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Abstract: Equilibrium physical properties of the solid and liquid phases of parahydrogen, computed
by first principle computer simulations, are compared for different choices of pair-wise, spherically
symmetric intermolecular potentials. The most recent ab initio potential [Patkowski et al., J. Chem.
Phys., 2008, 129, 094304], which has a stiffer repulsive core than the commonly used Silvera-Goldman,
yields results for structural quantities in better agreement with the most recent experimental measure-
ments, while possibly overestimating the kinetic energy per molecule by as much as 10%. Altogether,
the comparison between theory and the available experimental evidence suggests that the potential
of Patkowski et al. may be a better choice for simulations of condensed phases of parahydrogen at
moderate pressure.
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1. Introduction

Hydrogen, the simplest and most abundant element in the universe, continues to
motivate a lot of experimental and theoretical research, because of its fundamental interest
and technological relevance [1–11]. In particular, predicting quantitatively the equation
of state (EOS) of the condensed phases of hydrogen, in a broad range of thermodynamic
conditions, remains a worthwhile theoretical goal, of significant potential relevance to a
wide variety of pure and applied fields of science.

The ab initio theoretical study of the EOS of hydrogen in which all the elementary
constituents of the system (namely, electrons and protons), interacting through electrostatic
Coulomb forces, are individually taken into account, constitutes a challenging quantum-
mechanical many-body problem. Most calculations have been typically carried out within
the framework of Density Functional Theory (DFT) [12–14] or quantum Monte Carlo
(QMC) [15–18]. Valuable as they are, ab initio approaches become impractical or unviable
in specific physical regimes, due to the simultaneous presence of widely different energy
scales; in those cases, one typically resorts to approximations. For example, when the
system is in the plasma phase, at relatively high pressure and temperature, it is acceptable
to treat the heavier protons as classical particles, and carry out semi-classical molecu-
lar dynamics or Monte carlo simulations, in which forces are evaluated either by DFT
or QMC [19–25].

On the other hand, in molecular phases it is legitimate to adopt the Born-Oppenheimer
approximation and regard individual hydrogen molecules as elementary particles, de-
scribing their interaction by means of a static potential, the simplest choice being that of a
pair-wise, central potential. Besides being obviously unable to capture processes involving
electronic transfer, such a crude model treats hydrogen molecules as spherical objects; this
is known to be an oversimplification [26], even for the most nearly spherical (and abundant)
isotope, namely parahydrogen (p-H2). Equally absent are, of course, energy contributions
of interactions involving, e.g., triplets of molecules.

However, the use of static pair potentials renders the computation much faster and
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conceptually simpler than ab initio approaches, allowing for the computation of thermody-
namic properties of molecular hydrogen in the condensed phase virtually without any
uncontrolled approximation, e.g., by means of QMC simulations. Thus, the development
and testing of increasingly reliable pair potentials, affording a quantitatively accurate ac-
count for energetic and structural properties of the condensed phase of molecular hydrogen
in a wide range of thermodynamic conditions, is a worthwhile goal of quantum chemistry,
one with likely impact in various areas of condensed matter physics and materials science.

The (mainly phenomenological) Silvera-Goldman (SG) [27] is the most commonly
adopted pair potential; it has been shown to afford a reasonable, semi-quantitative de-
scription of low temperature structure and energetics of the equilibrium liquid and solid
phases of p-H2 (the only species considered in this paper). Specifically, the computed
(kinetic) energy per particle [28–32] is in agreement with some of the reported experimental
measurements [28,33–36], while the pressure is generally significantly underestimated.
There are also quantitative differences between theory and experiment regarding structural
correlations [37]. Another popular pair potential is the Buck [38], featuring a slightly deeper
attractive well. These potentials are similar, in that the same general functional form is
parametrized to reproduce some experimental data. These potentials yield an EOS in rea-
sonable agreement with experiment at moderate pressure (25 kPa); it is possible to “tweak”
the SG potential, so that the theoretically predicted EOS will be in satisfactory agreement
with experiment up to pressures of the order of 108 kPa range [32,39]; these modifications
are essentially ad hoc, however, and tailored to reproduce experimental values of only one
or few physical quantities (usually the pressure).

A different approach consists of determining the (time-independent) interaction
between two p-H2 molecules on the basis of first principle electronic structure calcula-
tions. The resulting potential energy surface reflects the lack of spherical symmetry of the
molecule, so that the pairwise interaction depends not just on the distance between the
molecules, but also on their relative orientation. An effective central potential is obtained
by angular averaging. The most recently proposed ab initio intermolecular potential for
general use in the study of the condensed phases of p-H2 is that of Patkowski et al. [40],
henceforth also referred to as P.

A theoretical study has established the accuracy of this potential in the determination
of the viscosity and thermal conductivity of hydrogen in the gas phase [41], but no system-
atic comparison has yet been carried out of thermodynamic properties of the condensed
phases of p-H2, computed from first principles using the SG and P potentials (shown for
comparison in Figure 1). This is the goal of this work.

Figure 1. Comparison of Patkowski [40] and Silvera-Goldman [27] (dashed line) intermolecular pair
potential for p-H2.
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Specifically, we report results of large-scale computer simulations of the equilibrium
solid and liquid phases of of p-H2, based on QMC, making use of both the SG and Patkowski
pair potentials. For completeness, we also report results of some calculations in which the
Buck and the ab initio potential by Diep and Johnson [26] were utilized. The purpose of this
project is to determine whether recent ab initio potentials (and specifically the P) may repre-
sent a better choice than the SG, as a general-purpose potential to study condensed phases
of p-H2 in different settings, including droplets [42–44], as well as in confinement [45,46].

The results of this investigation paint a rather complex picture, in part due to inconsis-
tencies between existing experimental data by different groups. In general we find that the
ab initio potential, which have a stiffer repulsive core at short intermolecular distance, yield
structural correlations, such as the static structure factor, with higher peaks, compared to
those computed with the SG and Buck potential; for the liquid phase, this means better
agreement with experiment, in fact close agreement with at least some of the reported
experimental results. The pressure computed with the P potential is positive for both
equilibrium phases (while the SG potential yields negative pressures), with values that
suggest that the incorporation of three-body terms into the P potential could bring the
estimates yielded by it in agreement with experiment; this is because three-body terms, at
the thermodynamic conditions of interest here, have been shown to result in a softening
of the interaction, and therefore an overall reduction of the pressure [47]. Finally, the P
potential yields an approximately 10% higher value of the kinetic energy per molecule than
the SG; whether that means better or worse agreement with experiment really depends on
what experiment one considers, i.e., there presently exist different, incompatible estimates.
Therefore, it is necessary to resolve this outstanding experimental disagreement in order to
make quantitative progress on the theoretical (computational) front.

This paper is organized as follows: in Section 2 we describe the model of interest and
briefly review the computational technique utilized; in Section 3 we present our results,
outlining our conclusions in Section 4.

2. Model and Methodology

The system is described as an ensemble of N point-like, identical particles with mass
m equal to that of a p-H2 molecule, and with spin zero, thus obeying Bose statistics. The
system is enclosed in a cell of volume Ω, so that n = N/Ω is the nominal density. The
cell is shaped like a cube (cuboid) for simulations of the system in the liquid (solid) phase;
periodic boundary conditions are used in all three directions. The quantum-mechanical
many-body Hamiltonian reads as follows:

Ĥ = −λ ∑
i
∇2

i + ∑
i<j

v(rij) (1)

where the first (second) sum runs over all particles (pairs of particles), λ ≡ h̄2/2m = 12.031 KÅ2,
rij ≡ |ri − rj| and v(r) is the pair potential which describes the interaction between
two molecules, for which the various versions mentioned above have been utilized, for the
purpose of comparing predictions for various thermodynamic quantities.

We performed first principles QMC simulations of the system described by Equation (1),
based on the canonical version [48,49] of the continuous-space Worm Algorithm [50,51]
based on Feynman’s space-time approach to quantum statistical mechanics [52] Since this
methodology is extensively described in the literature, it will not be reviewed here.

We carried out the bulk of our simulations by treating p-H2 molecules as distinguishable;
this is because, although quantum exchanges have detectable effects on the momentum
distribution of the liquid at equilibrium, near freezing [31], they do not affect to a significant
degree the quantities of interest here. Indeed, quantum exchanges are strongly suppressed
in the bulk phases of molecular hydrogen, due to the relatively large radius of the repulsive
core of the pair-wise interaction at short intermolecular separations [53]. This is why all
credible scenarios of possible p-H2 superfluidity involve small cluster (comprising of the
order of 30 molecules), not bulk phases [43,54,55].
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Details of the simulation are standard; the short-time approximation to the imaginary-
time propagator used here is accurate to fourth order in the time step τ (see, for instance,
Ref. [56]). We have carried out numerical extrapolation of the estimates to the τ → 0 limit,
and observed convergence of the thermal averages for a value of τ = 2.5× 10−3 K−1 for all
quantities of interest here, with the exception of the pressure, which we computed using
the well-known virial estimator [57]; for this particular quantity, four times shorter a time
step was required in order to arrive at a converged estimate.

Physical quantities of interest calculated in this study include, besides pressure and
energetics, structural correlations such as the static structure factor. The kinetic energy
per molecule eK and the static structure factor S(q) can afford the most direct comparison
of theory with experiment, as they are accessible through neutron scattering measure-
ments [36,37,58]. We have carried out simulations for systems of varying size, the smallest
(largest) comprising N = 256 (N = 4096) molecules. In general, we found that the nu-
merical estimates of eK obtained on a simulated system comprising N = 256 molecules
are indistinguishable, within statistical uncertainties, from those obtained on systems of
larger sizes, in both the liquid and the solid phase. On the other hand, some noticeable size
dependence was observed for the other quantities; at any rate, the range of system sizes
considered in this work gives us reasonable confidence in our ability to gauge finite-size ef-
fects, i.e., that the numerical values quoted herein are representative of the thermodynamic
limit, within their statistical uncertainties.

For the calculation of the potential energy and the pressure, we estimated the contribu-
tion of particles outside the main simulation cell by assuming a value of the pair correlation
function g(r) = 1, for r greater than half the (shortest) cell side. Based on the observed
quantitative consistency (within statistical uncertainties) of results for systems of different
sizes, we contend that this procedure is numerically reliable.

3. Results

We present here the results of our simulations for the liquid and solid phases of p-H2,
at few different conditions of temperature and density. We compare them with available
experimental data; we include only reported experimental estimates for which values of
density, temperature and pressure are furnished.

3.1. Liquid

Table 1 shows our numerical results for the kinetic energy per molecule and the
pressure of the equilibrium liquid phase of p-H2, obtained in simulations with different in-
termolecular potentials, at four distinct thermodynamic conditions for which experimental
results are available. We first note that the results for the kinetic energy are similar for the
phenomenological Silvera-Goldman and Buck potentials, and nearly identical for the first
principle Patkowski and Diep-Johnson potentials, the values yielded by the first principle
potentials being (rather consistently) ∼ 10% higher.

Comparison with experiment for this particular physical quantity is complicated by
the quantitative disagreement between the two most recent experimental determination
of the kinetic energy per molecule at the same (or at sufficiently close) thermodynamic
conditions, namely that by Celli et al. [28] and that by Davidowski et al. [36] (shown in
Table 1); somewhat curious (and puzzling) is the fact that, while the result of Celli et al. is
relatively close to the estimate yielded by the SG potential, that of Davidowski et al. agrees
quantitatively with that based on the P potential.
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Table 1. Simulation results for the kinetic energy (eK , in K), and for the pressure (in bars), for the
liquid phase of p-H2 computed using different intermolecular pair potentials, at various conditions
of density and temperature. Statistical errors (in parentheses) are on the last digit. Also shown
are the most recent experimental estimates. The symbol ∼ is used if experimental uncertainties
are not provided in the quoted reference. The experimental value marked with a ? is obtained by
interpolating results of Table 1 in Ref. [28].

Potential eK (K) Pressure (Bars)

n = 0.02252 Å−3, T = 15.7 K
Silvera–Goldman 61.7(2) −15.3(5)
Patkowski et al. 66.7(2) 7.4(5)
Experiment [28] 60.0(6) 0.24(1)

n = 0.02235 Å−3, T = 16.5 K
Silvera–Goldman 61.8(2) −14.2(3)
Buck 62.6(1) −27.1(5)
Patkowski et al. 67.1(2) 6.9(3)
Diep–Johnson 67.0(1) 20(1)
Experiment [36] ∼67.8 ∼1
Experiment [28] 60.3(6) 0.33(2) ?

n = 0.02295 Å−3, T = 17.1 K
Silvera–Goldman 64.1(1) 9.6(4)
Patkowski et al. 69.7(2) 39.1(5)
Experiment [59] − 29.9(1)

n = 0.02204 Å−3, T = 19.33 K
Silvera–Goldman 63.0(1) 0.2(3)
Patkowski et al. 68.3(2) 22.1(5)
Experiment [59] 63(3) 17.4(5)

To our knowledge, this outstanding, significant inconsistency between different ex-
perimental results is yet to be resolved. In general, it appears as if the SG potential may
yield results for eK is closer agreement with experiment, although in some cases the size of
experimental uncertainties prevents one from making a definitive conclusion. Thus, the
situation at the present time is unclear; it is worth pointing out that the extraction of eK
from the measured momentum distribution is a rather delicate operation, and that similar
disagreements between theory and experiments and/or different experimental estimates
have been reported in other contexts, e.g., in helium mixtures [60,61].

The pressure is consistently underestimated by the SG (and the Buck) potential, and
overestimated by the P (and Diep-Johnson). The difference between the results yielded by
the two potentials can be attributed in part to a) the softer repulsive core at short distance,
and b) the presence in these potentials of an attractive term, proportional to the inverse
ninth power of the intermolecular separation, which accounts in an effective way for
three-body interactions. This term is not present in the P and Diep-Johnson potentials;
this is because, in an ab initio approach, non-additive terms describing the interaction of
groups of three or more molecules are generally included as separate contributions to the
total potential energy. We come back to this point in Section 4, when we discuss more
extensively the possible role of three-body terms; for the moment, we note that, among
the various pair-wise intermolecular potentials considered in this work, the Patkowski
potential furnishes estimates of the pressure that are closest to the experimental results, as
shown in Table 1.

More cogent information is provided by the comparison of structural correlations,
calculated with the two different potentials, for which a direct comparison with experiment
is possible. Figure 2 shows the static structure factor S(q), obtained from the numerically
computed pair correlation function g(r) through

S(q) = n
∫

dr r g(r) sin(qr) (2)
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which takes advantage of the isotropic character of the fluid phase. The agreement be-
tween experimental and simulation results based on the P potential is excellent, at least for
q ≤ 2.5 Å−1, while the SG potential yields a significantly lower peak, as already noticed
in Ref. [37]. On the other hand, the SG potential and the P potential yield very similar
results for q ≥ 2.5 Å−1, and there may be a significant difference with experimental results,
although that is not clear, given the uncertainties quoted on the experimental data (not
shown for clarity in Figure 2).

Altogether, the P potential seems to afford superior agreement with experiment than
the SG potential, at least for the static structure factor, pointing to a more accurate descrip-
tion of the local environment experienced by p-H2 molecules, at least in their immediate
vicinity. Indeed, the agreement with experiment afforded by the P potential appears rather
satisfactory, comparable, for example, to that yielded for the superfluid phase of 4He by
the commonly adopted Aziz pair potential [57].

Figure 2. Static structure factor of liquid p-H2 at density n = 0.02295 Å−3 and temperature T = 17.1 K,
computed in this work using the SG (doted line) and P (solid line) intermolecular pair potentials.
Also shown (circles) are experimental results from Ref. [37]. Experimental uncertainties are not
shown for clarity but they are typically of the order of 0.1 for q ≥ 3 Å−1.

3.2. Solid

At low temperature and at saturated vapor pressure, the equilibrium phase of p-H2 is
a hcp crystal, known experimentally [62] to undergo virtually no thermal expansion from
T = 0 all the way to the melting temperature, namely T = 13.8 K, i.e., the density n remains
very close to its ground state value, namely [34] n = 0.0261 Å−3. Moreover, at T = 4 K the
system is very nearly in its ground state [32].

In Table 2 we show the kinetic (eK) and total (E) energy per molecule (in K), computed
using various potentials; the results for the kinetic energy display the same trend already
observed in the liquid phase, namely the ab initio potentials yield a value of the kinetic
energy ∼ 10% higher than the SG and Buck potentials. Now, the total energy per molecule
for the SG and Buck potentials are in (nearly) perfect agreement with the T = 0 theoretical
estimate of Operetto and Pederiva [29], who computed them by Diffusion Monte Carlo
simulations. The value yielded by the P potential is ∼ 3.4 K lower than that of the SG,
whereas that afforded by the Diep-Johnson potential is actually closer to that yielded by
the SG potential (only a fraction of a K higher); on the other hand, the Diep-Johnson and P
potentials yield essentially identical estimates for eK, i.e., the difference in the estimates of
E delivered by these two potentials is entirely due to the different attractive well depths.
Comparison with experiment is again ambiguous, because in this case too, there exist
two different estimates of the ground state energy, differing by roughly 3.5 K (see Table 2).
In any case, the estimate yielded by the P potential falls roughly between the two conflicting
experimental values.
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Table 2. Simulation results for the kinetic (eK) and total (E) energy per molecule (in K), and
for the pressure (in bars) in the crystal (hcp) phase of p-H2 at temperature T = 4 K and den-
sity n = 0.0261 Å−3, computed using different intermolecular pair potentials. Statistical errors (in
parentheses) are on the last digit. Also shown are experimentally extrapolated values for the ground
state energy [34,35], as well as the value of the pressure at T = 4 K, obtained by interpolating data in
Table III of Ref. [35].

Potential eK (K) E (K) Pressure (Bars)

Silvera–Goldman 70.15(9) −87.94(4) −6.9(1)
Buck 71.37(5) −94.03(5) −26.6(2)
Patkowski et al. 78.52(5) −91.39(5) 50.8(2)
Diep–Johnson 78.44(7) −87.05(7) 66.5(3)
Experiment [34] −90.0
Experiment [35] −93.5 ∼6

Just like for the liquid phase, the SG potential yields a negative value of the pressure,
while the P overestimates it by approximately 45 bars, based on an interpolation of results
provided in Table III of Ref. [35]. The possible role of three-body terms in improving the
agreement between theoretical and experimental results for the two potentials, both for the
pressure and the energy, is discussed in Section 4.

Figure 3 shows the static structure factor for the crystal, computed with the SG and
P potentials, at the above-mentioned thermodynamic conditions. In this case, since the
solid is not isotropic, S(q) cannot be obtained from the pair correlation function but rather
must be computed directly, for a selected set of wave vectors. Unlike in the liquid phase, as
expected S(q) displays in the crystal the characteristic, sharp (Bragg) peaks, whose strength
greater for the P potential (by approximately 10%), as observed in the liquid.

Figure 3. Static structure factor of hcp p-H2 at density n = 0.0261 Å−3 and temperature T = 4 K,
computed in this work using the SG (circles) and P (boxes) intermolecular pair potentials.

4. Discussion and Conclusions

The Silvera-Goldman pair potential has been the most common choice for studies
of the condensed phases of p-H2, and in most studies of small p-H2 clusters. In general,
spherically symmetric pair potentials are utilized in physical situations in which one may
not be necessarily pursuing chemical accuracy, but rather seek a reasonable numerical
account of the most experimentally important thermodynamic properties of the condensed
phases of molecular hydrogen.

In this work we have carried out first principle numerical simulations of liquid and
solid p-H2, based on the SG potential and on other pair potentials, including some ab initio
potentials developed over the past two decades. Our goal was that of carrying out an
extensive comparison with experiment, in order to determine whether the SG remains
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the best choice of spherical pair potential. The results of our first principle numerical
simulations show that the ab initio intermolecular pair potential by Patkowski et al. provides
a quantitatively more accurate description of the structure of the fluid, as shown by a
comparison of computed and measured static structure factor.

There are quantitative discrepancies between the estimates of the (kinetic) energy per
molecule yielded by the SG and P potentials in the (liquid) solid phase. However, there are
also significant, outstanding disagreements between different, independent experimental
determinations of the kinetic energy in the liquid, as well as the energy in the crystal.
It seems fair to state, however, that, in general, the ab initio potential of Patkowski et al.
yields energy and pressure estimates closer to experiment than the Silvera-Goldman. The
question arises of whether closer agreement with experiment can be achieved by including
three-body terms.

While the explicit inclusion of three-body contributions to the potential energy went
beyond the scope of this work, some general considerations can be made, based on the
experience accumulated with research on the condensed phases of helium. Three-body
interaction potentials broadly include two distinct contributions, namely (a) the (mainly
repulsive) triple–dipole Axilrod–Teller (AT) term [63], and (b) an attractive contribution,
arising from electronic exchange taking place in triplets of neighboring molecules. The AT
term has been shown to give a negligible contribution, at the thermodynamic conditions
considered here [29], and therefore one can expect the attractive part, effectively included
in the SG potential, to play the most important role.

In the context of the condensed phases of helium, three-body interactions have been
shown [64,65] to have virtually no effect on the kinetic energy per particle, nor on structural
correlations, which at least at moderate conditions of temperature and pressure are mostly
sensitive to the (repulsive) short-range part of the pair potential. On the other hand, they
can be expected to make the potential energy more negative (therefore possibly worsening
the agreement with experiment yielded by the potential of Patkowski et al.) and to have a
“softening” effect on the pressure, in this case improving the agreement with experiment [47].
Obviously, the situation may well be quantitatively different for molecular hydrogen, and
progress can only be made by carrying out calculations explicitly including three-body
terms, for which various forms have been proposed [66–70].
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