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Abstract: Breast cancer (BC) is currently the most common form of cancer diagnosed worldwide with
an incidence estimated at 2.26 million in 2020. Additionally, BC is the leading cause of cancer death.
Many subtypes of breast cancer exist with distinct biological features and which respond differently
to various treatment modalities and have different clinical outcomes. To ensure that sufferers receive
lifesaving patients-tailored treatment early, it is crucial to accurately distinguish dangerous malignant
(ductal carcinoma, lobular carcinoma, mucinous carcinoma, and papillary carcinoma) subtypes
of tumors from adenosis, fibroadenoma, phyllodes tumor, and tubular adenoma benign harmless
subtypes. An excellent automated method for detecting malignant subtypes of tumors is desirable
since doctors do not identify 10% to 30% of breast cancers during regular examinations. While several
computerized methods for breast cancer classification have been proposed, deep convolutional
neural networks (DCNNs) have demonstrated superior performance. In this work, we proposed
an ensemble of four variants of DCNNs combined with the support vector machines classifier to
classify breast cancer histopathological images into eight subtypes classes: four benign and four
malignant. The proposed method utilizes the power of DCNNs to extract highly predictive multi-
scale pooled image feature representation (MPIFR) from four resolutions (40×, 100×, 200×, and
400×) of BC images that are then classified using SVM. Eight pre-trained DCNN architectures
(Inceptionv3, InceptionResNetv2, ResNet18, ResNet50, DenseNet201, EfficientNetb0, shuffleNet,
and SqueezeNet) were individually trained and an ensemble of the four best-performing models
(ResNet50, ResNet18, DenseNet201, and EfficientNetb0) was utilized for feature extraction. One-
versus-one SVM classification was then utilized to model an 8-class breast cancer image classifier.
Our work is novel because while some prior work has utilized CNNs for 2- and 4-class breast cancer
classification, only one other prior work proposed a solution for 8-class BC histopathological image
classification. A 6B-Net deep CNN model was utilized, achieving an accuracy of 90% for 8-class BC
classification. In rigorous evaluation, the proposed MPIFR method achieved an average accuracy
of 97.77%, with 97.48% sensitivity, and 98.45% precision on the BreakHis histopathological BC
image dataset, outperforming the prior state-of-the-art for histopathological breast cancer multi-class
classification and a comprehensive set of DCNN baseline models.

Keywords: Breast Cancer; multimodal; SVM; transfer learning; neural networks

1. Introduction

Breast cancer (BC) causes cells in the breast to develop uncontrollably, which can lead
to tumor growth and death if not detected early. In 2018, an estimated 627,000 women
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died from BC, which corresponds to 15% of the total cancer mortality in women [1]. A
recent study by the American Cancer Society (ACS) suggests that one in eight women
in the US will develop cancer in their lifetime [2]. Globally, BC is a leading type of
cancer among women, affecting about 2.1 million women annually, and has been the
leading cause of death associated with cancer among women [3]. Early detection and
classification of breast cancer subtypes are crucial in deciding the best treatment plan
and mitigating the risk of death. According to the World Health Organization (WHO),
increasing the survival rates of patients with breast cancer significantly requires early
and precise diagnosis of malignancy [4]. There are two kinds of growth in breast tissue,
non-harmful (benign) and malignant, with subtypes occurring in each category. Non-
harmful (benign) growth patterns include adenosis (A), fibroadenoma (FA), phyllodes
tumor (PT), and tubular adenoma (TA), and dangerous (malignant or cancerous) growth
patterns include ductal carcinoma (DC), lobular carcinoma (LB), mucinous carcinoma
(MC), and papillary carcinoma (PC). These subtypes of BC have distinct biological features,
leading to different response patterns to various treatment modalities and thus have varied
clinical outcomes. Consequently, to ensure that sufferers receive lifesaving, patient-tailored
treatment early, it is very important to accurately distinguish dangerous malignant subtypes
of tumors from benign harmless subtypes [5] during patient assessments. Global gene
expression profiling (GEP) [6] studies have shown that survival is associated with the
classification of distinct biological classes.

As a result of limited knowledge and availability of experts, between 10% and 30% of
BCs go undetected during regular screenings. The accuracy of manual BC screening varies
according to the pathologist’s experience and knowledge, and diagnoses can be incorrect
due to human error. Automated computer screening systems for breast cancer classification
and identification have been proposed to automatically diagnose malignancy, improving
the accuracy and consistency of differentiating the normal vs. abnormal classes of breast
tissues by about 10% [7]. Computer aided diagnosis (CAD) systems are accessible, fast,
and reliable [8]. Machine learning using handcrafted image features was used in previous
image-based breast cancer classification studies [9–11]. Recently, due to their demonstrated
impressive performance, deep convolutional neural networks (DCNNs) have become
increasingly popular for medical image analysis, segmentation, classification, and ailment
prediction [12]. Breast cancer can be detected by automated therapeutic imaging techniques
such as histopathological imaging, computed tomography, breast X-rays, sonograms, and
magnetic resonance imaging [13]. Currently, histopathological images are considered the
best diagnostic images for cancer diagnosis [14]. Several top-down and bottom-up image
analyses rely on automated and exact classification of histopathological images, such as
classifying nuclei, detecting mitosis, and segmenting glands [15]. Tumor classification,
however, is the most critical step in histopathological image examination. A wide range
of image analysis tasks can be performed with convolutional neural networks (CNNs),
including image classification, disease detection, localization, segmentation [16], and the
analyses of histopathological images [12].

Our approach: In this study, a method for multiclass classification of breast can-
cer using an ensemble of pre-trained deep convolutional neural network (DCNN) and
SVM, is proposed. First, four state-of-the-art DCNN backbone models (1) ResNet50 [17],
(2) ResNet18 [17], (3) DenseNet201 [18], and (4) EfficientNetb0 [19] were used for feature
extraction. The models were used to extract rich multi-resolution features from four reso-
lutions (40×, 100×, 200×, and 400×) of histopathological breast cancer images. The rich
multiresolution features were then pooled using global average pooling to create an array
of deep multiresolution convolutional features, SVM classifier performs multiclassifica-
tion (8sub-types) of malignant and benign tumors. SVM algorithms always converge at
a global minimum when provided with a suitable feature set irrespective of the dimen-
sionality of the inputs. The target malignant breast cancer classes are ductal carcinoma
in situ, lobular carcinoma, mucinous carcinoma, and papillary carcinoma subtypes, and
the benign breast cancer target classes are adenosis, fibroadenoma, phyllodes tumor, and
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tubular adenoma subtypes. Methods for extracting image features fall into three main
categories [20]: (1) Automatic feature extraction using deep learning, (2) handcrafted fea-
tures, and (3) unsupervised feature learning. Manual feature extraction is tedious and
error-prone. EffficientNetb0 is the baseline model for EfficientNet, which uses compound
scaling, a novel scaling method, to scale the model’s dimensions uniformly to increase
performance. With ResNet-50, deep residual networks are constructed with 50 layers
of residual blocks, which mitigates the vanishing gradient descent problem to maintain
accuracy as the depth of the network increases. In contrast to the previously described
neural networks, ResNet18 is a gateless or open-gated variant of the highway-net, the
first working very deep feedforward neural network. Some layers can be jumped over
by using skip connections. In typical implementations, it includes double- or triple-layer
skips with nonlinearities and batch normalizations. DenseNet-201 is a convolutional neural
network that is 201 layers deep. It utilizes dense connections between layers through dense
blocks, where all layers are connected directly. Each layer receives additional inputs from
all preceding layers and passes its feature maps to all subsequent layers to preserve the
feed-forward nature. The feature extraction step is fundamental to the analysis of medical
images using machine learning, and a variety of extraction strategies have been proposed
in the past for the classification of various diseases using images [21–24].

In summary, the proposed method utilizes the power of pre-trained, state-of-the-art
DCNN models to extract a multi-scale pooled image feature representation (MPIFR) from
four resolutions (40×, 100×, 200×, and 400×) of BC images. The proposed MPIFR is a
highly predictive auto-learned representation that is then classified using SVM. In rigorous
evaluation, the proposed MPIFR achieved an average accuracy of 97.77%, with 97.48%
sensitivity, and 98.45% precision on the BreaKHis dataset [25]. The proposed ensemble
approach outperforms a comprehensive set of state-of-the-art CNN baselines and the prior
state-of-the-art for classifying multiresolution (40×, 100×, 200×, and 400×) histopathologi-
cal breast cancer images including ResNet18, InceptionV3, DenseNet201, EfficientNetb0,
SqueezeNet, and ShuffleNet. Our evaluation demonstrates that every component of MPIFR
contributes non-trivially to its superior performance, including transfer learning (pre-
training and fine-tuning), deep feature extraction at multiple resolutions into a powerful
feature representation and classification using one-versus-one SVM.

Challenges: Firstly, due to the heterogeneous visual texture patterns in breast histopatho-
logical images, DCNNs are challenged to reliably classify tumor malignancy, which nega-
tively impacts their performance. Secondly, the most predictive features that discriminate
malignant and benign breast cancers in histopathological images may appear at different
resolutions, which differ for various BC cases. The proposed MPIFR approach innova-
tively addresses these two challenges, making it particularly appropriate for discriminating
between BC tumor malignancies.

Related work that utilized deep learning and CNNs for breast cancer tumor multi-
classification are summarized in Table 1. The deep multiresolution feature representation
for 8-classes, which we propose, has not been explored previously for breast cancer clas-
sification using neural networks and SVM. Omar et al. in [26] performed multi-class
breast cancer classification from histopathology images using 6B-Net deep CNN model,
with feature fusion and selection mechanism. The method achieved a multi-class average
accuracy of 94.20% for 4-class and 90.00% for 8-class, respectively, on histopathological
images. Wei et al. proposed a breast cancer multiclassification from histopathological
images with a structured deep learning model [27], the model achieved an accuracy of
93.2%. Murtaza et al. [28] utilized GoogleNet architecture [29] to classify histopathology
images into subtypes using majority voting. MUDeRN investigated using ResNet [17] to
classify breast cancer images into malignant or benign and further categorized each to its
subsequent subtypes using two modules M and B [30]. Ameh Joseph et al. in [31] used
handcrafted features extracted to train the DNN classifiers with four dense layers and the
SoftMax layer. Xie et al. in [32] performed 4-class classification based on magnification
factor, using some deep learning models.
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Table 1. Prior models for 2- and 4-class BC classification including performance comparisons. Our
proposed approach (in bold) outperforms prior approaches.

Study Method Classification
Type

Type of
Feature

Extraction
Accuracy (%) F1-Score

Measure (%) Specificity (%) AUC (%)

Al-Haija and
Adebanjo
(2020) [33]

ResNet-50
CNN Binary

Automatic
unsupervised

feature
discovery

99 n/a n/a n/a

Kassani et al.
(2019) [34]

VGG19,
MobileNet,

DenseNet and
multi- layer
perceptron
classifier

Binary
Automatic

feature
extraction

98.13 98.64 n/a n/a

Umer et al.
(2022) [26] 6B-Net 4-class|4-class

Automatic
feature

extraction
94.20|90.10 n/a n/a n/a

Z. Han et al.
(2017) [27]

CSDCNN
End-to-end 8-class n/a 93.2 n/a n/a n/a

Gandomkar et
al. (2018) [30]

Variant
ResNets
models

4-class

Deep Learn-
ing for Fea-
ture Extrac-

tion

96.25 n/a n/a n/a

Murtaza et al.
(2019) [28] CNN end- end 4-class

Deep learning
for feature
extraction

92.45|95.48 n/a 91.11|96.97 n/a

Proposed
MPIFR +

SVM Model

Four variant
CNN & SVM 8-class

Automatic
unsupervised

feature
discover

97.77 97.92 99.57 99.00

Related work that used CNNs to extract deep features from medical images
Wichakam et al. proposed an automated mammographic image detection system using a
CNN for feature extraction and SVM for classification but did not explore multi-resolution
extraction and pooling [35]. Devnath et al. [36] used CNN models to detect pneumo-
coniosis in X-ray images by extracting deep multi-level features. Devnath et al. [37]
present a systematic review of computer-aided diagnosis of coal workers’ pneumoconio-
sis in chest X-rays using machine learning, which included approaches that used CNNs.
Devnath et al. [38] used CheXNet-model as part of an ensemble of multi-dimensional deep
feature extractors from chest X-rays to detect and visualize pneumoconiosis. To convert the
output of the model into one-dimensional vectors, the last layer close to the output layer
was removed, then a global average pooling layer was added. Huynh 162 et al. [39] used
computer-aided diagnosis (CADx) systems, to examine the optimal point for extracting
features from pre-trained CNNs. Zhang et al. [40] proposed ensemble learners for pul-
monary nodule classification by combining deep CNNs. Other related research includes
work by Yang et al. [41] who previously used adaptive boosting (AdaBoost), an ensemble
method, to combine multiple weak classifiers into a single classifier. Using k-means with
K = 4000, each tissue image generated 4000-Teton histograms as features. An accuracy
of 80% was achieved for multi-class classification (three target classes: I, II, and benign).
Al-Haija and Adebanjo [33] proposed a binary classifier using a transfer learning model
ResNet-50 CNN and achieved a performance accuracy of 99% using histopathological
images. Filipczuk et al. [42] and George et al. [20] previously extracted nuclei feature
from fine needle biopsies. First, the circular Hough transform was utilized for detect-
ing nuclei candidates and false-positive reduction, followed by machine learning and
Otsu thresholding.
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Novelty: Our work is novel because while some prior work has utilized CNNs
for 2- and 4-class breast cancer classification, they did not explore using a multi-scale
pooled image feature representation (MPIFR) to classify histopathological images into
eight (8) BC classes. Specifically, some prior work utilized CNNs for the classification of
four (4) BC classes using 6B-Net with deep feature fusion and achieved an accuracy of
94.2%. Innovatively, the proposed ensemble approach leverages several key insights. First,
pre-training state-of-the-art DCNNs on huge repositories such as the 14 million image
ImageNet repository provides them with the intelligence to learn low-level features such
as edges and corners from images of histological breast cancer. Secondly, by extracting
features from multiple resolutions of histopathological images, classification accuracy is
improved due to the fact that specific visual characteristics may be more visible at different
resolutions. Thirdly, the extraction of multiresolution breast cancer features creates a
powerful set of features that can be classified using SVM for highly accurate multi-class
classification of histopathological images of breast cancer.

2. Proposed Ensemble Model for 8-Class BC Image Classification
2.1. Working Principles of Deep Neural Networks Learning Algorithms

There are many types of deep learning, different kinds of auto-encoder, that vary
in architectures and training algorithms. However, one basic element of deep learning
is the additional new activation functions such as rectified linear unit (ReLU), SoftMax,
and Swish. These are identified to be useful to train deeper networks [43]. Compared to
many classical bounded activation functions such as tanh(x) and δ(x), many of the new
activation functions are convex with a large area of non-zeros derivatives [44]. Figure 1
illustrates attributes of new and classical activation functions.

Figure 1. New and classic activation functions.

ReLU was proposed to replace tanh(x) and δ(x), which are known to be standard ways
to model a neuron′s output f as a function of its input x. ReLU is non-saturating nonlinearity:

h(x) = max(0, x) (1)

ReLU is a preferred choice of activation function for hidden layers, as it is faster and
more efficient for deep convolutional neural networks compared to their equivalents with
tanh(x)units [44]. Leak ReLU was proposed as an improvement of the ReLU activation
function. ReLU sometimes destroys some neurons in each iteration, a condition known as
the dying ReLU condition:

h(x) =

{
x, i f x > 0
0.01x, otherwise

(2)
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A more generalized variant of ReLU is parameterized ReLU:

h(x) =

{
x, i f x > 0
ax, otherwise

(3)

where a is a trainable parameter with the value of a = 0.01; parameterized ReLU acts as
Leaky ReLU. SoftMax is a generalization of logistic regression. It is usually used in a final
output layer to handle a case of a multi-class problem. Recall that the logistic regression
learning model is a sigmoid function:

hθ(x) = δ(x) =
1

1 + e−θT X
(4)

In logistic regression the output yi for an input instance i is assumed to belong to binary
set, i.e., yi ∈ {0, 1}. With SoftMax yi belong to multivariate set, i.e., yi ∈ {1, . . . K} where
K is the number of target classes. Recall that the cost function for the logistic regression
model is:

J(θ) = − 1
m
[

m

∑
i=1

yilog(hθ(xi)) + (1− yi)log(1− hθ(xi))] +
λ

2m

n

∑
j=1

θ2
j (5)

In SoftMax, the interest is on multi-class classification rather than binary classification
as in the case of logistic regression. Thus, given a test input x, the learning model estimates
the probability of p(y = k/x) for each value of k = 1, . . . , K. Hence, the learning model
will output a K- dimensional vector for which its element is summed up to 1. The SoftMax
function for multi-class prediction is of the form:

hθ(x) = δ(x) =
1

1 + e−(θ′)T X
(6)

Equation (6) predicts the probability of one of the classes, and (1− 1
1+e−(θ′ )

T
X
) for the

other class; where θ
′

is a single parameter vector.
Equation (7) below describes the cost function for SoftMax regression:

J(θ) = −

 m

∑
i=1

K

∑
k=1

1{yi = k}log
exp(θ(k)Txi)

K
∑

j=1
exp(θ(j)Txi)

 (7)

where 1{.} is an indicator function. i.e., 1{a true statement} = 1, and 1[{a f alse statement} =
0. For example, 1{1 + 1} = 2 evaluates to 1; while 1{1 + 3} = 5 evaluates to 0.

As earlier stated, feature identification and processing are performed in an unsuper-
vised fashion in deep learning. We formally define feature extraction using convolution as
in [45]. Given some large images of size r× c called xl , a sparse auto-encoder is trained
on small patches sampled of these xl . We refer to the small patches as xs with size a× b.
Suppose k is the number of hidden units, we compute a convolved feature as:

fs = δ(W l xs + bl) (8)

where δ is the sigmoid function. These give a total of k× (r− a + 1)× (c− b + 1) array of
convolved features.

In theory, what follows after feature extraction is classification, but classifying all
features extracted results in a huge computational burden and is susceptible to overfitting.
To overcome these computational challenges, a pooling process is applied. It is a process
of summarizing the output of a neighboring group of neurons in the same kernel map.
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This natural approach of aggregating a statistical summary of these features at the various
location is referred to as pooling and sometimes means “pooling” or max “pooling” pending
the pooling operation used. Formally, the pooling operation involves dividing the array of
convolved features into disjoint m× n regions and applying to mean (or maximum) feature
activation over these regions to generate pooled convolved features. Finally, the pooled
convolved features with many lower dimensions are used for classification.

Overfitting is one of the generalization problems that are common when there are few
input data examples and higher dimensional features. To reduce the overfitting of models
to specific image training sets, two processes are now discussed. Data argumentation
is the most common method of addressing overfitting in image data [46]. The second
method popularly used in deep learning is the dropout method. It involves setting the
output of each hidden neuron with the probability of 0.5 to zero. Dropout neurons are
not used for both forward pass and backpropagation processes [46,47]. In this paper,
image data augmentation is utilized to reduce overfitting. In future work, we will also
explore emerging data augmentation methods that utilize generative adversarial networks
(GANs) [48,49].

Despite various methods employed to reduce the dimension of input image data and
the superior performance of the CNN, they are still computationally too expensive to use
on a large scale to high-resolution image [46]. Figure 2 presents CNN architecture from [23].
It consists of eight layers between the input and output layers: the first five convolutional
layers and the last three fully connected layers. The ReLU non-linearity was used as an
activation function with the output of the first seven layers and the final fully connected
layer is fed to 1000 SoftMax to represent 1000 class labels. For a detailed description of
CNN architecture in Figure 2, the reader is referred to the [46]. As a CNN deepens with
more layers, the training of the neural network becomes difficult, and performance in
terms of accuracy starts to saturate and degrade [50]. Hence, many variants of CNN were
developed to address these two issues, among which are residual learning (ResNet) and
the model scaling method (EfficientNet).

Figure 2. Architecture of a convolutions neural network (CNN) [51].

The residual learning (ResNet) architecture allows features to learn from residual
connections rather than the full connection from the preceding layer. The skip connection
as in Figure 3 is labeled x identity. This way the stacked layers are designed to learn the
desired underlying mapping H(x) without the x identity connection; however, the original
mapping is recast by adding the output of the identity mapping to the output of the stacked
layers. Details of ResNet and its variants can be found in [17].
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Figure 3. A building block of residual learning from [25].

Tan and Le [19] introduced a compound scaling method to increase the efficiency of a
baseline model without altering the layered architecture. Tan and Le [19] named the variant
CNN models EfficientNets. Instead of arbitrarily scaling the convNets depth, width, or
image size, EfficientNets uniformly scale all three with a constant ratio. Figure 4 illustrates
the compound scaling of convNets.

Figure 4. Illustrate model scaling from [29]. (a) is a baseline network example; (b–d) are conventional
scaling that only increases one dimension of network width, depth, or resolution. The compound
scaling method (e) is the compound scaling method that uniformly scales all three dimensions with a
fixed ratio [22].

The main objective of compound model scaling is to maximize model accuracy for
given resource constraints. This is formulated in [19] as an optimization problem:

max
d,w,r

Accuracy(N (d, w, r))

s.t. N (d, w, r) =
⊙

i=1...s
F̂ d·L̂i

i

(
X〈r·Ĥi ,r·Ŵi ,w·Ĉi〉

)
Memory(N ) ≤ target_memory

FLOPS(N ) ≤ target_flops

(9)

where N is a ConvNet, i a ConvNet layer, Fi is the operator, Xi is input tensor, 〈r.Ĥi, r.Ŵi, r.Ĉi〉
a tensor shape with spatial dimension Hi by Wi and the channel dimension Ĉi.F̂i, L̂i, Ĥi, Ŵi, Ĉi,
which are predefined parameters in baseline network, and w, d, r are coefficients for scaling
network width, depth and resolution, respectively, and

⊙
is the tensor dot product of Fi.

The EfficientNets, such as ResNets, are a family of models, B0 to B7. Of interest to our
work is EfficientNet-B0. Details of EfficientNets are in [52].
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2.2. Pre-Trained DCNNs for Image Feature Extraction

To create the multi-scale pooled image feature representation (MPIFR) representation,
features are extracted from four resolutions (40×, 100×, 200×, and 400×) of histopathological
breast cancer images using four (4) state-of-the-art DCNN-based models (1) (Efficientnet-
b0), (2) DenseNet201, (3) ResNet50, and (4) ResNet18.

ResNet18 [17] : ResNet has three variants according to its number of layers: ResNet18,
ResNet50, and ResNet101 with 18, 50, and 101 layers, respectively. A transfer learning
algorithm based on ResNet has been successfully used to classify biomedical images.
ResNet18, shown in Figure 5, was used for feature extraction in this paper. The deep neural
network layers learn low or high-level features during training, whereas the ResNet layer
learns residuals instead.

Figure 5. ResNet18 architecture.

EfficientNetB0 [19]: architecture and scaling method utilizes a compound coefficient
to uniformly scale all depth, width, and resolution dimensions of the CNN using a set of
fixed scale coefficients.In a principled manner, EfficientNet scales network width, depth,
and resolution based on a single δ compound coefficient as expressed in Equation (10).

depth: d = αφ

width: w = βφ

resolution: r = γφ

s.t. α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(10)

For instance, in order to utilize 2N times more computational resources, the network
depth can simply be increased by αN, the width by βN, and the image size by γN, where
α, β, and γ are constant coefficients determined by a small grid search on the original
small model. In order to capture more fine-grained patterns from a larger input image,
the compound scaling method uses more layers to increase the receptive field and more
channels to capture a larger number of channels. MobileNet-V2’s inverted bottleneck
residual blocks along with squeeze-and-excite blocks are the basis of EfficientNet-B0’s base
network. Figure 6 is the architecture for the EfficientNet B0 model.

Figure 6. EfficientNetB0 architecture.

DenseNet201 [18]: Compared with conventional CNNs, DenseNet requires fewer
parameters because it does not learn redundant feature maps. The DenseNet layers are
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relatively narrow, (12 filters), which adds a fewer number of new featuremaps. Four
variants of DenseNet exist; DenseNet121, DenseNet169, DenseNet201, and DenseNet264.
Our paper uses DenseNet201, which has 201 layers, to extract features. In DenseNet (see
Figure 7), the input image and gradients from the loss function are accessible directly to
each layer. DenseNet is therefore a good choice for image classification due to its reduced
computational cost.

ResNet50 [17]: introduced a deep residual learning structure, which reformulates
the CNN’s layers as learning residual functions of the layer inputs. Correctly denoting
the desired underlying mapping as K(i), the stacked non-linear layers were made to fit
another mapping of E(i) := K(i)− i. ResNet solved the vanishing gradient, whereby the
value of the neural network’s gradient decreases significantly during backpropagation
until its weights barely change. ResNet solved the vanishing gradient problem using a
skip connection, by adding the original input to the output of the convolutional block. A
skip connection is a direct connection that skips over some of the model layers and can be
expressed as y = F (x, {Wi}) + Wsx, where F (x, {Wi}) represents the residual mapping to
be learned. Resnet utilizes the SGD optimizer with momentum given by Equation (11)

vt = ρvt−1 +∇ f (xt−1)xt = xt−1 − αvt (11)

where vt+1 is the momentum value, ρ is a friction, ∇ f (xt−1) is the gradient of the objective
function at iteration t− 1, xt are parameters and α is the learning rate. ResNet50 [17], which
the MPIFR utilized, is a variant of ResNet. It has 48 convolutional layers, 1 MaxPool layer,
and an average pool layer. Figure 8 is the architecture for the ResNet50 model.

Figure 7. DenseNet201 architecture.
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Figure 8. ResNet50 architecture.

2.3. One-Versus-All Support Vector Machines (SVM) as a Multiple Class Classification Model

SVM was utilized for the classification of the auto-extracted MPIFR. SVM with a radial
basis function (RBF) kernel was utilized because it can represent a wide variety of classifica-
tion boundaries ranging from simple, almost-linear models to complex, highly non-linear
models. We now present the mathematical description and theoretical background of SVM.
Further, we briefly described the architecture of two of the variant deep convolutional neu-
ral networks used to extract features in this study. By default, SVM is a binary classification
algorithm. However, SVM and the related algorithms use a heuristic technique such as
one-versus-one or one-versus-the-rest to build a binary classification model for multi-class
classification. With eight target classes for the breast cancer BreakHis dataset, a total of
28 SVM classifiers are modeled based on the (k×(k − 1))/2 formula, where k is the number
of classes. The details of the one-vs-one technique are presented in the subsequent section
of this study. The goals of SVM are to separate data with a hyperplane and to extend this to
non-linear boundaries using a kernel trick. Central to the construction of SVM is a small
subset of data points extracted during the learning process from the training sample. This
small subset of data points is the support vector.

To illustrate the SVM algorithm as a binary classifier, we formularized the task of
estimating an f belonging to Rn, using pairs of input–output training data that are indepen-
dent identically distributed (iid) such that: f : Rn → {−1,+1} according to an unknown
probability distribution p(x, y) : (x1, y1), (x2, y2), .., (xn, yn) ∈ Rn ×Y and Y ∈ {−1, +1}.
An unseen example belongs to the class +1 if f (x) > 0 and to the class -1 otherwise.

The goal of a machine learning model is to find model parameters that will mini-
mize the model sum of squared errors, which is known as the cost function. The SVM
cost function is expressed in Equation (12). It is a modification of the cost function of
logistic regression:

min
θ

J(θ) = C
m

∑
i=1

[yicost1(z) + (1− yi)cost0(z)] +
1
2

n

∑
j=1

θ2
j (12)

where θ is unknown parameters z = θTX, cost1(z) = − log 1
1+e−z , for y = 1, cost0(z) =

−log(1− 1
1+e−z ), for y = 0 and C = 1

λ .λ is the regularization parameter which tends to
decrease the model parameters without reducing the feature. This is useful for avoiding
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over-fitting. So, the SVM minimization cost function is convex, which is why it always
converges to a global minimum. The SVM learning model (h) is expressed as:

h(x) =

{
1, i f z > 0
0, i f z < 0

(13)

In the minimization problem in Equation (12), when C is a big value, then it is likely
that θ will be chosen to minimize the first term of Equation (12) to a value close to zero.
Hence, cost1 = 0 whenever y = 1 and cost0 = 0 whenever y = 0. By implication, cost(z)
will approach zero when θ is found. That is θTX > 1 or θTX 6 −1. Hence, with the entire
first term of the minimization problem being zero, the new minimization problem will be
given by Equation (14):

min
θ

J(θ) =
1
2

n

∑
j=0

θ2
j (14)

Such that θTX > 1, if y(i) = 1 or θTX 6 −1, if y(i) = 0. The solution to the minimiza-
tion problem in Equation (14) gives the decision boundary of SVM with a large margin.

3. Methodology

We now present a description of the dataset of histopathological breast cancer im-
ages utilized and the computational implementation of the ensemble model proposed in
this study.

3.1. Histopathological Breast Cancer Dataset

We utilized the BreakHis dataset which is a publicly available open image dataset
of hematoxylin-eosin (HE) stained histopathological slides. The histopathological images
were obtained in four (4) optical intensification factors, specifically 40×, 100×, 200×, and
400× with an efficacious pixel sizes of 0.49 m, at 0.20 m, at 0.10 m, and at 0.0 m. The images
were saved in RGB format in true color space. The pathologist spots a distinctive and
appropriate region of interest (ROI) for diagnosis in every patient. The unwanted region,
for instance, text clarification or dim edge was eliminated, and the images were edited to
a component of 700 × 460 pixels. The distribution of benign and malignant images over
various subtypes is shown in Table 2, and the sample images of benign and malignant
subtypes are shown in Figures 9 and 10, respectively.

Figure 9. Sample of benign subtypes: (A) adenosis; (B) fibroadenoma; (C) phyllodes tumor; (D) tubu-
lar adenoma.
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Table 2. The distribution of benign and malignant images over various subtypes.

Class Subtype No. of Patients No. of Images

Benign Adenosis 4 444
Fibroadenoma 10 1014

Phyllodes tumor 3 453
Tubular adenoma 7 569

Malignant Ductal carcinoma 38 3451
Lobular carcinoma 5 626

Mucinous carcinoma 9 792
Papillary carcinoma 6 560

Total 82 7909

Figure 10. Sample of malignant subtypes: (A) ductal carcinoma; (B) lobular carcinoma; (C) mucinous
carcinoma; (D) papillary carcinoma.

3.2. Computational Methodology of the Proposed Ensemble Model

In this section, we present our proposed ensemble model for the multi-class classifi-
cation of breast cancer histopathology images. Four pre-trained DCNNs are utilized as
deep feature extractors, namely; ResNet50, DenseNet201, EfficientNet-B0, and ResNet18.
Our choice of pre-trained ConvNets was to reduce the training time and leverage the
powerful image features learned from training on a large image dataset such as ImageNet.
Further, pre-trained ConvNet models were evaluated using the benchmark image dataset,
ImageNet [46]. More so, the idea is to bring together the good features generated by
variant ConvNets structures (ResNet50, DenseNet201, EfficientNet-B0, and ResNet18) and
pooled them as the features input to the SVM model for classification. Figure 11 illustrates
the multi-scale pooled image feature representation (MPIFR) method proposed for this
study and Figure 12 depicts the complete computational process end-to-end, from input
to output.

Figure 11. Proposed multi-scale pooled image feature representation (MPIFR) approach for multi-
class classification of breast cancer.
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Figure 12. Computational process architecture for the ensemble model.

The cancer images are the input datasets to the three convNet models, which utilize
unsupervised learning (as described in Section 2.2) to extract features from the input images.
Each of the baseline models utilizes SoftMax as an output function for multi-class problems.

However, in this study, we use the one-vs-one technique with SVM for the eight-class
classification of the 8 cancer subtypes from breast cancer images. Recall that SoftMax is
a generalization of logistic regression, and logistic regression is susceptible to overfitting.
Replacing SoftMax with SVM will guarantee convergence. As it is well known, the cost
function of SVM is convex. In the one-vs-one technique, a pairwise SVM classifier of
the breast cancer image classes is modeled using the training features extracted. A total
of 28 SVM classifiers are built for the 8 classes of breast cancer datasets based on the
(k×(k−1))

2 formula where k is the number of classes. Finally, a test breast cancer image is
predicted based on the class output of the SVM models with a majority of counts. This
model uses a heuristic technique to classify into one target class. This method is different
from the previous method in [53], which first classifies input data into benign or malignant
binary classes before being further categorized using two modules; one for benign and the
other for malignant. Each module contains a ConvNet structure with a decision tree for
subclass classification.

To further explain the proposed ensemble model mathematically, consider Xi as a
feature vector extracted from an input image by a pre-trained ConvNet baseline i. i is a
concatenation of features extracted from the input image by convNet baselines i = 1, 2..., n.
In this study, n = 4 for the four baselines pre-trained convNets used in this study. Recall
that in Equation 2, h(x) is defined as the SVM learning model. Thus, hj(X) ∈ H(X), where
H(X) is the set of SVM learning models, and hj(X) is an individual SVM classifier for a
pair of class (yd, yl). j = 1, 2, ..., m indicates the number of classifiers, d = 1, 2, ..., k− 1, and
l = 1, 2, ..., k. In this study, k = 8 and m = 28 indicate the number of breast cancer classes
and the total number of SVM classifiers, respectively. Note that hj(X) does not exist for a
pair of classes where yd > yl . Table 3 illustrates the matrix for the pairs of classes. A tick
indicates the valid pair and blank cells indicate not a valid pairing.

In making a classification, a feature X of an unseen image is input to all binary classi-
fiers and produced a class k for which the corresponding classifier with the majority counts:

ŷl = argmax
l∈1,...,k

Hl(X) (15)
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Table 3. The valid number of classifiers for one-versus-one SVM.

y1 y2 y3 y4 y5 y6 y7 y8

y1 X X X X X X X

y2 X X X X X X

y3 X X X X X

y4 X X X X

y5 X X X

y6 X X

y7 X

4. Experimental Details

We present the detailed experiment conducted in this study. Starting with the pre-
processing and trimming of the assessed dataset, extraction of features using deep CNN
baselines, and SVM used for multi-level classification. The experiment was conducted using
MATLAB software R2021a on a Windows 10 machine with the following specifications—
Processor: Intel Core i7-10750Hcpu@2.6 GHz 2.59 GHz, with RAM of 16 GB DDR4 1TB
SSD storage. Further, it comes with a GPU card with 4 GB of GDDR5 and GDDR6 memory
clocked at 8 GHz; altogether it has a 128-bit memory interface that creates a bandwidth of
112.1 GB/s.

4.1. Pre-Processing

We provide the details of the image datasets for this study in Section 4.1. Each instance
of an image comes in four magnification factors (x40, x100, x200, and x400). To make our
learning model more robust in classifying images irrespective of the quality of the BreakHis
image, we combine all BreakHis images of the same subtype as one class regardless of their
intensification factor. These are shown in Table 2. In total, there are 7909 BreakHis images.

4.2. Image Augmentation

We apply image augmentation to improve learning performance for two reasons. First,
looking at the distribution of datasets in Table 2, we observed a class imbalance in the
dataset. For example, one class (ductal carcinoma) contains over 3000 instances, and the
others (adenosis, phyllodes tumor, papillary carcinoma, etc.) have 500 examples on average.
Class imbalance can lead to building a model that is biased and will fail to generalize. In
order to augment only the training set of the original dataset and yield a larger training
corpus, rotation, and horizontal flip operations were applied. Since we need to consider the
class imbalance, the oversampling augmentation was performed to increase the number of
instances of all cancer subtypes except ductal carcinoma. Figure 13 shows sample results of
data augmentation and Table 4 presents the distribution of images in each target class after
applying the oversampling data augmentation technique.

Figure 13. Example images after applying oversampling data augmentation operations.
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Table 4. The distribution of benign and malignant images over various subtypes after applying
augmentation techniques.

Subtype Original No. of Instances No. of Training Instances No. of Test Instances No. of Training Instances
after Oversampling

Adenosis 444 311 133 2416
Fibroadenoma 1014 710 304 2416

Phyllodes tumor 453 317 136 2416
Tubular adenoma 569 398 171 2416
Ductal carcinoma 3451 2416 1035 2416

Lobular carcinoma 626 438 188 2416
Mucinous carcinoma 792 554 238 2416
Papillary carcinoma 560 392 168 2416

Total 7909 5536 2373 19,328

After the augmentation, the total number of BreakHis images increased to almost
three times the original number of images (from 7909 images to 21,701 images). However, it
should be noted while this data augmentation step addressed the class imbalance, in terms
of pathological processes, the creation of variation in data does not produce variability
within the disease itself.

4.3. Image Resizing

The original images have a size of 700 × 460 × 3. However, these were resized
to 224 × 224 × 3 size to be suitable for the pre-trained networks. The four pre-trained
models (ResNet50, ResNet18, EfficientNetB0, and DenseNet201) have 224 × 224 image
input size networks.

4.4. Model Selection

To train the MPIFR architecture, we re-trained eight baseline models with the breast
cancer images (namely, inceptionv3, inceptionresnetv2, Resnet18, Resnet50, Densenet201,
Efficientnetb0, ShuffleNet, and SqueezeNet) all of which are state-of-the-art pre-trained
models. We selected four out of the eight models that performed best to train our
ensemble deep learning algorithm. The four-baseline models selected are ResNet50,
ResNet18, DenseNet201, and EfficientNetb0. The four models were set up as described in
Figures 11 and 12 for feature extraction.

4.5. Feature Extraction

The combined features totaling 5760 were extracted by the four baseline ConvNets.
Before data augmentation, the entire datasets were divided into train and test subsets in the
ratio of 7:3 (5536: 2373), respectively. Table 5 presents the details of the feature set generated
by each baseline model and the combination of the four for the ensemble model. The
feature input for the proposed ensemble model is a concatenation of the features generated
from four baseline models (ResNet50, DenseNet201, ResNet18, and EfficientNetB0).

Figure 14 presents the one-vs-one coding matrix designed for the eight classes of breast
cancer that yield twenty-eight binary classifiers. Each column of the coding matrix is one
hot-encoding corresponding to a classifier, and each row corresponds to one of the eight
breast cancer classes. For example, the first column of Figure 14 is [1; −1; 0; 0; 0; 0; 0; 0;
0] indicating that the ensemble model trains the first SVM binary classifier using features
classifier as Adenosis and Ductal carcinoma because Adenosis corresponds to a positive
class; ductal carcinoma corresponds to −1, so it is a negative class. A class output of an
unseen breakHis image sample x is determined by the ensemble model using majority
voting count as in Equation (16):

ŷ = argmax
k∈1,...,8

fk(x) (16)
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where ŷ is the class with majority count, k is the class label, and fk(x) is the predicting model
for the label k for which the corresponding classifier reports the highest confidence score.

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 -1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 -1 0 0 0 1 1 1 0 0 0

0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 -1 0 0 -1 0 0 1 1 0

0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 -1 0 0 -1 0 -1 0 1

0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 -1 0 0 -1 0 -1 -1

Figure 14. Coding matrix for the eight classes of breast cancer.

Table 5. Detail distribution of the dataset and features extracted.

Models Train Feature Size Test Features Size

ResNet50 19,328 × 2048 2373 × 2048

ResNet18 19,328 × 512 2373 × 512

DenseNet201 19,328 × 1920 2373 × 1920

EfficientNetB0 19,328 × 1280 2373 × 1280

Ensemble Model 19,328 × 5760 2373 × 5760

4.6. DCNN Model Interpretability Using Grad-CAM

DCNN Model Interpretability using Grad-CAM [54]. This experiment aimed to ensure
that breast cancer classification models focus on the appropriate regions of images when
analyzing them. In Grad-CAM, the gradient of the ranking score is computed in relation to
the DCNN characteristics map, highlighting specific ROIs based on the greatest gradient
score. Grad-CAM computes gradients with respect to feature maps of a convolutional layer
that are then global-average-pooled to determine importance weights αc

k, which represents
a partial linearization of the deep network downstream from A, capturing the importance
of feature map k for a target class c:

αc
k =

global average pooling︷ ︸︸ ︷
1
Z ∑

i
∑

j

∂yc

∂Ak
i,j︸ ︷︷ ︸

gradients via backprop

(17)

is the gradient of the score for class c, yc , with respect to feature maps Ak of a convolutional
layer. A Grad-CAM heat-map is then generated as a weighted combination of forward
activation feature maps, but followed by a ReLU activation function:

Lc
Grad−CAM = ReLU (∑

k
αc

k Ak)︸ ︷︷ ︸
linear combination

(18)

where Lc
Grad−CAM is the class-discriminative localization map Grad-CAM that was applied

to produce a coarse localized map highlighting the most important ROIs in the histopatho-
logical images to classify the images as benign or malignant. Sample Grad-CAM results are
shown in Figures 15 and 16.
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Figure 15. Sample of regions of interest generated by Grad-CAM (top = benign subtypes original
images, bottom = benign Grad-CAM heatmap.

Figure 16. Sample of regions of interest generated by Grad-CAM (top = malignant subtypes original
images, bottom = malignant Grad-CAM heatmap.

4.7. Classifying the MPIFR Representation Using Different Machine Learning Classifiers

The goal of this experiment was to compare the performance of the one vs. one support
vector machines (SVM) with other traditional machine learning (ML) classifiers for the task
of classifying the MPIFR representation into target labels of malignant (ductal carcinoma,
lobular carcinoma, mucinous carcinoma, and papillary carcinoma) subtypes of tumors from
(adenosis, fibroadenoma, phyllodes tumor, and tubular adenoma benign harmless subtypes.
Results in Table 6 show that one vs. one SVM outperformed all other ML classifiers on all
metrics except sensitivity for this 8-class classification task, likely because one vs. one SVM
was designed to perform well on multiclassification tasks.
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Table 6. Results of classifying the MPIFR with various machine learning (ML) classifiers.

Models Accuracy Sensitivity Precision Specificity F1-Score AUC

K-Nearest
Neighbor

(KNN)
95.85 97.48 92.85 98.84 94.91 97.52

Generalized
Additive

Model
94.45 92.50 96.17 99.02 92.69 95.25

Naïve Bayes 95.15 98.80 91.18 97.98 93.83 96.89

Gradient
Boosted

Machines
(GBM)

96.55 95.73 97.17 98.64 95.91 97.61

MPIFR 97.77 97.48 98.45 99.57 97.92 99.00

5. Results

We present the results of various experiments we have conducted in this study. To
evaluate the performance of our proposed ensemble architecture, individual baseline
models were trained first that would serve as a basis for comparison of our eventual method
and also to discover which DCNN architectures performed best. Out of the eight models,
the four best-performing baseline models were selected to evaluate the performance of our
ensemble architecture. Table 7 shows the performance of the baseline models.

Table 7. Performance of the eight pre-trained models.

Models Accuracy of the Pre-Trained
Baseline Models (%) Elapsed Training Time (Hours)

Efficientnetb0 92.08 8.89

ResNet50 92.84 5.9

Inceptionresnetv2 90.43 33.46

Inceptionv3 90.73 0.71

ResNet18 91.32 2.33

DenseNet201 93.34 33.95

Squeezenet 85.92 1.47

Shufflenet 90.60 3.25

Only baseline models with accuracy above 90% were selected, which include ResNet50,
ResNet18, DenseNet201, and EfficientNetb0. The selected models were pre-trained models
using the hyperparameter values presented in Table 8. We trained the MPIFR by first
combining the selected baseline models in pairs, in threes, and all four selected models.

Table 8. Set of hyper-parameters for training baseline models using transfer learning.

Hyperparameter Value

Train-Test ratio 70:30

Activation function ReLU

Mini Batch Size 20

Max Epochs 30

Initial Learn Rate 0.00125

Learn-Rate Drop Factor 0.1

Learn-Rate Drop Period 20
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The result of combining the selected baseline models are presented in Table 9. The
result shows significant improvement from a combined pair of baseline models in compari-
son to all four selected baseline models. However, model training takes more time when a
large number of models are combined as indicated by the training time in hours presented
in Table 9. The ensemble model took more than two (2) days to train because the final
training time was that combined training time for all four models utilized in our MPIFR
method. Further, we note that while the MPIFR model training time is large in some cases,
training time is incurred once during model development. Test time is typically faster and
is more important when the model is deployed and operationalized. We believe that it is
reasonable to trade off higher training time to achieve higher performance.

Table 9. Performance of the different combination of baseline models.

Modes Accuracy (%) Time (Hours)

Densenet201_Resnet50 0.9684 39.87

Densenet201_Efficientnetb0 0.9562 42.99

Densenet201_Resnet18 0.9617 36.28

Resnet18_ Resnet50 0.9633 8.23

Resnet50_Efficientnetb0 0.9676 14.8

Resnet18_Efficientnetb0 0.9587 11.225

Resnet18_Efficientnetb0_Densenet 0.9676 45.17

Resnet18_Efficientnetb0_Resnet50 0.9730 17.12

Efficientnetb0_Densenet_Resnet50 0.9739 48.74

Resnet50_Densenet_Resnet18 0.9735 42.18

Ensemble model 0.9777 50.79

The ensemble model in Table 9 combines the four selected baseline models namely
ResNet50, DenseNet201, ResNet18, and EfficientNetb0. The resulting performance is
the best of the state-of-the-art multi-class models of the histopathological breast cancer
classification based on BreakHis images.

Confusion Matrix: In order to determine which classes were confounded by other
classes, we analyzed the confusion matrix. Figure 17 shows the confusion matrix of the
top-performing technique. Columns correspond to targeted classes and rows to output
classes. Diagonal cells correspond to correctly classified observations. Off-diagonal cells
are referred to as incorrect classifications. There is also a percentage of the overall number
of observations and a number of observations for each cell. On the extreme right, you can
see the proportion of incorrectly predicted classifications (red color) and correctly predicted
classifications (green color). In statistics, these metrics are called false discovery rate and
positive predictive value. The lowest row indicates the percentage of incorrectly classified
and correctly classified results, referred to as false negative rate (FNR) and true positive
rate (TPR). In the bottom-most right cell, you can see the general precision. Column-
normalized column summaries show the percentage of correctly classified observations
for every predicted class. Using row-standardized row summaries, you can see how many
observations are incorrectly classified and how many are correctly classified. As can be
seen in the confusion matrix, the majority of results fall on the leading diagonal with very
few off the diagonal, demonstrating that the proposed approach did not confuse benign
and malignant cells.
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Figure 17. Confusion matrix displaying the performance of the proposed ensemble approach.

The MPIFR model classified all eight cancer subtypes with 97.77% accuracy and 99.57%
specificity on average. This means that for a specific subtype, the individual classifier in
our proposed model has a high ability to discriminate one class of BC subtype from another.
The classifier SVM performance was evaluated with ten-fold cross-validation with a cross-
validation error of 0.0432. This is a good indication of the significance and consistency
of the results of classifiers of the corresponding individual cancer subtypes. Further, to
demonstrate that the difference in performance between the MPIFR and other ensemble
baselines was statistically significant, the Nemenyi post hoc test [55] was performed. At
a confidence level of a = 0.05, the critical distance (CD) is 1.2536. Our model F1-score is
97.92%. The F1-score is the harmonic average of precision and sensitivity. While precision
measures the extent of the error caused by false positives and sensitivity measures the
extent of the error caused by the false negative. Figure 18 is a T-SNE plot that illustrates
that our proposed MPIFR method adequately discriminates between the eight target BC
classes in feature space.
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Figure 18. T-SNE visualization to illustrate that our proposed MPIFR method adequately discrimi-
nates between the eight target BC classes in feature space .

AUC is an effective way to summarize the overall accuracy of the test. In general,
an AUC of 0.5 suggests no discrimination (i.e., the ability to diagnose patients with or
without the BC based on the test), 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered
excellent, and more than 0.9 is considered outstanding. The MPIFR has an AUC of 0.99
(99%). Table 10 presents detailed results of the performance of the ensemble model.

Table 10. Performance of ensemble model for each of the eight classes.

Disease Accuracy
(%)

Precision
(%)

Sensitivity
(%)

Specificity
(%)

F1-Score
(%) AUC (%)

Adenosis 100 100 100 100 100 100

Ductal
Carcinoma 98.7 96.43 98.71 97.28 97.56 98.00

Fibroadenoma 99.3 99.67 99.34 99.95 99.51 99.65

Lobular
Carcinoma 83.5 94.15 83.49 99.49 88.50 91.49

Mucinous
Carcinoma 99.6 100 99.58 100 99.79 99.79

Papillary
Carcinoma 99.4 98.81 99.40 99.91 99.10 99.66

Phyllodes
Tumor 99.3 98.53 99.26 99.91 98.89 99.58

Tubular
Adenoma 100 100 100 100 100 100

6. Discussion

As shown in Table 10, in rigorous evaluation experiments, the proposed MPIFR
outperformed a comprehensive set of baseline models and also previous state-of-the-art
techniques for both binary and multiclassification (Table 1) of histopathological images. Our
results also demonstrate that all key components of our approach contribute non-trivially
to its superior results, including:
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Transfer learning by pre-training on a large image repository (ImageNet) with fine-
tuning on the BreakHis breast cancer image dataset: that enables the CNN feature extractors
models to learn a robust image representation from the large image repository. Fine-tuning
on the BreakHis breast cancer dataset transfers the learned intelligence to the task of
analyzing and classifying breast cancer. This conclusion is evident in Table 9.

Using an ensemble of DCNNs for deep feature extractors: This step also facilitates
downstream classification with traditional machine learning algorithms such as SVM. Deep
MPIFRs are a powerful representation, which had the best performance for all combinations
of the DCNN model explored in this study as shown in Table 7. The proposed technique of
using MPIFR features, combined and classified using SVM outperformed single DCNN
models approaches in Table 6. Compared with a single pre-trained CNN, it achieves
superior performance for feature extraction (see Tables 6 and 8). While SVM is utilized
for final classification, pre-trained CNNs were utilized for feature extraction. SVM, a
classic machine learning algorithm was utilized for classification because the features
extracted by the CNN are relatively small for each of the target classes. We also show in
Table 8 that the four state-of-the-art CNN models (ResNet50, ResNet18, DenseNet201, and
EfficientNetb0), which were discovered through extensive experimentation and employed
to extract features, outperform other CNN combinations and ensembles. The features
extracted by each DCNN are slightly different intuitively. Multi-CNN feature extraction
produces a superset of features that outperforms single-CNN feature extraction.

One-versus-one SVM effectively performs 8-class Bc classification: was used as a
heuristic technique such as a one-versus-one binary classification model for multi-class
classification. With eight target classes for the breast cancer BreakHis dataset, a total of
28 SVM classifiers are modeled based on the (k(k− 1))/2 formula, where k is the number
of classes. The result of the one-vs-one technique is presented in Figure 17.

Our proposed MPIFR method outperforms the state-of-the-art for 8-class BC classi-
fication: as shown in Table 1 in which various proposed BC image classification models
are compared in terms of the proposed method, classification type, accuracy, F1-score,
specificity, and AUC. All models in the table utilize the BreakHis breast cancer image
datasets. As seen in Table 1, the proposed MPIFR model built for 8-class classification
performed better than the other state-of-the-art multi-class models. Multiclassification
of breast cancer images into eight (8) subtypes of malignant and benign are much more
challenging [39]. It can be the basis of a computer-aided grading diagnosis system for BC
histopathology. Compared to Murtaza et al. [28], Gandomkar et al. [30] etc., the proposed
ensemble model outperformed (97.77%) the other state-of-the-art multi-class BC classifiers.

Besides that, our study and that of Han et al. are the only ones to perform eight (8)
class classifications. The other studies performed four (4) class classifications. Han et
al., in their study, used the structured deep learning model, and did not perform feature
extraction using pre-trained DCNNs, achieving an accuracy of 93.2% on histopathological
images. However, the proposed ensemble model in this study extract features from four
pre-trained models and trains SVM classifiers in a one-vs-one approach. The trained
model classifies test subset BreakHis images irrespective of the difference in magnification
factor. Hypothetically this means that the proposed ensemble model will classify the image
with high accuracy regardless of the difference in magnification of the input image. In
addition, despite ensemble architecture consisting of multiple baseline models and multiple
classifiers, the built model is a single model with reduced generalization error of the
prediction. Except for Murtaza et al. [28], the existing models reported only performance
accuracy. Other relevant metrics such as precision, sensitivity, and specificity measures are
missing. They are crucial to deciding the consistency and significance of an AI-based BC
medical screening and grading system.

We present criteria for selecting machine learning techniques to support the decision
of classifying BC from histopathological images in Table 10. One of the objectives of using
an AI-based application is to assist medical specialists with rapid screening for disease by
assessing medical images and deciding on the presence or absence of a specific medical
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condition. A more complex AI-based application can further assess medical images and
diagnose the extent or grade of a specified medical condition. The former is an AI-based
screening system, and the latter is AI-based grading system. Deep learning is a state-of-the-
art machine learning (ML) technique, which has been highly successful in various computer
vision and image analysis tasks, substantially outperforming all clinical image analysis
techniques [25]. Although deep learning models outperform other traditional clinical image
analysis techniques, they are still susceptible to false positive and false negative rates. For
these reasons, some criteria should be considered when selecting a deep learning model
as an AI-based medical system. Table 11 presents criteria for selecting machine learning
techniques to support the decision of BC classification from histopathological images.

A deep learning algorithm trained to model BC classification should only be adopted
for an AI-based screening or grading system after it has passed a prospective study test.
The prospective study is carried out when both a licensed specialist and an AI-based system
independently examine BC histopathological images from the same person/patient. The
prospective study will compare the diagnostic capability of an AI-based model with respect
to actual oncologists evaluating the histopathological image in real-time. In the case of
selecting an AI-based model for BC screening in low-incidence regions, in addition to the
prospective study, a deep learning model will have high accuracy, sensitivity, and specificity
scores with a benchmark histopathological image. It should take a few seconds to run and
generate a report and should be lightweight. Such a model should be robust enough to
accommodate images of different magnification factors. Lastly, deep learning for grading
should score high in all of the selection criteria as indicated in Table 11.

Table 11. Criteria for selecting machine learning techniques to support the decision of classifying BC
from histopathological images.

Criteria
AI-Based Screening in

Low Incidence of
Cancer

AI-Based Screening in
High Incidence of

Cancer

AI-Based Grading
System

Accuracy measure high high high

Sensitivity measure high optional high

Specificity measure high optional high

Model complexity small very small very small

Model robustness high high high

Prospective study needed needed needed

Limitations of this work and potential future work: Some limitations can be addressed
in future work. Before deploying classifiers in hospitals, more images with more magnifica-
tions could be included in the dataset for more robust classification. Secondly, the MPIFR
was based on four existing models. Future performance could be improved by fusing more
deeper models. We would also like to validate our results on other histopathological breast
cancer datasets. Lastly, mobile devices can be a promising platform for our methods to
be implemented.

7. Conclusions

We have proposed a multi-scale pooled image feature representation (MPIFR) deep
learning architecture with one-versus-one SVM for 8-class BC histopathological image
classification. The proposed method of four pre-trained DCNN architectures (ResNet50,
ResNet18, DenseNet201, and EfficientNetb0) to extract highly predictive multi-scale pooled
image feature representation (MPIFR) from four resolutions (40X, 100X, 200X, and 400X)
of BC images that are then classified using one-versus all SVM has been presented. In
rigorous evaluation, the proposed MPIFR method achieved an average accuracy of 97.77%,
with 97.48% sensitivity, and 98.45% precision on the BreakHis histopathological BC image
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dataset, outperforming the prior state-of-the-art for histopathological breast cancer multi-
class classification and a comprehensive set of DCNN baseline models.

With an evaluation based on a prospective study, the proposed ensemble model can
reliably aid diagnosis for BC histopathology at high precision and sensitivity scores. Model
complexity measures indicate how fast the model can take in the histopathological images
and produce a classification result. Further, model complexity specification can be in terms
of storage space. A lightweight model can be embedded into mobile apps in developing
countries. A robust model should be able to accommodate images at a vary magnification
factors. An AI-based model with only a high accuracy measure and having passed a
prospective study can be considered in high BC incidence regions as a rapid screening
system. In a future study, we will investigate other possible pre-trained models, particularly
conVNet with fewer connections. This will give a lightweight grading system for use in
places with low access to computational resources.
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