a better area, even
without prior knowledge. The main idea behind OBL is to make the current estimate x′

that is randomly generated for each solution x of a given problem. To find the opposite
value x′ of current value x, we calculate it as follows:

x′ = a + b− x (4)

where [a,b] are the intervals of real number x.
Let us assume xi = (x1, x2, x3, . . . , xd) are points in search space d dimension with

interval xi belonging to {ai, bi}, so the opposite point is as follows:

x′i = ai + bi − xi (5)

Let us assume, given g(x) is the evolution function and the unknown function is f (x);
if f (x) is better than f (x′), then learning continues with x; otherwise, we continue with x′.
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The OBL method used in the proposed algorithm differs from existing OBL-based
algorithms. The existing OBL method first randomly initialises the population and then
calculates the opposite population. The first population is initialised through Quasi-random
sequence (Faure) in proposed algorithms and calculates its opposite.

2.6. Opposition Rank Base Inertia Weight

All the inertia weight has a significant influence on the performance of the standard
PSO algorithm [56]. Inertia weight is the effective parameter that maintains the velocity of
particles. Inertia weight is vital for balancing local search, known as exploitation (for lower
values), and global search, also known as exploration (for higher values). Researchers
have proposed many variants of it. This paper adopted a rank-based strategy to solve
the problems. Particle inertia weight was updated with the rank-based inertia weight
strategy. Opposition Rank-based strategy adjusted inertia weight according to particle
fitness value and assigned a fitness rank to each particle. The most suitable particles near
the best position will move slowly, while the fast-moving particles far away from the best
position will continue to explore. The suitable particle is selected from either current or
their opposite. It has improved local and global search at the same time. To find the rank
base inertia weight of each particle, we calculated it as follows:

W(i)(t) = Wmax + (((Wmin −Wmax))/n) ∗ R(i)(t) (6)

where n is the size of the population and R(i)(t) is the fitness rank of i particle. The slowly
moving particles are the fittest particles that have the lowest inertia weight and fitness rank
1. The fast-moving particle has the highest fitness value rank, and the highest inertia weight
is assigned. Maximum inertia weight (Wmax) was set at 0.9, and 0.4 was the minimum
inertia weight. Below Figure 8 show the feed forward neural network.
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3. Results and Discussion

The proposed approach of ORIW-PSO-F was implemented in Matlab 2016 and a
computer with 2.00 GHz along with the 8 GB RAM, Core™ i3-5005U CPU processor
specification. We conducted experiments using fifteen datasets that have been taken from
the UCI repository.
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We separated the datasets into two parts: training and testing. The size of the training
portion is 70% of the dataset and the testing portion is 30% of the dataset. On the range
[50, 50], the initialization of the training weights is random. The dataset’s features are
shown in Table 1. These characteristics include the total number of instances that partici-
pated in each dataset, the total number of features, and the number of classes in each data
set (such as a binary class problem or multiclass problem).

The proposition of this study continues to observe whereby the unique characteristics
of experimental results rely on dimensions of these standard data sets. In the experiments,
three simulation experiments were performed, where the following features of ORIW-PSO-
F were observed: the effect of using different Initializing PSO approaches, the effect of
using different Dimensions for problems, and a comparative analysis.

Feed-forward neural network weights are trained on a particle swarm optimisation
algorithm (PSO), Sobol with PSO (PSO-S), Halton with PSO (PSO-H), Log normal with
PSO (PSO-LN), Gaussian with PSO (PSO-G), and Faure with PSO (PSO-F). PSO-F performs
well on these datasets and shows good results. To evaluate the performance, the PSO-F
algorithm was compared with a variant of PSO such as standard PSO, PSO-S, PSO-H,
PSO-G, and PSO-LN on fifteen real data sets extracted from UCI. Simulation results show
that neural network training using the PSO-F algorithm performed well and provided
better accuracy than other PSO approaches. After simulation, the result was excellent in
training the NN using the PSO-F algorithm, and shows better precision and accuracy than
traditional approaches. The accuracy results of classification problems are depicted in
Figure 9, and an accuracy graph represents the same figure for fifteen data sets.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20 
 

 

Figure 9. Testing accuracy result of QRS with PSO. 

A one-way ANOVA test with a significance level of 0.05 was implemented on testing 

the accuracy of six PSONN approaches. The result of the one-way ANOVA test is depicted 

in Table 2. In Table 2, the value of significance is 0.04902, which is less than 0.05, indicating 

a significant difference between all PSONN variants with a 95% confidence level. There-

fore, PSONN variants were significantly different from each other. The one-way ANOVA 

test results are represented in Figure 10, which shows PSO-F has significantly better re-

sults than other PSO approaches. The graph of the ANOVA test shows the PSO-F is sig-

nificantly distinct from all other PSO approaches. 

Table 2. One-way ANOVA result test of QRS with PSO approaches. 

Parameter Relation Sum of Squares df Mean Square F Significance 

Testing Accuracy Between groups 903.2158 5 180.6432 2.334319 0.049042 

The weights of the feed-forward neural network were trained on opposition-based 

PSO (OPSO), Sobol with opposition-based PSO (OPSO-S), Halton with opposition-based 

PSO (OPSO-H), log normal with opposition-based PSO (OPSO-LN), Gaussian with oppo-

sition-based PSO (OPSO-G), and Faure with opposition-based PSO (OPSO-F). We pre-

pared a feed-forward neural network using the weight optimisation process. The perfor-

mance of OPSO, OPSO-S, OPSO-H, OPSO-G, OPSO-LN OPSO-F and state-of-the-art NN 

algorithms were tested on 15 well-known datasets. To evaluate the performance of the 

OPSO-F algorithm, it was compared with variants of PSO such as standard OPSO, OPSO-

Iris
Wheat
seed

Pima
India

Diabe-
tes

Heart
Disease

Wiscon
sin

Breast
Cancer

Vertebr
al

Wine

Haberm
an’s 
sur-
vival

Balance
scale

Blood
Transfu

sion
Sonar

Bank
Note

Authen-
tication

Ionosp
here

Liver
Disorde

r

Car
Evaluat

ion

PSO 92.67 71.63 68.52 71.77 91.78 72.38 74.73 70.75 72.07 70.41 60.03 87.08 77.71 62.13 61.58

PSO-S 94.67 75.26 72.69 73.33 92.6 74.08 78.07 72.06 73.12 73.66 62.64 89.34 83.12 65.54 62.86

PSO-H 92.88 72.26 71.17 74.66 92.9 75.48 74.54 73.72 74.1 71.33 64.22 87.45 81.21 67.32 66.36

PSO-G 93.33 78.11 78.91 77.88 93.07 79.12 79.05 76.5 77.08 79.44 69.12 93.27 87.13 74.54 73.23

PSO-LN 94.22 76.01 76.47 76.22 93.49 78.49 80.41 78.84 78.93 77.44 67.29 92.41 88.25 70.68 69.85

PSO-F 95.56 79.95 79.6 80.78 94.58 80.18 84.56 80.67 81.16 80.12 71.19 94.98 89.95 75.51 74.32

50

55

60

65

70

75

80

85

90

95

100

T
ra

in
in

g 
A

cc
u

ra
cy

Dataset

FFNN Classification Accuracy of QRS with PSO Approaches 

PSO PSO-S PSO-H PSO-G PSO-LN PSO-F

Figure 9. Testing accuracy result of QRS with PSO.



Appl. Sci. 2023, 13, 283 12 of 18

Table 1. Datasets detail.

Sr. No Dataset No of Attributes Number of Labels Number of Records

1 Iris 4 3 150
2 Wheat seed 7 3 210

3 Pima India
Diabetes 8 2 768

4 Heart
Disease 13 2 270

5
Wisconsin
Breast
Cancer

10 2 699

6 Vertebral 6 2 310
7 Wine 13 3 178

8 Haberman’s
survival 3 2 306

9 Balance scale 4 3 625

10 Blood
Transfusion 4 2 748

11 Sonar 60 2 208

12
Bank Note
Authentica-
tion

4 2 1372

13 Ionosphere 34 2 351

14 Liver
Disorder 6 2 345

15 Car
Evaluation 6 4 1728

A one-way ANOVA test with a significance level of 0.05 was implemented on testing
the accuracy of six PSONN approaches. The result of the one-way ANOVA test is depicted
in Table 2. In Table 2, the value of significance is 0.04902, which is less than 0.05, indicating
a significant difference between all PSONN variants with a 95% confidence level. Therefore,
PSONN variants were significantly different from each other. The one-way ANOVA test
results are represented in Figure 10, which shows PSO-F has significantly better results
than other PSO approaches. The graph of the ANOVA test shows the PSO-F is significantly
distinct from all other PSO approaches.

Table 2. One-way ANOVA result test of QRS with PSO approaches.

Parameter Relation Sum of Squares df Mean Square F Significance

Testing Accuracy Between groups 903.2158 5 180.6432 2.334319 0.049042

The weights of the feed-forward neural network were trained on opposition-based PSO
(OPSO), Sobol with opposition-based PSO (OPSO-S), Halton with opposition-based PSO
(OPSO-H), log normal with opposition-based PSO (OPSO-LN), Gaussian with opposition-
based PSO (OPSO-G), and Faure with opposition-based PSO (OPSO-F). We prepared a
feed-forward neural network using the weight optimisation process. The performance of
OPSO, OPSO-S, OPSO-H, OPSO-G, OPSO-LN OPSO-F and state-of-the-art NN algorithms
were tested on 15 well-known datasets. To evaluate the performance of the OPSO-F
algorithm, it was compared with variants of PSO such as standard OPSO, OPSO-S, OPSO-
H, OPSO-G, and OPSO-LN on fifteen real data sets extracted from UCI. The detail of the
fifteen data sets are present in Table 1. OPSO-F is well-performing on these datasets and
shows good result. Simulation results in Figure 11 show that neural network training
using the OPSO-F algorithm performed well and provided better accuracy than other PSO
approaches. Testing accuracy graph of fifteen datasets are represented in Figure 11.
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A one-way ANOVA test with a significance level of 0.05 was implemented on the
testing accuracy of six PSONN approaches. Table 3 depicts the results of the one-way
ANOVA test. The significance value in Table 3 is 0.0494, which is smaller than 0.05,
showing that there is a significant difference between all PSONN variants with a 95%
confidence level. Therefore, PSONN variants are significantly different from each other.
Figure 12 depicts the one-way ANOVA test results, which shows OPSO-F significantly has
better results than other PSO approaches. The graph of ANOVA test show the OPSO-F is
significantly distinct from all other PSO approaches.

The weights of the feed-forward neural network were trained using opposition-based
PSO ranked inertia weight (ORIW-PSO), Sobol with opposition-based PSO ranked inertia
weight (ORIW-PSO-S), Halton with opposition-based PSO ranked inertia weight (ORIW-
PSO-H), log normal with opposition-based PSO ranked inertia weight (ORIW-PSO-LN),
Gaussian with opposition-based PSO ranked inertia weight (ORIW-PSO-G), and Faure with
opposition-based PSO ranked inertia weight (ORIW-PSO-F). We prepared a feed-forward
neural network using the weight optimisation process. The performance of ORIW-PSO,
ORIW-PSO-S, ORIW-PSO-H, ORIW-PSO-G, ORIW-PSO-LN, ORIW-PSO-F and state-of-
the-art NN algorithms have been tested on 15 well-known datasets. To evaluate the
performance of the proposed ORIW-PSO-F technique, it was compared with variants of
PSO such as ORIW-PSO, ORIW-PSO-S, ORIW-PSO-H, ORIW-PSO-G, and ORIW-PSO-LN
on fifteen real data sets extracted from UCI. The detail of these fifteen data sets is presented
in Figure 13, where ORIW-PSO-F is well-performing on these datasets and shows good
results. Simulation results in Figure 13 show that neural network training using the ORIW-
PSO-F algorithm performed well and provided better accuracy than other PSO approaches.
After simulation, the result is excellent in training the NN using the ORIW-PSO-F algorithm,
and shows better precision and accuracy than traditional approaches. The ORIW-PSO-F
algorithm can be effectively used for real-world complex statistical problems and data
classification problems in the future. The accuracy results of classification problems are
depicted in Figure 14, and the accuracy graph is represented in the same figure for fifteen
data sets.
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The one-way ANOVA test with a significance level of 0.05 was implemented on testing
accuracy of six PSONN approaches. Table 4 shows the results of the one-way ANOVA test.
The significance level in Table 4 is 0.04902, which is less than 0.05, indicating that there
is a significant difference with a 95% confidence level in all PSONN variants. Therefore,
PSONN variants are significantly different from each other. Figure 10 depicts the one-way
ANOVA test results, which shows ORIW-PSO-F has significantly better results than other
PSO approaches. The graph of the ANOVA test shows that the ORIW-PSO-F is significantly
distinct from all other PSO approaches.
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Table 4. One-way ANOVA result test of QRS with opposition-based PSO rank based inertia weight
approaches.

Parameter Relation Sum of Squares df Mean Square F Significance

Testing Accuracy Between groups 818.095 5 163.619 2.334622 0.04804
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4. Conclusions

PSO has been widely used in various fields to solve real nonlinear complex optimisa-
tion problems. It still requires extensive testing to improve its performance, and researchers
have proposed several variants of PSO. This paper gives exhaustive detail for the training
of feed-forward neural network (FFNN) utilised for different PSO approaches with QRS
(Faure) and opposition rank-based inertia to solve premature convergence and local optima
problems for best results. In the proposed technique, the initialisation scheme of QRS
was used with opposition base method to generate the initial population. Opposition
rank-based inertia is used to balance exploitation and exploration searchability. The accu-
racy results show that the proposed technique ORIW-PSO-F is better than other improved
variants. The results illustrate how the proposed techniques affect convergence speed and
diversity. Although the primary purpose of this research is to develop a future direction
of our work, it could be applied to other stochastic-based meta-heuristic algorithms using
mutation operators with this initialisation method. Similarly, this approach and its future
variants can also be observed in the energy-saving application area.
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