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Abstract: Background: The negative effects of high-grade carotid stenosis on the brain are widely
known. However, there are still insufficient data on the brain state in patients with small carotid
stenosis and after isolated or combined coronary and carotid surgery. This EEG-based study aimed to
analyze the effect of carotid stenosis severity on associated brain activity changes and the neurophys-
iological test results in patients undergoing coronary artery bypass grafting (CABG) with or without
carotid endarterectomy (CEA). Methods: One hundred and forty cardiac surgery patients underwent
a clinical and neuropsychological examination and a multichannel EEG before surgery and 7–10 days
after surgery. Results: The patients with CA stenoses of less than 50% demonstrated higher values
of theta2- and alpha-rhythm power compared to the patients without CA stenoses both before and
after CABG. In addition, the patients who underwent right-sided CABG+CEA had generalized EEG
“slowdown” compared with isolated CABG and left-sided CABG+CEA patients. Conclusions: The
on-pump cardiac surgery accompanied by specific re-arrangements of frequency–spatial patterns of
electrical brain activity are dependent on the degree of carotid stenoses. The information obtained
can be used to optimize the process of preoperative and postoperative management, as well as the
search for neuroprotection and safe surgical strategies for this category of patients.

Keywords: carotid stenosis; brain electrical activity; EEG; postoperative cognitive dysfunction;
coronary artery bypass grafting; carotid endarterectomy

1. Introduction

According to the World Health Organization, cardiovascular diseases (CVD), mainly
associated with atherosclerosis, are the leading causes of death worldwide, including in
Russia [1]. The Siberian region shows less favorable CVD epidemiology. Various climatic
and ecological conditions of the region contribute to the high prevalence of this pathol-
ogy [2]. Atherosclerosis often affects multiple vascular basins simultaneously. Significant
atherosclerotic lesions of several vascular basins determine the severity of the disease,
making it difficult to choose the optimal treatment strategy and calling into question the
positivity of the prognosis, in particular, coronary artery disease.

The global population of elderly people has been increasing every year, and the ageing
of the population has posed new and complex challenges for health professionals not only
to increase life expectancy but also to maintain its quality. A high standard of quality of life
cannot be reached without preserving a person’s intellectual functions. It is known that
with age, cognitive functions diminish, and cognitive impairment (CI) develops in the form
of memory loss, attention and executive impairment, etc. [3–5].

Cognitive disorders associated with cerebral and coronary atherosclerosis (vascular
CI) are widespread among older persons and are more severe than age-related cognitive
changes [6–8]. Previous studies have revealed significant interactions between cognitive
disorders developing in the elderly and senile age, atherosclerotic changes in cerebral
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vessels, and accompanying disorders of cerebral blood flow [9,10]. There is evidence that
age-related structural and functional changes in arteries, arterioles and capillaries lead to
dysregulation of cerebral blood flow and ischemia, leading to disruption of the blood–brain
barrier. Additionally, metabolic disorders are developed with reduced delivery of energy
substrates to neurons and excretion of by-products of the protein breakdown, increasing
neuroinflammation and paracrine regulation dysfunction [11,12]. It is suggested that the
atherosclerotic remodeling of the brain vessels can lead to an accelerated progression of
brain dysfunction [11]. In this case, carotid artery (CA) stenosis is one of the factors affecting
self-regulation of brain perfusion [13]. It has been found that patients with vascular CI
often show a decrease in blood flow velocity in the cerebral cortex, especially in the frontal
and parietal regions [14,15]. These brain regions are known to be the watersheds of the
blood supply, at the boundaries between the vascular pools [16–18]. These zones are
more disadvantaged than any other brain region in the case of systolic and/or diastolic
dysfunction of the left ventricle, valvular pathology and atrial fibrillation accompanying
cardiovascular pathology, as well as during cardiac surgery [11,19].

There is a wide variety of epidemiological and clinical data on vascular CI, but only a
few studies have examined changes in the neurophysiological parameters of cardiac surgery
patients [20,21]. At the same time, early manifestations of vascular and postoperative CI
are subclinical and are detected only using an extended neurophysiological examination. In
this regard, careful attention should be paid to the identification of objective and sensitive
criteria for early diagnosis of CI in cardiac surgery patients. It is generally accepted that the
electroencephalogram (EEG) rhythms reflect the activity of the neural network to be placed
under recording electrode [22,23]. As a consequence, the changes in EEG rhythms may be
early indicators of structural and functional abnormalities in neural networks associated
with vascular and postoperative CI.

Previous studies have shown that the frequency–spatial pattern of brain electrical activity
in patients with vascular CI has specific features [8,24,25]. The association between poststroke
alpha slowing and CI, which may be mediated by attentional dysfunction, was revealed [24].
Al-Qazzaz et al. [25] studied the discriminatory characteristics of patients with vascular
CI and healthy individuals using non-linear EEG analysis methods. It was found that the
degree of EEG irregularity and complexity was significantly lower in patients with vascular
CI compared to control subjects. We previously showed that a theta activity increase in
the frontal and occipital sites, as well as high theta/alpha ratios, may be considered as the
earliest EEG markers of vascular cognitive disorders [8]. Moretti et al. proposed several
promising EEG markers that could be important in the differential diagnosis of vascular
and neurodegenerative CI. The alpha3/alpha2 and theta/gamma indices showed prognostic
significance for the progression of the neurodegenerative type of CI [26–28]. The changes in
the electrical activity of neurons in the post-stroke period proved to be promising in the search
for prognostic markers of clinical recovery in patients with ischemic brain damage. A study
by Zappasodi et al. found that a bilateral increase in low-frequency activity and a decrease in
hemispheric asymmetry in the acute phase of a unilateral stroke in the middle cerebral artery
basin predicts a worse functional outcome in the future [29].

However, there is still insufficient information on the modification of the brain electri-
cal activity in cardiac surgery patients. Cardiac surgery has been shown to be associated
with local or diffuse brain damage [21,30–32]. It is assumed that chronic cerebral ischemia
in patients with cardiovascular diseases, as well as episodes of acute ischemia that occur
during on-pump cardiac surgery, can contribute to specific changes in the brain’s electrical
activity. Our previous studies have shown that EEG patterns associated with coronary
artery bypass grafting (CABG) have specific features, depending on the presence of pre-
operative CI or cognitive decline in the early postoperative period [21,33]. We found that
the presence of early POCD was accompanied by negative postoperative dynamics of
EEG parameters with the increase in low-frequency activity. Skhirtladze-Dworschak et al.
found that the occurrence of nonconvulsive status epilepticus after open cardiac surgery is
associated with mitigating secondary brain injury [34].
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Thus, recent studies have shown that the patterns of brain activity are associated with
perioperative brain damage in cardiac surgery patients. However, the role of the severity
of carotid stenosis in the development of the postoperative changes in brain activity and
cognitive functions is uncertain. It has previously been shown that hemodynamically
significant stenoses of CA (70–99%) can be a risk factor for brain damage during cardiac
surgery [31,35]. However, little is known about the effects of small stenoses of CA (<50%)
on the state of the brain in cardiac surgery patients. There have been several research
studies into the negative effects of asymptomatic stenosis of CA on the state of the brain
after cardiac surgery [33,35]. This has resulted in the perception that CA stenoses of less
than 50% are hemodynamically insignificant. Therefore, this has led to insufficient attention
being paid to preoperative management and intraoperative brain protection in patients
with CA stenoses of less than 50%.

There are some data in the literature about the serious neurological complications
(stroke, postoperative delirium, etc.) that occur in the group of patients with hemody-
namically significant stenoses [36,37]. Research studies about the brain activity changes
associated with postoperative cognitive decline in patients with stenoses of the coronary
and carotid arteries are rare, especially after simultaneous cardiac surgery. It is important
to note that the intraoperative episodes of brain ischemia during combined coronary and
carotid revascularization does not necessarily lead to brain damage such as stroke. Mean-
while, less pronounced, diffuse ischemic brain damage may have a significantly higher
frequency. Further, this may lead to a decline in cognitive functions and complicate the
postoperative management of patients undergoing combined cardiac surgery.

In this paper, we will analyze the effect of carotid stenosis severity on associated EEG
changes and the results of neurophysiological examination, including the frequency and
structure of CI, in patients undergoing cardiac surgery (isolated CABG and combined
CABG and carotid endarterectomy (CEA)) in the early postoperative period.

2. Materials and Methods
2.1. Subjects

This study was a prospective, observational cohort investigation. From a cohort of
patients who underwent on-pump coronary surgery in the clinic of the Research Institute
for Complex Issues of Cardiovascular Diseases, a sample of 140 subjects was selected. All
of the patients met the study criteria and signed an informed consent form. The isolated
CABG group consisted of 86 patients, 29 of whom had unilateral CA stenoses of less
than 50%. The CABG+CEA group were divided into two groups: the group of left-sided
CEA+CABG (n = 30) and the group of right-sided CEA+CABG (n = 24) (see Figure 1).
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The inclusion criteria were as follows: Aged between 45 and 74 years and elective isolated
on-pump CABG or combined CABG and CEA. Only right-handed subjects were included in the
study to avoid any influence on cognitive status and EEG data regarding the factor of laterality.

The exclusion criteria were the presence of pathological changes in the central nervous
system, as indicated by the results of multi-layered spiral computed tomography; depressive
symptoms, as identified by the Beck Depression Inventory (BDI-II) (sum scores ≥ 8); dementia,
as indicated by the Mini-Mental State Examination (MMSE) (sum scores ≤ 24) and Frontal
Assessment Battery (FAB) (sum scores ≤ 11); life-threatening arrhythmias; functional class IV
heart failure, according to the New York Heart Association (FC NYHA IV) guidelines; chronic
obstructive pulmonary disease; malignant pathology; diseases of the central nervous system;
brain injury. Patients receiving anxiolytic therapy were also excluded from the study.

All patients underwent standardized physical, neurological, and instrumental exami-
nations. The examiners were blind to the cognitive status of the patients. The severity of the
coronary lesions was assessed using the findings of coronary angiography (Innova 3100; GE
Medical Systems, Carrollton, TX, USA). Carotid artery ultrasound and echocardiography
with estimation of the left ventricular ejection fraction (LVEF) were performed with the
Vivid 7 ultrasound machine (GE Medical Systems).

The patients received baseline and symptomatic therapy before and after surgery,
consistent with the general principles of treatment for the patients with CAD, chronic heart
failure, and hypertension (National Recommendations, 2020) (see Table 1).

Table 1. The clinical and anamnestic characteristics of the patients before cardiac surgery (n = 140).

Variable Value

Age, years, Me (Q25; Q75) 59 (56; 64)

Mini-mental state, scores,
Me (Q25; Q75) 27 (26; 28)
Frontal assessment battery, scores, Me (Q25; Q75) 16 (15; 17)
BDI-II, scores, Me (Q25; Q75) 3 (2; 4)

Educational attainment, years, n (%)
8–10 101 (72)
≥15 39 (28)

Functional class of angina, n (%)
I-II 94 (67)
III 46 (33)

Functional class NYHA, n (%)
I-II 109 (78)
III 31 (22)
History of myocardial infarction, n (%) 104 (74)
Fraction of left ventricle ejection, %, Me (Q25; Q75) 58 (54; 62)
Type 2 of diabetes mellitus, n (%) 48 (34)

Carotid arteries stenoses, n (%)
One-sided ≤50% 29 (21)
One-sided 70–99% 7 (5)
Two-sided ≥50% 47 (34)

History of stroke, n (%) 15 (11)
Cardiopulmonary bypass time, min, Me (Q25; Q75) 90 (83; 97)
Aorta cross-clamping time, min, Me (Q25; Q75) 68 (56; 50)

Medication, n (%)
ACEi 124 (89%)
Statin 94 (67%)
Beta-blockers 137 (98%)
Antiplatelet drugs 135 (96%)
CCB 59 (42%)
Nitrates 23 (16%)

ACEi, angiotensin-converting enzyme inhibitor; CCB, calcium channel blockers; NYHA, heart failure by the New
York Heart Association.

All surgical interventions in patients of the isolated CABG and CABG+CEA groups
with the use of cardiopulmonary bypass, normothermia and 25–30% hemodilution were
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carried out. In almost all cases, a blood pharmaco-cold cardioplegia was used. The standard
anesthesia and infusion scheme was performed for all types of procedures. All stages of
the surgery were accompanied by invasive hemodynamic control and real-time monitoring
of cerebral cortex oxygenation (rSO2) (INVOS 3100; Somanetics, Troy, MI, USA). For
simultaneous intervention (CABG+CEA), the initial stage of surgery was endarterectomy
with arterial plasty and a xenopericardial patch.

2.2. Neurophysiological Assessment

The patients were assessed at baseline (1–3 days before surgery) and 7–10 days
after surgery.

The cognitive screening and the extended neuropsychological test battery to evaluate
three functional cognitive domains (psychomotor and executive function, attention and
short-term memory) were conducted. Parallel test versions were used in repeated measure-
ments in order to minimize learning effects. The neuropsychological test battery has been
previously described [33,38]. Postoperative cognitive decline after CABG was determined
by a 20% decrease in the cognitive score compared to baseline in 20% of the tests [31].

EEGs were recorded via a 62-channel Quik-cap (NeuroScan, El Paso, TX, USA). The
scalp locations of the electrodes were based on the modified 10/10 System, and a nose
bridge electrode was used as a reference. Bipolar eye movement electrodes were applied to
the canthus and cheek bone to monitor eye movement artifacts. The EEGs were recorded
using an NEUVO-64 system (NeuroScan, El Paso, TX, USA) in the eyes-closed and eyes-
open conditions, in a dimly lit, soundproof, electrically shielded room, and recording
lengths were about 10 min. The amplifier bandwidths were 1.0 to 50.0 Hz, and EEGs were
digitized at 1000 Hz. The data were analyzed off-line using the Neuroscan 4.5 software
program (Compumedics, TX, USA). We performed visual inspections for eye movements,
electromyographic interferences, and other artifacts. Artifact-free EEG fragments were
divided into 2 s epochs and underwent Fourier transformations. For each subject, the EEG
power values were averaged within the theta1 (4–6 Hz), theta2 (6–8 Hz), alpha1 (8–10 Hz),
and alpha2 (10–13 Hz) ranges [39]. The EEG power values of each channel for every subject
in each band were obtained. The next step was the clustering of data recorded in 56 leads
into 5 electrode zones symmetrically in the left and right hemispheres: frontal, central,
parietal, occipital and temporal. The midline sites (Fpz, Fz, etc.) were excluded. The
clustering of nearby electrodes was conducted to increase statistical significance.

2.3. Statistical Analysis

All data were analyzed using STATISTICA 10.0 (StatSoft, Tulsa, OK, USA). The nor-
mality of the distribution of clinical and demographic parameters was tested using the
Kolmogorov–Smirnov test. Most of the clinical parameters as well as cognitive indicators
were not normally distributed and were analyzed using the Wilcoxon and Mann–Whitney
tests. EEG data were normalized using the logarithm transformation and further analysis of
the EEG data was carried out using a repeated-measures ANOVA. Levene’s test was used
to assess the equality of variances for EEG variables. The Greenhouse–Geisser correction of
statistical significance was used in ANOVA. Post hoc pairwise comparisons for groups of
patients were performed using Newman–Keuls multiple comparison tests.

3. Results
3.1. The Effect of Small Stenoses CA (≤50%) on the Postoperative Neurophysiological Changes in
On-Pump CABG Patients
3.1.1. Neurophysiological Data

This analysis included 86 patients who had undergone isolated CABG. According to
the results of the preoperative examination, they were divided into two groups: those with
CA stenoses of less than 50% (n = 29) and those without stenoses (n = 57).
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The postoperative period was standard in all the patients, without adverse cardio-
vascular events (intraoperative and postoperative heart attacks, strokes, life-threatening
arrhythmias, bleeding, etc.).

POCD occurred in 22 (76.0%) patients with CA stenoses and in 32 (61%) patients
without stenoses after isolated CABG (OR = 1.99, 95% CI = 0.77–5.18, Z = 1,42, p = 0,15).
Thus, the incidence of POCD had a tendency of an increasing number of cases in the CA
stenoses group.

The POCD structure consisted of a decrease in the psychomotor and executive function,
as well as short-term memory in both groups. At the same time, the patients with CA
stenoses made more errors in the tests of executive functions (p ≤ 0.05), and patients
without stenoses had more missed signals in the same tests. In the domain of short-term
memory, between-group differences were obtained in the 10-nonsense-syllable memorizing
test (p = 0.04).

3.1.2. EEG Data

For the next stage of the analysis, a repeated-measures ANOVA with a between-
subjects factor of GROUP (two levels: with CA stenoses of less than 50%/without stenoses),
and within-subjects factors of EXAMINATION TIME (two levels: before/after surgery),
AREA (five levels: frontal, central, parietal, occipital and temporal), and LATERALITY
(two levels: left/right hemisphere) was conducted. The significant factors and interactions
associated with the GROUP factor are found in the theta2, alpha1 and alpha2 EEG ranges.

The statistically significant interactions of the factors GROUP × EXAMINATION TIME
(F1.84 = 4.95, p = 0.03) and GROUP × EXAMINATION TIME × AREA × LATERALITY
(F4.336 = 3.54, p = 0.02) were found in the theta2 range of EEG resting state with eyes closed.
The patients with CA stenoses had higher values of the theta2-rhythm power at 7–10 days
after CABG in comparison to the patients without stenoses (Figure 2). In addition, the CA
stenoses group had higher values of rhythm power in the left hemisphere in the frontal
and centroparietal cortical regions and in the right hemisphere in all sites, except for the
occipital regions.
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Figure 2. Differences in the theta2-rhythm power of EEG resting state with eyes closed in patients
who underwent on-pump CABG, depending on the presence of CA stenoses less than 50%: dark
columns—the patients with CA stenoses, light columns—the patients without CA stenoses, error
bars denote SE, *—p < 0.05 Newman–Keuls multiple comparison test.

The significance of the GROUP factor was obtained in the theta2, alpha1 and alpha2
frequency ranges of EEG resting state with eyes open (F1,84 = 4.68, p = 0.034; F1,84 = 3.88,
p = 0.05 and F1,84 = 4.96, p = 0.029, respectively). The patients with CA stenoses had higher
power values of these rhythms compared to patients without stenoses before and after
cardiac surgery.
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Additionally, the analysis of EEG resting state with open eyes revealed a statistically
significant interaction of the factors GROUP × EXAMINATION TIME × AREA × LATER-
ALITY (F4,336 = 2.77, p = 0.04) in the alpha2 frequency range. Before surgery, the power of
rhythm was higher in the right frontal (p = 0.04) and central (p = 0.025) areas in patients
with CA stenoses compared to patients without stenoses. There were no between-group
differences in the left hemisphere. After CABG, the patients with CA stenoses had higher
power values in the frontal (p = 0.03 and p = 0.036, respectively), central (p = 0.007 and
p = 0.01, respectively) and parietal (p = 0.02 and p = 0.019, respectively) regions of the left
and right hemispheres (Figure 3).
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Figure 3. Lateral differences in the alpha2-rhythm power changes of EEG resting state with eyes
open in patients after on-pump CABG, depending on the presence of CA stenoses less than 50%:
(a) before cardiac surgery; (b) after surgery; solid lines—the patients without stenoses, dashed
lines—the patients with CA stenoses, error bars denote SE, *—p < 0.05 Newman–Keuls multiple
comparison test.

Thus, the presence of CA stenoses of less than 50% in patients who underwent on-
pump CABG was associated with more pronounced signs of EEG of brain dysfunction.
Both before and after CABG, the patients with CA stenoses demonstrated higher values of
theta2- and alpha-rhythm power compared to the patients without CA stenoses.

3.2. The Postoperative Neurophysiological Status Changes in the Patients after Combined On-Pump
CABG and CEA
3.2.1. Neurophysiological Data

This analysis included 111 patients who have undergone combined coronary and
carotid artery revascularization or isolated CABG. According to the results of the preopera-
tive examination, they were divided into three groups: the group of left-sided CEA+CABG
(n = 30), the group of right-sided CEA+CABG (n = 24), and the group of isolated CABG
(n = 57). The patients with combined coronary and carotid surgery had significant CA
stenoses as assessed by digital angiography (NASCET criteria).

No adverse cardiovascular events (myocardial infarction, stroke, death, and repeated
unplanned revascularization) were observed in the patients in the early postoperative
period for simultaneous CABG+CEA or isolated CABG. In this cohort, POCD occurred
in 34 (63.0%) patients with CABG+CEA, and in 32 (61%) patients with isolated CABG
(OR = 1.33, 95% CI = 0.62–2.84, p = 0.59). Significant between-group differences were
detected for the psychomotor and executive function indicators. At 7–10 days after surgery,
the psychomotor speed in two neurodynamic tests was higher in the CABG group than
in the group with CABG+CEA (p = 0.0002 and p = 0.005, respectively). In addition, the
CABG patients had better indicators of executive control in the same tests at 7–10 days after
surgery compared to the patients with CABG+CEA (p = 0.0004 and p = 0.02, respectively).
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3.2.2. EEG Data

A repeated-measures ANOVA with a between-subjects factor of GROUP (three levels:
CABG+left-sided CEA/CABG+right-sided CEA/isolated CABG) and within-subjects fac-
tors of EXAMINATION TIME (two levels: before/after surgery), AREA (five levels: frontal,
central, parietal, occipital and temporal), and LATERALITY (two levels: left/right hemi-
sphere) was conducted. The significant factors and interactions associated with the GROUP
factor are found in EEG resting state with eyes closed in the theta1 frequency range.

There was a significant factor in EXAMINATION TIME—F1.108 = 46.6, p ≤ 0.0001. It
was found that the theta1 power increased after surgery at 7–10 days of the postoperative
period as compared with the preoperative level both in the CABG patients and in the two
CABG+CEA groups. This effect was more pronounced in CABG+right-sided CEA patients
(p = 0.0001); they differed also from the isolated CABG group at 7–10 days after surgery
(p = 0.026) (Figure 4).
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—p < 0.05 Newman–Keuls multiple
comparison test for the postoperative indicators in CABG+CEA group as compared to CABG group.

The interaction of factors GROUP × LATERALITY (F2,108 = 3.22, p = 0.04) was also
significant. The left-sided CEA+CABG patients demonstrated the fewest lateral differences
of theta1 power. The isolated CABG and CABG+right-sided CEA patients had higher theta1
power values in the left hemisphere as compared to the right one. This effect was more
pronounced in CABG+right-sided CEA patients (p = 0.0004 and p = 0.00008, respectively)
(Figure 4).

Another significant interaction of factors GROUP × EXAMINATION TIME × AREA
× LATERALITY (F8,432 = 2.15, p = 0.048) was revealed. The theta1 power differences
between the patients who underwent isolated CABG and right-sided CEA+CABG were
found. Before surgery, the right-sided CEA+CABG patients had higher theta1 power
values than isolated CABG patients only in the frontal cortical regions in both hemispheres
(p = 0.001 and p = 0.047, respectively). After surgery, the between-group differences were
more pronounced in the left hemisphere. The right-sided CEA+CABG patients had higher
theta1 power values than isolated CABG patients in all cortical regions, except occipital. In
the right hemisphere, the between-group differences were only in the frontal, central and
temporal regions, as seen in Figure 5.
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4. Discussion

As found in our study, the frequency of POCD was higher in patients with less than
50% CA stenoses in comparison to the patients without them (76% vs. 61%). However, the
frequency was comparable in combined coronary and carotid surgery and isolated CABG
(63% vs. 61%). The POCD structure both in the patients with CA stenosis of less than
50% and in patients with hemodynamically significant CA stenoses (70–99%) consisted of
executive function decline, which was determined as the non-successful performance of
neurodynamic tasks in these patients. Previously, it has been shown that for the correct
assessment of the signal sequence in neurodynamic tests, a high level of indicative activity
is required. This causes increased brain energy consumption [40]. It can be assumed that
highly organized cognitive activity is disrupted by the deterioration of cerebral blood flow
in patients with CA stenoses.

We also demonstrated that the patients with CA stenosis of less than 50% had more
pronounced signs of brain dysfunction as compared with patients without stenoses. These
changes were diffuse and expressed as higher power values of resting state EEG in the
frequency band from 6 to 13 Hz. Earlier, it has been shown that an increase in the slow
rhythm power is associated with a decrease in the level of cortical activation and may be a
reflection of chronic cerebral ischemia [41,42]. It should be noted that these pathological
EEG signs were observed in patients with CA stenosis of less than 50% already in the
preoperative period and persisting after surgery. One of the possible causes of neurological
complications in patients with hemodynamically insignificant CA stenoses may be the
instability of small atherosclerotic plaques with the development of vasoconstrictor and
procoagulant effects [43]. There is an assumption that the atherosclerosis in patients
with multiple vascular lesions may proceed more aggressively [44]. We may propose
that such patients probably develop a more pronounced systemic inflammatory response
associated with cardiopulmonary bypass. Earlier experiments showed that the combined
effect of ischemia and hypoxia induces an increase in the production of pro-inflammatory
cytokines (TNF-α, IL-1β and IL-6) in the brain, which contributes to damage and increased
permeability of the blood–brain barrier, and as a consequence, the development of brain
edema [45,46]. In addition, cerebral blood flow autoregulation may be disrupted more
often in patients with CA stenoses, leading to the decrease in the brain’s resistance to acute
ischemia and hypoperfusion associated with cardiopulmonary bypass [36,47]. The state of
the circle of Willis and the density of leptomeningeal collaterals also contribute to brain
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hemodynamic parameters [48,49]. On the other hand, the interaction between macro- and
microcirculation requires attention in regard to postoperative neurophysiological changes
in the patients after cardiac surgery. Earlier, it has been found that carotid atherosclerosis,
white matter hyperintensities and lacunar infarction are associated with and commonly
contribute to the deterioration of neurological function [50,51].

Additionally, one conclusion we reached was that patients with CA stenoses of less
than 50% are vulnerable to the effects of the factors that accompany cardiac surgery using
cardiopulmonary bypass compared with patients without CA lesions. The presence of even
hemodynamically insignificant stenoses in cardiac surgery patients makes it possible to
include them in the group at increased risk of brain damage in the perioperative period.
This category of patients should be considered as requiring more careful preoperative
management, the use of methods of perioperative protection of the brain, the choice
of safe strategies for myocardial revascularization and the involvement of methods of
cognitive rehabilitation.

A next finding of our study was that the patients who underwent right-sided CABG+CEA
are characterized by the most pronounced theta power changes and generalized “slow-
down” of the EEG compared with patients who underwent isolated CABG and left-sided
CABG+CEA.

It has been recently reported that severe carotid stenosis can disturb the hemodynamic
balance, illustrated by blood flow laterality [52]. As shown by the results in our work, a
contralateral stenosis of the CA was observed in 86% of cases in patients who underwent
CABG+right-sided CEA. Our study showed that the right hemisphere was more vulnerable
intraoperatively. In the study by M. Hedberg and K.G. Engström [53], it was shown that a
stroke occurs more often in the right than in the left hemisphere in the early postoperative
period of cardiac surgery.

Therefore, the results of the study lead us to conclude that on-pump cardiac surgery
is a traumatic brain event, regardless of the type of intervention. Bilateral CA lesion
increases the severity of cortical dysfunction in the postoperative period, which requires
the use of complex brain protection methods. At the same time, it is worth noting that
combined CABG and CEA surgery in comparison with isolated CABG does not lead to
more significant brain damage. This fact is an additional argument that makes the strategy
of one-stage revascularization of the brain and heart justified.

A set of characteristics of the resting EEG, including a postoperative theta power
increase and generalized “slowdown”, was obtained in our study. This is a universal
brain response to damage, indicating an imbalance between cortical and subcortical struc-
tures and a decrease in the functional activity of the cerebral cortex [8,22,23,41,42]. The
topography of postoperative EEG activity disturbances included the frontal, temporal and
parieto-occipital regions. It is assumed that patients with cardiovascular diseases are most
susceptible to ischemic changes in the frontal regions of the brain, which plays a key role in
the executive function, action planning and working memory [3–5,40]. At the same time,
neurodegenerative brain damage, first of all, is detected in the hippocampus and adjacent
areas of the brain (cingulate and temporo-parietal cortex) [23,27,28]. Recent studies of cogni-
tive disorders in a cohort of cardiovascular disease patients have shown that it is difficult to
differentiate neurodegenerative and ischemic patterns of brain damage; to a greater extent,
researchers are inclined to a mixed etiology of cognitive deficits associated with both the
progression of atherosclerotic changes in brain vessels and age-related neurodegenerative
changes [7,8,54].

5. Conclusions

The high frequency of cognitive decline in the postoperative period in patients who
underwent cardiac surgery with the use of cardiopulmonary bypass and the ambiguity of
the mechanisms underlying the development of brain damage encourage further study of
this phenomenon in a cohort of patients with cardiovascular diseases. Our results show
that an integrated approach using modern methods of neuropsychological testing and
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computerized EEG allows for timely diagnosis of postoperative cognitive disorders and
can be useful in determining the effectiveness and safety of cardiac surgery. We showed
that cardiac surgical interventions with cardiopulmonary bypass are associated with a high
risk of episodes of brain ischemia. This may be accompanied by specific rearrangements of
frequency–spatial patterns of electrical brain activity, dependent on the degree of damage
to coronary and carotid arteries. The information obtained can be used to optimize the
process of preoperative management and the search for anesthesiologic brain protection
and safe surgical techniques and strategies for myocardial revascularization, as well as
postoperative rehabilitation of this category of patients.
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22. Başar, E.; Gölbaşı, B.T.; Tülay, E.; Aydın, S.; Başar-Eroğlu, C. Best method for analysis of brain oscillations in healthy subjects and
neuropsychiatric diseases. Int. J. Psychophysiol. 2016, 103, 22–42. [CrossRef]
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