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Abstract: Vehicular Ad Hoc Network (VANET) is an important part of the modern intelligent trans-
portation system, which can provide vehicle communication at a certain distance. More importantly,
VANET can provide route planning and autonomous driving for drivers by analyzing data. However,
VANET’s data privacy and security are a huge challenge when serving drivers. In this paper, we
propose a VANET data-sharing model (DSVN) that combines ciphertext-based attribute encryption
(CP-ABE), blockchain, and InterPlanetary File System (IPFS). DSVN uses an outsourced and revoca-
ble ciphertext policy attribute-based encryption (ORCP-ABE) scheme, which is improved based on
CP-ABE. ORCP-ABE uses key encryption key (KEK) trees to manage user attribute groups and revoke
user-level attributes. It eliminates redundant attributes in the access policy by attribute-weighted
access trees. Moreover, DSVN has no single point of failure. We demonstrate the indistinguishability
under the chosen-plaintext attack (IND-CPA) security of DSVN by a game based on the computational
Diffie–Hellman (CDH) assumption. Experimental results show that DSVN can store and share data
with low overhead. Additionally, it can revoke attributes of users safely.

Keywords: VANET; data sharing; CP-ABE; blockchain; attribute revocation

1. Introduction

Vehicle-to-vehicle communication across shorter distances is made possible by the ve-
hicular ad hoc network (VANET), a particular kind of mobile ad hoc networks (MANETs) [1].
VANET can help drivers get status information and real-time road condition information
from other vehicles within a certain range [2–4]. However, VANET may expose users’
private information, e.g., identities, location information, and trajectories. Once that shared
private information is illegally used by malicious attackers, it will lead to terrible informa-
tion security. Therefore, how to store and share VANET data safely is a research hotspot.
Fortunately, the emergence of blockchain technology has addressed the problems above.
Blockchain is decentralized, transparent, a consensus mechanism, and tamper-proof. [5–7].
It maintains the security of data and punishes malicious attackers for VANET. Currently,
there are two types of blockchain-based VANET data-sharing schemes. The first type,
the data is completely uploaded to the blockchain [8–10], and each node synchronizes
the block data in real time. This strategy is not appropriate for large-scale data storage
scenarios. The other, the data is kept on a cloud server, but transactions are recorded
on the blockchain [11,12]. Such schemes cannot avoid single failure spots. To eliminate
this failure, we store metadata on the InterPlanetary File System (IPFS), eliminating the
high overhead and low efficiency of data storage resources on the blockchain. IPFS uses
distributed storage and allows nodes to retrieve and store data as backups, avoiding single
points of failure.

In addition, access control provided by a trusted third party cannot satisfy VANET
data on the cloud server. This mechanism limits the flexibility of data sharing and has
security concerns. It has become a new challenge to provide fine-grained access control
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for data-sharing scenarios. The primary method of implementing data access control is
encryption. However, conventional encryption schemes cannot satisfy the access control
needs in the VANET scenario. For instance, it is challenging to provide decryption keys to
the desired data access users when using the Advanced Encryption Standard (AES) [13].
Before encrypting the data using the RSA encryption algorithm, the owner must collect
the public key from each user. New users cannot access data that has been encrypted [14].
Attribute-based encryption (ABE), suggested by Sahai et al., allows for precise access
control over encrypted data [15]. Depending on the objects connected with the access
control policy, ABE is further separated into ciphertext policy attribute-based encryption
(CP-ABE) [16] and key policy attribute-based encryption (KP-ABE) [17]. Compared with
KP-ABE, CP-ABE is more suitable for dynamic scenes. Therefore, most of the schemes
supporting fine-grained access control in VANET are based on CP-ABE. In VANET, the
user’s attribute set is dynamic. Various circumstances may cause the user’s attribute
set to change. For instance, Mike works as a traffic cop in the supervisory division. He
is transferred outside of his department due to a change in position. The “supervisory
department” in user Mike’s attribute set needs to be removed. In the traditional CP-ABE
approach, the user’s attribute set is immutable. When the user’s attributes need to be
modified, CP-ABE can only re-register after deleting the user. This method of processing
adds overhead and is not safe during processing. We build a KEK tree based on the user
set to manage the rights of different users. When revoking a specific user attribute, the
revoked user updates its key while other users are unaffected.

In response to the security issues in VANET data sharing, we design a data-sharing
model for VANET (DSVN). First, we build a collaborative network of consortium blockchain
and IPFS with RSUs as nodes [18], a distributed storage network. The model ensures
the tamper-proof and integrity of shared information through a blockchain consistency
mechanism. Second, we implement an efficient encryption scheme ORCP-ABE. Our scheme
supports computational outsourcing and user attribute revocation functions. In addition,
we propose an attribute-weighted access tree. Data owners can eliminate redundant
attributes and improve the efficiency of data encryption by constructing such access trees.
Finally, we prove that the scheme is IND-CPA safe in a game model under the CDH
assumption and test the scheme’s performance through simulation experiments.

2. Related Work
2.1. VANET

VANET is a mobile network formed using wireless communication technology with
moving vehicles and transportation facilities as nodes. VANET is an important part of
intelligent transportation system. With the widespread application of VANET, the security
of private data between vehicles has become a primary concern [19,20]. To solve this
problem, many scholars have proposed solutions [21–25]. Deng et al. propose a secure
VANET authentication scheme (PAS), where a software-defined network (SDN) is inte-
grated as a suitable infrastructure to support anonymous authentication and pseudonym
management [21]. Chen et al. propose a decentralized VANETs (DVANETs) architecture,
where computing tasks are decomposed from centralized cloud services to edge computing
(EC) nodes, thereby effectively reducing network communication overhead and congestion
delay [22]. Li et al. implement blockchain instead of third-party service providers for user
identity management and data storage, and lightweight VANET devices can outsource
complex encryption and decryption operations to RSUs [23]. The scheme of Ma et al.
records users’ keys, uploads, and access transactions for auditing through blockchain [24].
The scheme of Zhang et al. implements outsourced encryption and revokes malicious
users [25].

2.2. Blockchain

Blockchain is a chained data structure that combines data blocks in a sequentially con-
nected manner in chronological order and is a cryptographically guaranteed, immutable,
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and unforgeable distributed ledger. Blockchain originated from Bitcoin, which was pro-
posed by Satoshi Nakamoto [26]. Cryptocurrencies have developed rapidly recently, and
blockchain has received widespread attention. Blockchain technology has been widely
used in finance, healthcare, industry, and other fields [27–29].

For data storage security issues, numerous academics have suggested blockchain-
based data storage schemes [30–32]. A blockchain-based data access architecture for the
Internet of Things was put forth by Shafagh et al. [30]. The model achieves secure access
control management without needing a centralized, trusted third-party organization by
employing blockchain as a distributed access control layer for the storage layer. A VANET
security architecture based on blockchain and mobile edge computing was presented by
Zhang et al. [31]. With blockchain technology, this architecture guarantees the security of
VANET data during horizontal dissemination. A VANET untrustworthy system concept
based on blockchain and certificate authority (CA) was presented by Javaid et al. [32]. This
model can establish distributed trust management for secure data sharing while protecting
privacy. According to the former study, a distributed storage system based on a blockchain
can offer security and dependability that are superior to conventional methods. It can
prevent third-party-caused data loss and privacy leaks.

2.3. CP-ABE

ABE is the most promising cryptographic primitive supporting fine-grained access.
ABE was first proposed by Sahai and Water in Fuzzy Identity Based Encryption (FIBE). [15].
Bethencourt presented the first CP-ABE method based on ABE [17]. This scheme allows
the data owner to define an access policy. Only users who satisfy the policy can decrypt
the data. Afterwards, many scholars put forward their own schemes based on this [33–35].
A scheme to implement access control over system attributes was put up by Water [32]
utilizing a linear secret sharing scheme (LSSS) matrix. Green et al. [34] implement an
effective and innovative scheme that can be outsourced. A multi-authority attributes-based
encryption scheme was put forth by Lewko et al. [35].

The security of existing CP-ABE solutions is still inadequate. Most schemes cannot
track down and deal with malicious users who leak their keys. Numerous academics have
suggested original solutions to this issue. Praveen Kumar et al. used a dynamic traceable
CP-ABE method with revocation [36]. This scheme dynamically tracks the decryptor during
the outsourcing decryption process and helps to identify and revoke the malicious user who
leaked the key. Kamalakanta et al. [37] suggested a practical encryption scheme with multi-
authority and efficient revocation of ciphertext policy attributes. This scheme achieves
user revocation by algorithmically updating the key for unrevoked users. However, this
approach is only suitable for some scenarios with many users. Based on the traceable
revocable ciphertext policy attribute, Yi et al. [38] suggested an equal-length ciphertext
key encryption scheme. Based on achieving user revocation, the transmission efficiency is
improved by constant-length ciphertext and key. These schemes effectively address the
revocation of malicious users but cannot perform flexible revocation of user attributes when
a user changes. A multi-permission ciphertext policy attribute and revocable permissions-
based encryption scheme were presented by Yang et al. [39]. The scheme allows multiple
permission authorities to participate in key distribution and enables at-tribute revocation
when the user’s access rights change. A blockchain-based revocable CP-ABE method was
suggested by Xin et al. [40]. The scheme supports an expressive access control policy and
allows attribute permissions to revoke some user attributes.

3. System Preview
3.1. Architecture

This scheme combines consortium blockchain, attribute-based encryption, and IPFS
technology to propose a new distributed VANET data storage and sharing system, as
shown in Figure 1.
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Figure 1. System model.

This system consists of six parts:

• The vehicle data owner (VDO) is the producer and sharer of data in telematics. VDO
represents vehicles and corresponding onboard devices, which usually do not have the
performance of storing and sharing data on a large scale. In addition, it has dynamic
characteristics, so it only connects to CBN through RSU as a user.

• The roadside unit (RSU) is a communication unit distributed along both sides of the
road at a certain distance. RSU has strong processing performance, sufficient storage
space, and a good network connection. In this system, all RSUs form a consortium
chain network as nodes. RSUs perform user data upload and access operations within
their coverage area while using their high performance to do most data encryption
and decryption work.

• The consortium blockchain network (CBN) is an intermediate party ensuring data
sharing security and trustworthiness. In this system, CBN is composed of all RSU
nodes together. The information in the system that involves user privacy and data
encryption is recorded securely on the blocks of CBN.

• The smart contract (SC) is a complete set of operation methods defined on CBN,
automatically performing different operations in different phases. For example, in the
system initialization phase, SC is responsible for generating system keys. In the user
registration phase, RSU can write user registration information to BN by calling SC.

• The data user (DU) is the user of data. The DU requests data by calling SC through
RSU. In the physical layer, DU and VDO may be the same entity, and the vehicle can
share its data while requesting data.

• The InterPlanetary File System (IPFS) is the data service provider. All shared source
data in the system are stored in IPFS. VDO uploads metadata to IPFS via RSU.

3.2. Definitions
3.2.1. Attribute-Weighted Access Tree

Data users have different identities, and their attribute sets are complex. The attributes
of data users may have containment or hierarchical relationships. For example, in the traffic
management department, Constable, Superintendent, Inspector, and Superintendent are
one class of attributes representing different levels of police officers. There is a clear hierar-
chical relationship between these attributes. The access range of the high-level attributes
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includes the access range of the low-level attributes, i.e., constable ⊂ superintendent ⊂
inspector ⊂ superintendent. This makes the access tree have a lot of redundant attributes.
The attribute-weighted access tree can solve this problem.

As shown in Figure 2, the attribute-weighted access tree has three levels. The root node
is a logical “or” the 2nd level non-leaf node is a logical “and”, and the 3rd level leaf node is
an attribute expression. The construction method of the access tree for attribute assignment:
The system attribute set U will be divided into categories L = {L1, L2, L3, . . . , LN} based
on entities and departments. Then, weights will be assigned to attributes in the same class
where there is a continuous containment relationship for access rights. For example, if
there is Li,1 ⊂ Li,2 ⊂ Li,3 · ·· ⊂ Li,n, then the attribute Li,1 will be assigned weight w of 1,
Li,2 weight w of 2, and so on for the rest. Finally, all attributes will be replaced with the
corresponding category weight pairs.
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3.2.2. The Key Encryption Key Tree

The key encryption key (KEK) tree is a complete binary tree constructed based on
the user set [41], as shown in Figure 3. KEK tree can provide a non-revoking user update
function to achieve attribute revocation. For example, suppose the system user set is
User = {u1, u2, . . . , un}, and the system attribute set is U = {att1, att2, . . . , attm}. Then, the
steps for the system to construct a KEK tree are as follows:

1. Each user in the user set User is designated in the leaf node of the binary tree, and
each node stores a random value θi;

2. Path node generation algorithm Path(ui): For any user ui, all nodes passing through
the path from its corresponding leaf node to the root node are defined as the path
nodes of user ui;

3. The minimum coverage set algorithm Mincs(Gj): For the attribute group Gj with the
attribute attj, the minimum set of nodes in the KEK tree covering all users of Gj is the
minimum coverage set;

4. Calculate the intersection of Path(ui) and Mincs(Gj): If the user has the attribute attj,
then the intersection has only one node Vk. θk is a random value stored in node Vk. If
the user has no attributes attj, then the intersection set is empty.
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3.2.3. Security Definition

1. The computational Diffie–Hellman (CDH) assumption: Suppose there are cyclic groups
G0 and GT of the same prime order p. g is a generator of G0, and e : G0 ×G0 → GT
is a bilinear pair. Choose a,b randomly from Zp. The computational Diffie–Hellman
problem constructs a polynomial adversary A that takes the tuple (G0, p, g, ga, gb) as
input and outputting e(g, g)ab ∈ GT, which has the advantage:

AdvA = Pr[A(G0, p, g, ga, gb) = e(g, g)ab]. (1)

Definition 1. The CDH assumption holds if no probabilistic polynomial-time adversary A
has a nonnegligible advantage in solving the CDH problem.

2. Security model: Below, we define the ciphertext indistinguishability under chosen-
plaintext attacks.

Setup. The challenger C runs the initialization algorithm, generates the public parame-
ters, and sends them to the adversary A.

Phase 1. The adversary A is allowed to select a set S of attributes for a key query. The
challenger C randomly runs the registration algorithm and returns the result to A.

Challenge. The adversary A submits challenge access structure T∗ and equal-length
messages M0 and M1, which are sent to the challenger. The challenger C chooses θ ∈ {0, 1}
randomly, and runs pre-encryption and re-encryption algorithm to encrypt mθ and generates
ciphertext CT′. Then C return CT′ to A.

Phase 2. The adversary A can make a key query in the same way as in Phase 1, except
that the set of attributes S satisfying access structure T∗ related to the challenge ciphertext
CT′ cannot be queried in the key query phase.

Guess. The adversary A outputs a guess θ∗ for θ. If θ∗ = θ, then A wins the game.
The A’s advantage is defined:

AdvA= |Pr[θ∗ = θ]− 1
2
|. (2)

Definition 2. If the adversaryA cannot selectively win by a non-negligible advantage in polynomial
time, the scheme is secure against Chosen-Plaintext Attacks.

4. System Design
4.1. System Flow

The description of the symbols and abbreviations appearing in this paper are shown
in Table 1.
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Table 1. Description of Symbols.

Symbols Description

λ Safety parameters
U,S System attribute set and user attribute set

PK, MSK System public key and private key
DPK, DSK Data public key and private key

id, SKid User id and key
USK Global parameters for user access
kek Attribute Encryption Information

KEK User attribute group encryption information
M Data address information

T,T∗ Access tree
CT Pre-encrypted ciphertext
Gx The attribute groups of attribute x

CT′, CT∗ Encrypted ciphertext
Hdr Encryption header

PDCT Pre-decrypted ciphertext
M The decrypted data address information

As shown in Figure 4, the system has the following five main phases:

1. System initialization: RSU inputs λ and U as parameters and invokes the initialization
contract. The contract will execute algorithm 1 to generate PK, MSK, DPK, and DSK,
and record them in the genesis block of CBN;

2. User registration: VDO (or DU) sends the registration request containing the user
id and user attribute set S to RSU. Then, RSU verifies the authenticity and validity
of the registration information and then invokes the user registration contract. The
contract reads the PK, MSK and DPK from CBN block and executes algorithm 2 to
generate SKid, kek, USK and KEK. id and S are written to the block of CBN. Finally,
RSU returns SKid and kek to VDO as the result of successful registration;

3. Data upload: VDO uploads Data to IPFS via RSU. IPFS returns the retrieval code to the
RSU. Then RSU generates M corresponding to the retrieval code and returns it to VDO
as the result of data upload. VDO receives M and invokes algorithm 3 to generate
the attribute-weighted access tree T∗, and then invokes algorithm 4 to generate CT.
VDO sends CT, G to RSU to invoke the data upload contract. The contract executes
algorithm 5 to generate CT′, Hdr and writes the relevant information into the block of
CBN. Finally, RSU broadcasts CT′ to DUs;

4. Data access: data user DU sends SKid and CT′ to RSU. RSU invokes the data access
contract. If DU satisfies the data access condition, the contract will execute algorithm
6 to calculate and get PDCT and send it to DU. Otherwise, the execution of the
contract will be terminated by the execution failure of algorithm 6. Then, DU executes
algorithm 7 to calculate M and return it to RSU. After receiving M, RSU will read
the data retrieval code and connect IPFS to download data. Finally, DU successfully
accesses data;

5. User attribute revocation: RSU invokes the user attribute revocation contract with
revoked user id and att as input. The contract calls algorithm 8 to update DPK, DSK
and outputs the updated KEK. Then, contract reads the encrypted ciphertext CT′

associated with the user id in the CBN block and calls algorithm 9. The algorithm 9
updates Hdr and CT′, and writes the updated CT∗ on the new block in CBN. Finally,
RSU broadcasts the updated CT∗ to DUs.
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4.2. ORCP-ABE Algorithm

The ORCP-ABE algorithm consists of the following algorithms.

• Initialization (λ, U)→ PK, MSK, DPK, DSK : The algorithm takes security parame-
ters λ and system attribute set U as input. Algorithm constructs a bilinear mapping
e : G0 ×G0 → GT . Where G0 and GT are two bilinear groups of prime of order p. g is
the generator of the cyclic group G0. Then algorithm randomly selects the index value
ti for each attribute atti ∈ U. Finally, algorithm randomly selects two numbers a, β,
then calculates system key pair MSK, PK, and data key pair DSK, DPK:

MSK = (β, gα), PK =
(

g, e(g, g)α, h
)

DSK =
{

ti
∣∣1 ≤ i ≤ n

}
, DPK =

{
Ti = gti

∣∣1 ≤ i ≤ n
} (3)

where a, β, ti ∈ Z∗p, h = gβ, and n is the number of attributes in U (note: The system
public key PK and the data public key DPK are publicly accessible);

• Key generation (id, S, MSK)→ SKid : The algorithm takes user number id, attribute
set S and system private key MSK as input. Algorithm randomly selects uid, USK,
calculates user private key SKid and user attribute encryption information kek. For
each attribute atti ∈ S, algorithm calculates node intersection Vj and judges whether
Vj is empty. If Vj = ∅, algorithm stop the calculation, else calculates user attribute
group encryption information KEK:
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SKid =
(

D = g
α+uid

β , D′ = guid·USK , USK
)

,

kek =
{

atti, keki = gti ·uid·USK
}

atti∈S
,

KEK =

{
KEKi = (keki)

1
θj = g

ti ·uid·USK
θj

}
atti∈S

(4)

where uid, USK ∈ Z∗p,Vj = Path(ui) ∩ Mincs(Gj) and θj is the value in node Vj (note: The
system private key MSK is not visible and is only accessed through calls during the user
registration phase);

• Access tree generation (T, U)→ T∗ : The algorithm takes access structure T and the system
attribute set U as input. First, algorithm classifies atti → Lj and assigns weights w for each
attribute atti ∈ U. Then, algorithm replaces each attribute in T with the corresponding category
weight pairs Lj : w. Finally, algorithm constructs attribute-weighted tree T∗;

• Pre-encryption (M, T∗)→ CT : The algorithm takes the message M and attribute-weighted tree
T∗ as input. First, algorithm generates a randomly univariate polynomial Qnode(x)[ ] or each
tree node. The secret value of node node is Qnode(0). Then, algorithm calculates pre-encrypted
ciphertext CT:

CT =
(

T∗, C̃ = Me(g, g)αs, C = hs, ∀y ∈ Y : C′y = gQy(0)
)

(5)

where s is the secret value of root node, y is a leaf node of T∗, and Y is leaf node set;
• Encryption (CT, G)→ CT′, Hdr : The algorithm takes attribute-weighted tree T, pre-encrypted

ciphertext CT and access structure attribute set G as input. Algorithm randomly selects ky, and
calculates CT′:

CT′ =
(

T∗, C̃ = Me(g, g)αs, C = hs, ∀y ∈ Y : C′y = gQy(0)·gky
)

,

Hdr =
{

vj, E
(
ky
)
= gky ·θj/ti

}
vj∈Mincs(Gi)

(6)

where ky ∈ Z∗p, Gi is the set of user attributes containing attribute atti, and θj is the value in the
leaf node Vj (note: Vj is different from y; Vj is a leaf node in the key encryption key tree, where
y is a leaf node in the visited tree);

• Pre-decryption (CT′, SKid, KEK)→ PDCT : The algorithm takes ciphertext CT′, access user
key SKid and user attribute group encryption information KEK. Algorithm preorder traversal
attribute-weighted tree T∗. For node x ∈ T∗, algorithm calculates the decryption value of leaf
node DN or the decryption value of non-leaf node Fx. If x is leaf node calculate DN:

DN(CT′, SKid, KEK, x) =
e(D′ ,C′y)

e(KEKi ,E(ky))
,

= e(g, g)uid·USK·Qx(0)
(7)

else calculate Fx:

Fx = ∏
z∈Sx

F∆i,S′x(0)
z

= ∏
z∈Sx

(
e(g, g)uid·USK·Qz(0)

)∆i,S′x(0)

= ∏
z∈Sx

(
e(g, g)uid·USK·Qparent(z)(child(z))

)∆i,S′x(0)

= ∏
z∈Sx

(
e(g, g)uid·USK·Qx(i)

)∆i,S′x(0)

= e(g, g)uid·USK·Qx(0)

(8)

where x represents the currently traversed node. Sx denote any set of child nodes of scale tx.
For all leaf nodes z ∈ Sx, transfer DN(CT′, SKid, KEK, z)→ Fz . When user does not satisfy the
set of attribute groups Gx, DN(CT′, SKid, KEK, x) will not be calculated and will be skipped.
Finally, algorithm calculates PDCT:

PDCT = (Froot, C̃) = (e(g, g)uid·USK·s, Me(g, g)as); (9)
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• Decryption algorithm (PDCT, USK)→ M : The algorithm takes pre-decrypted information
PDCT and user data private key USK as input. Algorithm calculates M:

M =
C̃·A 1

USK

e(C, D)
=

Me(g, g)as

e
(

gβs ,g
α+uid

β

)
e(g,g)uid·s

; (10)

• Update KEK (id, attx)→ KEK : The algorithm takes user id and revoked attribute attx as input.
Algorithm randomly selects σx, and updates data key pair DSK, DPK:

DSK = {ti|1 ≤ i ≤ n, i 6= x} ∪ {t∗x = tx·σx},
DPK = {Ti|1 ≤ i ≤ n, i 6= x} ∪

{
Tx
∗ = Tσx

x
}

.
(11)

where σx ∈ Z∗p. For uk ∈ Gx, the algorithm calculates user attribute group encryption informa-
tion KEK:

ϕx = Path(uk) ∩Mincs(Gx),

kekx = (kekx)
σx , KEKx = (kekx)

θj′ .
(12)

where, θj′ is a value corresponding to the node ϕx;
• Update ciphertext (CT′)→ CT∗ : The algorithm takes ciphertext CT′ as input. Algorithm

randomly selects s′, k′y, and updates CT∗:

C̃ = C̃·e(g, g)αs′ , C = C·hs′ , C′y = gQy(0)·gk′y ,

Hdr =


{

v′j, E
(
ky
)
= gk′y ·θj′/tx

}
v′j ∈ Mincs(Gx){

v′j, E
(
ky
)
= gky ·θj/ti

}
v′j ∈ Mincs(Gi), i 6= x

.
(13)

where s′, k′y ∈ Z∗p.

5. Security Analysis

Theorem 1. If the CDH assumption holds in Group G, then no CPA attacker can selectively corrupt
the scheme in polynomial time with a non-negligible advantage.

Proof. Assuming that attacker A can selectively break the scheme proposed in this paper
with a non-negligible advantage AdvA = ε after executing q1 times Type-1 and q2 times
Type-2 key queries, then a challenger C can be constructed to break the CDH assumption
with a non-negligible advantage AdvC = ε/(q1·q2). This section describes the IND-CPA
security model of the scheme, which is a game between a challenger and an attacker. The
flow is as follows:

Init: The challenger C inputs a random CDH challenge A = gZ1 and B = gZ2 . The
attacker A selects the access structure T∗ and attribute att∗x to be sent to C, where att∗x is a
required attribute to satisfy T∗.

Setup: The challenger C generates PK =
(

g, e(g, g)α, h = gβ
)
, MSK = (β, gα), DPK =

{Ti|1 ≤ i ≤ n, i 6= x} ∪
{

T∗x
}

, and DSK = {ti|1 ≤ i ≤ n, i 6= x} ∪
{

t∗x
}

.
Among them, T∗x = (T∗x )

z1 is a theoretical value. Then C sends PK to A.
Phase 1: The attacker A can request two types of keys. The challenger C initializes

two empty lists L1, L2 to record the requested key.
Type-1: The attributes set S1 of user u1 satisfies the access structure T∗, but the attribute

att∗x are revoked. The challenger C calculates SKu1 , kek and KEK, then sends them to A:

SKu1 = (D, D′, USK1) = (g
α+u1 ·Z2

β , gu1·Z2·USK1 , USK1),

kek =


{

atti, keki = gti ·u1·USK1
}

atti ∈ S1, i 6= x{
attx, kek∗x = gt∗x ·u1·USK1·Z2

}
att∗x ∈ S1

,

KEKS1 = {KEKi}i 6=x ∪
{

KEK∗x = (kek∗x)
1/θ∗ = Bt∗x ·u1·USK/θ∗

}
.

(14)
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Type-2: The attributes set S2 of user u2 has attributes att∗x, but does not satisfy the
access structure T∗. The challenger C calculates SKu2 , kek and KEK, then sends them to A.
The calculation here is like Type-1.

Challenge: The attacker A submits two messages of equal length, M0 and M1, and
randomly selects b = {0, 1}. The challenger C will calculate C̃ = Mbe(g, g)αs, C = hs and
C′y (or C∗x). For i 6= x, C′y = gQy(0)·gky . For att∗x, C∗x = gQy(0)·Akx . Then, C calculates CTb
and Hdr∗:

CTb =

{
C̃, C, {C∗x} ∪

{
C′y
}

i 6=x

}
,

Hdr∗ =


{

v∗j , E(k∗x) = gk∗x ·θ∗j /t∗x
}

v∗j ∈ Mincs(Gx){
vj, E

(
ky
)
= gky ·θj/ti

}
vj ∈ Mincs(Gi), i 6= x

.
(15)

Finally, C sends CTb and Hdr∗ to A.
Phase 2: The attacker A is allowed to request keys as in Phase 1.
Guess: The attacker A outputs b′ ∈ {0, 1} as the prediction. Assume the attacker’s

advantage AdvA =
∣∣∣Pr[b′ = b]− 1

2

∣∣∣ = ε, and the challenger C chooses a key from L1 and
L2. Exist as follows:

e(D′, C∗x)
e(KEK∗x , E(k∗x))

=
e
(

gu1·z2·USK1 , gQy(0)·Akx
)

e
(

At∗x ·u2·USK2/θ∗j , gkx ·θ∗j /t∗x
) (16)

Only if Au2 = gz1z2u1 , the calculation is established, then C calculates
gz1z2 = (KEK∗x)

θ∗j /(u1·t∗x). If C does not terminate the game, suppose that after q1
Type-1 and q2 Type-2 key queries, the probability that C correctly chooses from the two lists
is 1

q1·q2
. Therefore, the advantage of C to break the CDH assumption is ε

q1·q2
. Therefore, the

C can break the CDH assumption in polynomial time with a non-negligible advantage. The
proof is over. �

6. Experiment and Analysis
6.1. Comparison

This section compares this scheme’s features and computational cost with some
schemes [23–25]. These schemes are recent schemes in VANET and are all based on
CP-ABE. Table 2 compares the features between our ORCP-ABE scheme and relevant
schemes in recent years. The access policy is the implementation of the access policy in each
scheme. “Outsourcing Calculation” refers to whether the scheme supports outsourcing
part of the computation in the encryption or decryption process to the RSU for completion.
“Attribute Assignment” refers to whether the scheme implements the classification and
assigns weights to attributes in the access structure based on the attribute relationships.
“Attribute Revocation” refers to whether the scheme can provide specific attribute revoca-
tion for malicious users. As shown in Table 2, our scheme implements attribute assignment
and supports attribute revocation at the user level. Our scheme is flexible in dealing with
malicious users by revoking only some of their attributes.

Table 2. Comparison of features.

Scheme Access Policy Outsourcing Calculation Attribute Assignment Attribute Revocation

[23] TREE Yes No No
[24] TREE Yes No No
[25] LSSS Yes No No

Ours TREE Yes Yes Yes
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Table 3 illustrates the comparison of computational cost. The values in Table 3 are
calculated by mathematical formulas and codes after reproduction. We use |S|, and |T|
to represent the number of attributes of the user attribute set S and access structure T,
respectively. |I| represents the number of attributes satisfying the access structure T and
|L| represents the number of rows of the access matrix. |R| is the number of ciphertexts
involved in the attribute revocation.E and ET represent exponential operations on G and
GT , respectively, and P represents bilinear pairing operations. As shown in Table 3, our
scheme is more efficient than the other three schemes in the encryption phase since we
simplify the access structure by attribute assignment.

Table 3. Comparison of computational cost.

Scheme Key Generation User Encryption Outsourced
Encryption User Decryption Outsourcing

Decryption
Attribute

Revocation

[23] (4 + |S|)E P + 4E (2 + 2|T|)E P + 2ET 2|S|P + |I|E /
[24] (2 + 3|S|)E P + (4 + |T|)E (2 + 2|T|)E P + 2ET 2|S|P + |I|E /
[25] (1 + 6|S|)E |L|P + ET + (1 + 6|L|)E / ET (6 + |L|)P + |L|E /

Ours (4 + |S|)E P + E (2 + 3|T|)E P + 2ET 2|S|P + |I|E |R|P + (4 + 2|R|)E

6.2. Experimental Simulation
6.2.1. Experimental Environment

We implemented our ORCP-ABE scheme in Python, and experiments were run on
Ubuntu operating system with Intel core i7 3.00GHz and 8GB 2133MHZ LPDDR3 RAM. We
set the size of an element in G and GT to 512 bits and established a simulation experiment
based on the Charm–Crypto Library V0.50.

6.2.2. Computational Cost

We added 50 unique attributes to the system attribute set. During the key generation
phase, users with various attribute sets are randomly generated. For each user, we evaluated
the cost of key generation. The average results are shown in Figure 5. We use a zip file of
size 1MB as encrypted data in the encryption phase. Then, we tested the encryption cost
of the access tree with a different number of attributes. The average results are illustrated
in Figure 6. In the decryption phase, we test the decryption cost using different users
that satisfy the access structure, and the average results are illustrated in Figure 7. In the
attribute revocation phase, we tested the overhead of revoking a single attribute to update a
different number of ciphertexts and the overhead of revoking multiple attributes to update
a single ciphertext. The results are illustrated in Figure 8.
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Figure 5 shows that the time overhead of key generation increases as the number of
user attributes increases. To know the key generation efficiency of this scheme, we tested
the schemes [23–25]. When the number of user attributes is 10, the overhead of this scheme
is 24 ms, and the overheads of schemes [23–25] are 42 ms, 67 ms, and 115 ms, respectively.
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When the number of user attributes reaches 50, the overhead of the scheme [25] is nearly
500 ms, while the overhead of this scheme is only 99 ms. When the number of user attributes
is large, the overhead of this scheme is the smallest.

As shown in Figure 6a, the encryption overhead at the user side of this scheme and
scheme [23] is not affected by the number of attributes in the access structure. While
the encryption overhead at the user side of the scheme [24] increases with the number
of attributes in the access structure. The overhead of this scheme is about 2 ms, and the
scheme [23] is about 4.5 ms. As shown in Figure 6b, the encryption overhead at the outer
packet side of the three schemes increases with the number of attributes in the access
structure. When the number of attributes of the access structure is 5, the overhead of this
scheme is 21 ms, and schemes [23,24] are 37 ms and 27 ms, respectively. When the number
of attributes of the access structure reaches 50, the overhead of this scheme is 190 ms which
is better than schemes [23,24]. There is no outsourcing in the encryption phase of the
scheme [25], so it is not compared here.

As shown in Figure 7a, the decryption overhead at the user side of each scheme is
not affected by the number of user attributes. The decryption overhead of this scheme is
maintained at 1.8 ms, while the overheads of schemes [23–25] are 4.3 ms, 1.8 ms, and 2.1 ms,
respectively. As shown in Figure 7b, the decryption overhead of each scheme increases with
the number of user attributes at the outer packet side. However, the decryption overheads
of each scheme are very similar. When the number of user attributes is more than 30, the
decryption overhead of this scheme is slightly less than the other schemes.

As shown in Figure 8a, when revoking a single attribute, the revocation overhead
increases with the number of updated ciphertexts. As shown in Figure 8b, when the
revocation of a single attribute is updated with only one cipher, the overhead revocation
increases with the number of attributes. From the above results, attribute revocation is
mainly affected by the number of updated ciphertexts. When the number of updated
ciphertexts required for an attribute is small, the overhead of revoking a single attribute is
less than 100 ms.

6.2.3. Transaction Cost and Transmission Rate

In blockchain simulation phase, we built the FISCO BCOS [42] consortium blockchain
using the build_chain.sh scripts and deployed the IPFS command line version on numerous
servers with Ubuntu 20.04 system environment. The consortium blockchain uses PBFT
consensus. Therefore, we set the initial number of consensus nodes to 4 to satisfy the
3f+1 requirement [43]. We evaluated the performance of processing a single transaction
with different numbers of nodes. Furthermore, we evaluated the model’s transactional
concurrency capabilities. The file size in the test transaction is 1 MB. The experimental
results are shown in Figure 9.
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As shown in Figure 9a, there are two types of test transactions: data upload confirma-
tion and data download confirmation. The results show that the latency of the two types of
transactions increases linearly with the increase of the number of nodes. The increase in
delay is mainly due to the increased communication overhead caused by adding nodes in
the blockchain to reach a consensus. In addition, the delay of data upload is about 360 ms
higher than that of data download. The data upload delay is mainly the overhead of data
encryption and metadata storage, and the data download delay is mainly the overhead
of data download and data decryption. The difference in latency is because the metadata
storage overhead in IPFS is much greater than the data download overhead. As shown in
Figure 9b, the transaction throughput of the model is positively linearly related to nodes.
The number of nodes is initially 4, and the throughput of the model is 47 transaction/s.
When the number of nodes increases to 34, the throughput is 54 transaction/s. The through-
put of the model grows slowly. After the number of nodes reaches 34, the throughput of
the model roughly stabilizes between 54–56 transaction/s.

In addition, the experiments tested the performance of data file upload and download.
Figure 10 shows the time spent on file transfers of different sizes. The experimental file
sizes range from 1 MB to 1024 MB. The experimental results show that the time overhead
of transfer increases exponentially with the file size. When the file size is less than 16 MB,
the transfer time is less than 5 s for uploading and less than 2 s for downloading. The main
factors affecting the transfer time are not the network bandwidth but the data encryption
and decryption and the metadata storage. When the file size exceeds 16 MB, the average
upload transfer rate is about 12.8 MB/s and the average download transfer rate is about
27.6 MB/s. Therefore, the network bandwidth is the main factor affecting the transfer time.
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7. Conclusions

This paper studies a safe and efficient data-sharing model for VANET. This model pro-
vides a data-sharing platform with privacy-preserving and authorized access by CP-ABE,
blockchain, and IPFS. It has no single point of failure and can undo user-level attributes.
Experiments show that our scheme has certain advantages compared with other schemes
in data encryption and data decryption at the user end. In the scheme, the revocation
overhead of a single attribute of a user is relatively low. The transaction processing delay
of the model is short and has certain concurrency capabilities. The model is proved to be
IND-CPA safe in the game under the CDH assumption. In future work, we will optimize
the on-chain information storage. We are considering adopting an editable blockchain to
reduce old blocks with invalid information. In addition, we will increase the concurrency
performance of our model by improving the consensus mechanism.
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