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Featured Application: The research outcome would serve as a guideline for developing the com-
prehensive battery pack lifetime model from cell-level validated models. The proposed frame-
work can be adopted in the battery management system with the potential to enhance perfor-
mance, lifetime, reliability, and safety.

Abstract: The automotive energy storage market is currently dominated by the existing Li-ion
technologies that are likely to continue in the future. Thus, the on-road electric (and hybrid) vehicles
running on the Li-ion battery systems require critical diagnosis considering crucial battery aging.
This work aims to provide a guideline for pack-level lifetime model development that could facilitate
battery maintenance, ensuring a safe and reliable operational lifespan. The first of the twofold
approach is a cell-level empirical lifetime model that is developed from a lab-level aging dataset
of commercial LTO cells. The model is validated with an exhaustive sub-urban realistic driving
cycle yielding a root-mean-square error of 0.45. The model is then extended to a 144S1P modular
architecture for pack-level simulation. The second step provides the pack electro-thermal simulation
results that are upscaled from a cell-level and validated 1D electrical model coupled with a 3D
thermal model. The combined simulation framework is online applicable and considers the relevant
aspects into account in predicting the battery system’s lifetime that results in over 350,000 km of
suburban driving. This robust tool is a collaborative research outcome from two Horizon2020 EU
projects—GHOST and Vision xEV, showcasing outstanding cell-level battery modeling accuracies.

Keywords: battery aging; battery degradation; lifetime modeling; electro-thermal model; real-life
validation; battery system; Li-ion batteries

1. Introduction

Lithium-ion (Li-ion) battery technologies have conquered the current electric vehicle
(EV) market as a clear-cut winner. The zero-emission target in the automotive sector is led by
a variety of Li-ion systems powering on-road vehicles [1,2]. While alternative solutions are
still within the development phase, Li-ion batteries that are currently on the market require
advanced tools to go beyond the promised performances. Among the critical challenges,
the prognosis and diagnosis of battery health are one of the most crucial factors to be
tackled during the lifetime of the battery as well as the vehicle [3,4]. Though varieties of
battery pack-level models can be developed, their reliability and accuracy can be a concern
referring to the lack of a standard procedure or guidance [5]. The pack-level aging models
can be derived either from real-life on-road vehicles [6] or lab-level investigations [7,8].
The modeling approach is computationally expensive and lacks multi-factor analysis
capability when field data is enabled with advanced methodologies such as machine
learning (ML) [9]. Moreover, big data processing, training of data-driven algorithms,
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limited operating conditions, and no physical knowledge make the ML methods futile
considering safety and reliability [10]. In contrast, upscaling a cell-level model to pack-level
considering relevant electrical and thermal aspects is straightforward and computationally
inexpensive for the choice of battery management system (BMS) implementation [11,12].
Such an approach also allows for a multi-condition analysis of the operating environment
broadening the model boundaries, thus increasing robustness.

This research work proposes an efficient methodological process that would facilitate
a pack-level battery lifetime model development strategy. The pathway starts from the cell-
level study stretching the boundary limit beyond the possible real-life scenarios including
temperature, depth of discharge (DoD), state of charge (SoC) range, current rate (C-rate),
and calendar life SoC, temperature, etc., variations. Such studies exist in the literature
based on different Li-ion technologies followed by behavioral analysis and modeling [13,14].
The lifetime prediction types typically follow an imprecise definition of aging that can
be classified as either cycle life and/or calendar life degradation in the form of capacity
fade and/or internal resistance increase (IR). The model methodological choice also varies
depending on the study type and application requirements where a compromise of model
complexity, accuracy, and computational effort is accepted [15]. The empirical equation-
based models fitted to the laboratory experimental data are found to be a good fit that
could ensure high accuracy, online applicability, and real-time computing with a less
complex flexible framework [16]. Hence, the representative models are often cell-level
demonstrations and only a few researchers have showcased the real-life validation [17,18].
Nevertheless, the battery system or pack-level upscaling of a cell-level model is rare,
challenging, and requires relevant consideration of pack topology, electrical and thermal
properties, etc.

Investigating the aging of a battery pack that is a multi-cell configuration is usually a
more complicated phenomenon where non-linear degradation, cell-to-cell variation, cell im-
balance, inefficient thermal management, sudden impedance growth, mechanical stresses,
etc., worsen the already existing interrelated aging mechanisms. It is extremely challeng-
ing to map all the external factors counting their contributions to the total degradation.
However, researchers have studied one or more of these elements to investigate pack-level
health [19]. Perhaps, physics-based modeling could solve the puzzle of monitoring battery
state of health (SoH), and if linked with data-driven techniques, can precisely forecast the
system failure to avoid unprecedented colossal damage [20,21]. Thus, Horizon Europe
has identified this topic as one of the future scopes of research for batteries in Europe [22].
Moreover, the electrical and thermal properties of the battery pack directly impact battery
aging, thus being the dominant parameters in the lifetime model. The SoC prediction
and thermal simulations are usually done at the pack-level to understand the concerning
behaviors; however, it is rare to be involved in the aging contribution, which should be the
case [23]. Thus, an efficient electro-thermal coupling framework is proposed to be linked to
the aging model. Hence, the impact of an efficient thermal management system (TMS) is un-
deniable as both the cooling and heating service positively improve the battery pack health.
Researchers are continuously developing better thermal management methodologies and
materials to extend the pack lifetime; however, that is not the aim of this research [24,25].

Generally, 1D electro-thermal models benefit from easy integration into system-level
frameworks (e.g., an entire EV model) and fast simulation runtimes, while they provide an
acceptable averaged surface temperature of the battery cells [26]. The baseline of the electro-
thermal models can start from an equivalent circuit model [27] or atomistic level entailing
battery physical-chemical phenomena in a multi-scale simulation environment [28]. On the
other hand, 3D thermal models provide higher accuracy in terms of temperature values and
temperature distribution patterns alongside every point of the battery geometry, e.g., tabs,
sides, inner part, etc. [29,30]. These features help determine the hottest and coolest points
of the batteries for specific applications for a proper thermal management design. Yet, they
require much more computation resources for the computational fluid dynamics (CFD)
solver leading to high CPU-to-real-time ratios (i.e., slow simulation runtimes), and they are
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not inherently implementable into a 1D system-level modeling framework for integration.
Researchers have tried to gather the benefits of both model types by replacing the thermal
part of the 1D electro-thermal model [31] with a reduced-order model of the 3D CFD battery
model for temperature calculations (for quick computation), while the electrical properties
of the battery are achieved by the 1D electrical part [32]. Thus, an optimal, robust, and
precise electro-thermal model can be an integral part of the whole modeling framework
where lifetime, safety, and reliability sections work together providing feedback to each
other [33].

The proposed pathway is focused on battery aging that is kicked off with commercial
cells’ (LTO technology) cycle life study to generate a high-quality dataset. The detailed
investigation results in a thorough understanding of battery aging that leads to the devel-
opment of a robust empirical lifetime model. The model is validated to a realistic standard
profile before being extended to the pack-level following an approved design that has
been demonstrated as part of Horizon2020 European project GHOST [34]. The augmented
lifetime model employs an integrated electro-thermal system consideration while simu-
lating the lifetime. This coupled 1D electrical and 3D thermal model is developed and
validated within the framework of another Horizon2020 project (Vision xEV) [35]. Upscal-
ing the pack-level electro-thermal simulation result is generated using commercial AVL
advanced simulation technologies (AST) packages and linked to the lifetime model ap-
praising the actual health condition in the remaining life calculation. Hence, the rationality
and applicability of such models in the BMS for online use cases are discussed providing
perspective-based guidance to the research community.

The proposed pack-level lifetime modeling framework consists of the following series
of novel contributions within the scope of this research.

(1) A cell-level empirical model is developed from an extensive aging study. The cells were
cycled in-house for more than 2 years covering a wide range of operating conditions.

(2) The model is validated with a real-life standard profile showing robustness.
(3) The cell-level lifetime model is extended to simulate the total lifetime of a series-

connected 144S1P architecture battery system.
(4) The pack-level lifetime model is connected to a coupled electro-thermal model devel-

oped in a commercial platform that provides necessary electrical and thermal inputs.

Further in this article, Section 2 describes the performed experimental methodology,
and Section 3 presents the aging results with sensitivity analysis identifying the impact fac-
tors. Section 4 includes the modeling framework developed in this work where simulation
and the validation results are compared for cell-level. Section 5 details the development of
electro-thermal model coupling. Section 6 presents the integrated framework and pack-
level lifetime simulation results. Finally, discussions and concluding remarks are reported
in Sections 7 and 8 stating the model performance and its rationality.

2. Aging Dataset

Any lifetime campaign to generate a degradation dataset and understand aging
behavior requires a long-term engagement of resources. Thanks to the research community
that many of the aging datasets of Li-ion technology variants are publicly available [36].
However, an LTO cell database is challenging to find due to barriers such as lack of
commercial availability, cost, low energy density, etc. Nonetheless, a commercial TOSHIBA
SCiB™ 23 Ah LTO cell is utilized in the Horizon2020 GHOST project considering its safe
chemistry, high specific power, long lifetime, etc. The cell has a nominal voltage of 2.3 V,
high input/output power (1000 W), compact design (W116 × D22 × H106 mm), and a
light weight (0.55 kg). The prismatic-shaped 45 cells have been used to perform a series
of electrical, thermal, and lifetime tests. The campaign generates a novel battery aging
dataset that facilitates the degradation understanding of the studied battery type and helps
to parameterize the lifetime model.

The adapted test methodology for the aging study is focused on both the degradation
aspects (cycle life and calendar life). It consists of a series of cycle and calendar aging tests at
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given stress and/or operating conditions to understand the degradation behavior. Regular
performance tests are also performed between the aging rounds to learn the non-linear
degradation trend. One can find the details of the test flow in the authors’ previous work
that is based on similar test protocols listed in Table 1 [37]. As part of an EU project, at least
2 cells per condition are studied and the average result is used for the model development.

Table 1. Operating conditions of the aging study.

Cycle Life Test Matrix . . . Calendar Life Test Matrix . . .

Temperature (◦C) C-Rate
(Charge//Discharge) DoD (%) Temperature (◦C) Storage SoC (%)

0 2C//2C 80

10, 40, 80
10 2C//2C

20 25

80 45

25

2C//2C 20

2C//2C 40

1C//1C; 2C//2C;
4C//2C; 8C//2C 80

2C//2C 100

Dynamic Profile

35 2C//2C 80

45 2C//2C
80

100

As shown in Table 1, the degradation rate of the cells’ aging performance is targeted
to study by 5 stress factors which are DoD, mid-SoC, temperature, charge and discharge
current rates or C-Rates for cycle life and 2 stress factors which are storage temperature and
SoC for calendar life, respectively. The influence of these factors is investigated separately,
and their joint influence corresponds to the actual measured data.

The cycling profile consists of a series of charge and discharge processes until the
number of Full Equivalent Cycles (FECs) is reached. An FEC (as in Equation (1)) is
calculated based on the charge ampere-hour throughput and it is considered as the cycle
count to compare the degradation results. Typically, 300 FEC per round is performed on
the investigated cells considering its long lifetime nature specified by the manufacturer.
Regular reference performance tests such as capacity test (full DoD with 1C-rate) and
hybrid pulse power characterization (HPPC) tests (varying pulses at three SoC points), etc.,
are performed at cycling temperature to track the degradation. The calendar storage tests
are done at the specific condition with a frequency of one month before performing check-
up tests. The 1C discharge capacity and the internal resistance from a 10-s 3C discharge
pulse are recorded to calculate the SoH of the battery. The battery is considered dead or has
reached EoL once the SoH drops below 80% [38].

FEC =
23, 000 Ah

No. of performed cycles ∗ charge Ah per cycle
(1)

To verify the validity of the lifetime model to be developed based on the parameters
acquired from the different characterization tests, an independent validation test is required
to be conducted. The designed validation test can be used to compare the model output
checking the accuracy of the model to a dynamic and realistic condition.

The worldwide harmonized light vehicles test cycle (WLTC) has been selected to
perform the validation of the model [39]. For this research work, a current load profile
representing a high-power application has been derived and modified to emulate real-life
driving. The Fiat 500X vehicle is used as a reference to generate the current profile and
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the more stressful sub-urban part is selected for the driving cycle at room temperature.
The performed WLTC cycle consists of four repeated sub-urban sections making an hour
profile and then the cell is charged. The validation test is performed at 90% SoC and 25 ◦C.
One single cycle is repeated for 12 times to make a day-long WLTC test which is then run
continuously 15 times per round before doing the check-up. The discharge current of the
WLTC cycle is limited to 100A due to battery cycler channel constraints.

All the mentioned aging tests, validation tests, and check-ups are done using PEC
manufactured ACT0550 and CT0550G2 type battery cyclers. The controlled environmental
conditions are ensured by performing the tests inside CTS-made climate chambers.

3. Degradation Results

The crucial impact factors that are employed in the cycle and calendar life campaign,
had a diverse contribution to total aging. The internal resistance deviation for the studied
cells is not analyzed, thoroughly as very slow growth is observed. Thus, the lifetime results
are presented in terms of capacity decay in the work. In the following, the impact of the
influential parameters is analyzed for the capacity degradation.

The cycling capacity retention is stress factor-dependent among which the DoD and
temperature play a major role. The DoD or cycling SoC range may affect battery life heavily
at different temperatures along with other operating conditions. The impact of deep and
shallow cycling on battery life is observed for the LTO cell which is common for other
lithium technologies as well [40–42]. The DoD dependency at 45 ◦C where higher DoD
cycling tends to reach the EoL criterion sooner than lower DoD cycling. Although the
shallow cycling measurement does not include the full life until 80% SoH, the already
existing data reflects the DoD dependency showing the irreversible effect of full DoD
cycling. It has been found that the cycle life of this battery cell can be doubled theoretically
if cycled at 80% DoD compared to 100% DoD. Further lower DoD cycling can extend
lifetime as well.

Figure 1 explicitly exhibits dependency for the cells that are cycled at different condi-
tions. When cycled with full DoD range continuously, the higher temperature dependency
is significant and clear. The prominent impact of high temperature such as 45 ◦C cycling
degrades the cells to EoL after 7500 FEC, while the room temperature cycling loses 6% of
the capacity after 6400 FEC. The shallow 20% DoD (in the 50% mid-SoC region) degrades
much slower than full DoD cycling (Figure 1d) indicating that its usage in a hybrid appli-
cation or urban driving may make it even last long. The displayed figure also reports a
consistent temperature effect in the studied DoD cycling results where it is found that the
temperature is inversely proportional to the capacity fade. This means that the studied
cell type aging is prone to the lower temperature as shown in Figure 1b for 80% DoD
cycling. At this condition, the cells on average lost 7% of the capacity after 7500 FEC at
45 ◦C, while the 0 ◦C cycling condition experienced 11% capacity loss after only 2000 FEC.
The temperature effect is found to be the key degradation stress factor that would drive the
model parameterization.

The impact of mid-SoC is not found at available lower DoD cycling conditions; how-
ever, cycling at 20% mid-SoC (when DoD is 40%) seems to have the least capacity fade as
shown in Figure 1c, but conclusive remarks could only be made with a complete first-life
dataset. The minor stress is still considered to be included in the model parametrization to
have an integrated impact on this condition.

The charge–discharge cycling rates can significantly contribute to Li-ion batteries
capacity degradation if not power-optimized. The charge rates are studied at room tem-
perature and for an 80% DoD cycling scenario. The aim was to obtain the current rate
influence; however, the degradation trend is found to be unclear which is a challenge for
the modeling work. Due to ambiguous characteristics and lack of discharge variation data,
the C-rate impact is neglected in the model parameterization.

Moreover, the calendar life tests as per the designed test matrix have generated trivial
information. After 18 months of storage tests, the cells have showcased a robust behavior



Appl. Sci. 2022, 12, 4781 6 of 17

(up to 2% negative fade) with little or no degradation sign. Thus, the calendar life impact is
excluded from the modeling framework due to its negligible contribution over the lifetime.
The extremely long life of LTO anode-based cells is acknowledged in the literature as well
and in line with the manufacturer’s claim [43,44].

Figure 1. The impact of the cycling conditions on aging: (a) full DoD cycling at 2C charge–discharge
from moderate to hot temperature, (b) high DoD cycling in the 10–90% SoC region with 2C
charge–discharge rates at various temperatures, (c) medium DoD cycling at various SoC regions
with 2C charge–discharge rates at 25 ◦C, and (d) low DoD cycling in the 40–60% SoC region with 2C
charge–discharge rates at low and 25 ◦C.

4. Performance-Based Lifetime Modeling

The authors have modified their already established framework that is accurate and
flexible, thus adapting it to the new LTO aging dataset. The gathered knowledge from
the long cycle and calendar life tests is deployed considering the influential parameters.
This type of approach is quite simple and common thanks to its quick adaptability, high
accuracy, and real-time computational ability. Hence, the model constructed based on a
large lab-level measurement dataset should showcase the rationality via real-life profile
validation. In this work, the capacity fade model is aimed to achieve less than 1% RMSE
with the selected WLTC profile.

4.1. Model Framework

The lifetime model is developed using empirical representations with respective
mathematical equations for estimating the cell’s capacity fade resulted from cycling effects.
The adapted lifetime model primarily considers the cycling capacity fade consisting of
several Matlab scripts referring to the different impact factors. These impact factors are
selected from the sensitivity analysis of the results explained in Section 3. The detailed
construction of the framework can be found in the author’s previous publications [13,37].
As mentioned in Section 3, the calendar life imposes a minimal effect; thus, it has been
excluded from the model consideration. The corresponding cycle life stress factors which
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resulted in the capacity loss representations include the temperature, depth of discharge,
and mid-state of charge with their respective ratings as indicated in the aging test matrix.
The multivariable model is parameterized with the sensitive impact factors and scripted to
get a total and single representation. This has been achieved by using the Matlab platform
obtaining the overall cycling capacity fade. The adapted modeling framework for this work
is shown in Figure 2.

Figure 2. Schematic overview of the adapted lifetime model.

The result analysis and parameter selection process make the model development
smooth covering a wide range of operating conditions. First, the sensitive parameters
are identified, and the corresponding data are plotted to the respective FECs. Then, the
aging outputs from the sensitive parameters are fitted with mathematical equations to
represent the individual influences. All the cycling stress parameters (DoD, temperature,
mid-SoC, etc.) effect is scripted, separately but merged for DoD and temperature effect.
The following general cycle life equation is used to fit the generated dataset.

Cycling Capacity fade (FEC, IP) = ∑n,m
i=0,j=0(Ai (FEC)i + Bj (IP)j) (2)

In Equation (2), IP refers to the influential parameters for cycle life, Aj and Bj are
constant coefficients, n and m are surface fitting orders, and i and j are polynomial orders
to get the best fit. For instance, DoD impact on the cycle life degradation is fitted at every
investigated temperature with 4th order polynomials (i = 4, j = 2). A sample of the fitting
scenario for the capacity fade in terms of DoD, and FEC is presented in Figure 3 which
illustrates excellent fitting (R2 = 0.98) based on Equation (2). Similarly, the mid-SoC effect
is formulated in a separate script to get the quantified impact. In this way, the total aging
corresponds to the necessary degradation scenarios. The Matlab curve fitting toolbox is
used for this purpose.

The developed model can intake dynamic or one-dimensional current signal as input
together with other initial battery states such as SoC, BoL capacity, and the cycling tempera-
ture. The load signal is filtered in the initial section with a rainflow counter that is typically
used for fatigue analysis. The rainflow algorithm extracts the crucial information from the
dynamic profile and separates the load and no-load (zero current) conditions to be pro-
cessed, accordingly, to the model scripts. The no-load situations are considered negligible
due to the long calendar life of the investigated cell. The current profile is analyzed by a
simple battery model (coulomb counting) that makes an SoC profiling and the rainflow
counter prepares the DoD profile and cycle numbers for the whole simulated duration.
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Figure 3. Surface fitting of the cycling capacity fade factors, DoD, FEC vs. SoH at 25 ◦C.

The developed model can accurately predict the degradation within the boundary
conditions of the generated dataset; however, it is also capable of estimating beyond the
considered conditions by extrapolations compromising the accuracy. The developed frame-
work is also easily adaptable to other fitting algorithms (corresponding to the diversified
aging path) for different Li-ion technologies.

4.2. Model Validation

Dynamic WLTC currents are used to testify to the model’s robustness by performing
separate cycling tests. The continuous dynamic profile as shown in Figure 4 (inset), is
performed at 90% DoD and room temperature for a standard validation as mentioned in
Section 2. The simulated outputs are evaluated by RMSE, and the metric is expressed as
Equation (3).

Root − mean − squared error (RMSE) =

√
1
n

n

∑
i=1

(
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and Ỳ is the actual discharge capacity. Figure 4 presents the simulated result against the
measured values showing an excellent agreement providing an RMSE of only 0.45 for
the cycling capacity fade. Considering the challenging factors in the measured data, the
achieved accuracy scores well compared to models that are available in the literature [37,42].
The minimal model error can be attributed to the limitation of the empirical methodology,
incomplete dataset, and the non-linear characteristics of the investigated LTO cell.

The cell-level simulated result has been verified reporting an actual measurement of
approximately 11% SoH showcasing the developed model’s robustness. If the simulation is
continued further until 80% SoH which is the usual first life for an automotive case, then
the model could predict the whole life in terms of FECs. The model simulates the first life
as 9000 FEC after which the capacity decay goes beyond 20%.

4.3. Lifetime Model Extension to a Pack-Level Use Case

The capacity degradation and such prediction on the pack-level is the aim of this
study considering the crucial features. The unit aging factors are already considered while
developing the cell-level lifetime model. Thus, the electrical and thermal elements are
introduced when the model is expanded for a series-connected 144S1P topology.

The pack topology of the study case is a series-connected configuration of 144 LTO
cells. The assembled configuration has a nominal 7.62 kWh pack energy. The cell-level
aging model is scaled up according to the cell specifications to build the pack-level model.
The scaling is done by simple multiplication for the multicell configuration. Ideal balancing
is considered for the cell-to-cell SoC variation having negligible impact on the lifetime.
Figure 5 displays the pack-level full first life simulation result with the pack CAD (inset).
The prediction basis is converted to travel distance against the pack energy loss. The
simulation at 25 ◦C estimates the driving distance to be 409,614 km in the first life, however,
without considering the electrical and thermal updates of aspects such as increased IR,
TMS, etc. The model considers a 16.5 km travel distance per suburban WLTC section that is
used for the validation purpose. This proves that the cell can withstand stressed WLTC
cycling and still can give a very long mileage. It can also be assumed that with shallow
cycling or with a full WLTC (urban and suburban) profile, the LTO pack would be able to
survive even longer.

Figure 5. Pack-level lifetime simulation for the whole first life at ambient 25 ◦C.
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5. Pack-Level Electro-Thermal Modeling

So far, the constructed pack-level lifetime model can provide an accurate capacity fade
prediction only considering the aging stress factors. However, other crucial considerations
of electrical and thermal properties are to be integrated as these performances change
over the lifetime. Thus, these aspects are unfolded and derived from further developed
models in this section. Here, the critical parameters are the pack SoC, IR growth, and heat
generation during operation considering the aging state.

The electrical and thermal behavior of the battery pack is modeled by online coupling
of an impedance equivalent circuit (EC) model that derives electrical characteristics, and a
reduced-order 3D thermal model that demonstrates thermal characteristics. Both model
types are implemented separately at cell-level first and upscaled to pack-level. Then, the
online coupling process has been done within AST features widely used in the automotive
industry. The Following describes the entire pack-level model implementation in the
beforementioned steps.

5.1. Lifetime Model Extension to a Pack-Level Use Case

The electrical model is expected to deliver the predictions of electrical parameters
of terminal voltage, SoC, overall internal resistances, and conclusively power loss under
various environmental and operational conditions. For this work, the authors have used
their 2nd order EC reported in [35], and the characterization results can be found in [32].
The already validated model development is not repeated to avoid redundancy; however,
the governing equations can be found as the following.

Vbat = OCV − R0 Ibat − Vp1 − Vp2 (4)

Ploss = (R0 + R1 + R2) ∗ I2
bat (5)

The open-circuit voltage OCV of the cell is assumed as an ideal DC voltage source,
connected to an ohmic resistance R0, and followed by multiple RC loops for simulating
battery polarization effect [45]. For this study, two branches are considered including
R1, R2, C1, and C2. The Kirchhoffs Voltage Law gives the battery terminal voltage Vbat,
where Ibat is the charge/discharge current, and Vp1 and Vp2 are voltage drops across each
RC branch. All the beforementioned parameters are a function of instantaneous Ibat (also
referred to as C-rate), cell temperature Tbat, SoC, and number of cycles the battery has
undergone, i.e., aged. In which the latter is the focus of this study. Coulomb counting
method is utilized to estimate SoC as in [46]. The other important parameter to be achieved
through the electrical model is the overall Ohmic power loss Ploss induced by internal
resistances of the battery as stated in Equation (5). It is used as volumetric heat input to the
3D model described in the next section.

Once all the required look-up tables are achieved from experimental results, they
are loaded to the battery module within the AVL CRUISE™ M commercial platform.
Interpolation and extrapolation techniques are used to achieve consistent data series of the
parameters within or outside the testing points. Once the cell model is implemented and
validated (RMSE = 0.09), it gets upscaled into pack-level by series or parallel connection of
multiple individual cells. The considered battery pack at its beginning of life (BoL) state,
can store 7.62 kWh energy, and outputs 331 V nominal voltage at its terminals.

5.2. 3D Thermal Model Implementation

It is well-known that temperature plays a crucial role in batteries’ performance, and
the model parameters change nonlinearly at various thermal conditions. Therefore, a 3D
thermal model that can predict the surface temperature of the batteries as a function of
internal power loss, can improve the accuracy of the 1D electrical model [31] for sensitive
designs such as cooling/heating system optimizations, and lifetime predictions. Model
order reduction techniques can significantly eliminate this problem while maintaining the
accuracy of the 3D thermal model [47]. In this section, the implementation of a 3D triple
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adjacent module in the FIRE M platform is described to simulate the heat transfer effect in
cell-to-cell and cell-to-environment levels, and then this 3D model order is reduced to 1D
to be coupled with the electrical model for online coupling during pack-level simulations
in CRUISE M platform.

As shown in Figure 6, the implementation of this model is summarized in four major
steps. The first step consists of designing a proper CAD geometry including every high-
lighted detail of the three battery cells adjacent to each other. The casing or shell covers the
inner parts of the cells. The following step is assigning a domain to each part of the CAD.
Each cell has been divided into seven separate domains including the Aluminum casing
on six sides and an inner cell part (fill). The advantages of such a multi-domain approach
are that the temperature distribution of each can be analyzed separately and there will be
control over where to apply the heat input. The third step is conducting a proper and neat
meshing process on the model for which AVL FIRE™ M provides a polygonal meshing
approach with the flexibility of size and boundary layers adjustments. The quantity and
the size of mesh elements define the simulation accuracy and solver precision. On the other
hand, a higher number of mesh elements causes a much more computational workload on
the CPU. Therefore, a trade-off shall be made between these two factors to achieve the most
accurate and efficient simulation. Once the meshing is done, the solver shall be prepared,
and every simulation parameter is tuned. The battery power loss under various current
profiles is imported from the 1D electrical model as volumetric heat input and it is applied
to the inner (fill) domain of the three batteries. After simulation as shown in Figure 6d,
post-processing of the results is performed to extract and demonstrate the model outcome.
Such a 3D thermal modeling approach not only provides accurate temperature values but
also gives a temperature distribution over the entire geometry which makes it helpful for
optimal cooling/heating system designs.

5.3. Thermal Model Order Reduction (3D to 1D)

The lumped-element network generation methodology for the model order reduction
process has been thoroughly described in [47] and it has been applied to the triple-cell
module model developed in this work. The resulting 1D thermal model in the CRUISE M
environment consists of the three battery cells that are interfaced with each other through
their corresponding adjacent domains and heat transfer among them and boundary condi-
tions are translated into differential blocks from the 3D model. Three heat source blocks
apply the battery power loss to each cell. Each heat source block is connected to the inner
cell (fill) domain of the cells as the heat input is only applied to the inner cell material. In
this topology, individual cells are packed as sub-models as they include multiple blocks
with interfaces among each other as well.

Each domain of the battery cells is translated into a solid-mass block corresponding to
domain specifications defined in the native FIRE M model. Each block contains material
characteristics (Aluminum and inner battery), and they are interfaced with each other using
differential blocks translating boundary conditions between adjacent domains. It shall
be noted that for this study, the average temperature of the inner cell domain has been
considered as the reference temperature value signal for lifetime evaluation. Lastly, the
triple-cell module thermal model is upscaled as a string of 144 cells to form the 1P144S pack
configuration in the 1D environment of the CRUISE M platform to be ready for coupling
with the electrical model to have online coupled electro-thermal simulations.

5.4. Overall Electro-Thermal Model Coupling

The combined pack electro-thermal model consisted of the three sub-models presented
in this work, their integration, and input/output (I/O) signals are presented in Figure 7
together with the interlinked lifetime model. The 3D model is simulated in FIRE M in an
offline mode to generate the reduced order lumped-element network. It requires ambient
temperature Tamb, initial pack temperature Tini, and power loss Ploss signals during a steady
load profile extracted from the 1D electrical model as inputs. This process is done once, and
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the rest of the simulations could be run in CRUISE M. The reduced order model block is
responsible for accurate battery pack temperature Tbat generation which is fed back into the
electrical model. This block requires Ploss and Tini signals for that purpose. The electrical
characteristics of the pack (e.g., terminal voltage Vbat, SoC, etc.) are outputed by the 1D
electrical model. The inputs for this block are initialization signals Tini and SoCini, and the
battery current Ibat which could be a constant or dynamic load profile.

Figure 6. Overview of the 3D battery module modeling steps; (a) CAD design, (b) Domain specifica-
tion, (c) Meshing process, and (d) model performance and simulation post-processing.

Figure 7. The overall electro-thermal-aging coupling diagram.
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6. Comprehensive Pack-Level Lifetime Simulation

The reduced-order model thermal output is used as the temperature input for the
pack-level lifetime simulation unlike the constant ambient environment in Section 4.3.
However, the linked electrical model should be updated with the increased IR to efficiently
adjust the lifetime simulation. In this study, the update is performed once after a 10%
capacity drop in the running simulation. The increase amounted to 6.5% in the IR, used as
a form factor to recalculate the average temperature. The heat generation based on the IR
growth is displayed with shades in Figure 8 that increases the capacity fade contribution to
the total simulation. The series-connected cells are considered optimally balanced by the
BMS having negligible impact on the electrical performance.

Figure 8. Pack-level lifetime simulation with parameter updates.

The result shows that the designed 7.62 kWh battery pack would be able to provide
a 358,412 km travel distance in the first life. It is a decrease of 12% lifespan compared
to the 25 ◦C simulation result. It showcases the importance of the thermal management
system referring to the impact due to a 3 ◦C increase in pack average temperature. The
maximum temperature, in this case, is 30.13 ◦C that excludes the consideration of any
thermal management. However, this should be noted that the battery pack is designed for
Fiat 500 PHEV to be used typically for urban driving and/or peak shaving needs. However,
the applied profile is based on an EV consideration meaning that the simulation result
could be improved by a good margin.

7. Discussions and Recommendations

There are certain pros and cons of upscaling a cell-level lifetime model; however,
one big advantage is the ability to build a multi-model framework. The constructed base
can easily facilitate more models such as electrochemical, mechanical, etc., which could
be integrated. The present work makes a comprehensive guideline for the development
of a pack-level lifetime modeling structure that can be processed online with a dynamic
driving characteristic and other available inputs. The robustness of the framework could be
further increased if the IR parameterization is performed more frequently compromising
the computational cost. Moreover, the inclusion of thermal management, pressure effect of
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the cells inside the pack, cell-to-cell variation, balancing, humidity, vibration, etc., could
make the model all-inclusive. Nevertheless, the framework can be optimal to study the
lifetime impact of different cooling methods, driving characteristics, etc.

7.1. Rationality of Cell-Level Model Expansion

The construction of a pack-level lifetime model from cell-level is certainly more logical
but complex than studying real-life pack-level dataset. Field data from on-road vehicles
often require challenges such as missing data points, noisy and/or partial data, limited
boundary conditions, etc., to be tackled in a black-box approach. However, an extension of
a cell-level aging model provides the opportunity to merge several interconnected models
such as electrical, thermal, and mechanical. Hence, the 1D electro-aging model gives a clear
understanding of the cell’s performance and characteristics for any operating conditions
that are required for other pack-level models leading to a merger of collective models.

The cell-level models are usually based on numerous lab-based tests that are almost
impossible to replicate at pack-level. The variations in the operating conditions, test setup,
various performance tests, etc., give the flexibility to develop models with an extended
reach. In situ measurements and/or cell autopsy can also verify the physical link to cell
degradation if an appropriate cell-level campaign is designed.

7.2. Feasibility Checks of Model Implementation in BMS

In general, algorithms for estimating lifetime can be divided into two types. The
first is based on complex calculations. The advantage of this type is that it requires low
experimental data and is relatively accurate, but it also has the obvious disadvantage of
consuming a lot of computing resources on the processor. The second type of algorithm is
based on a lot of experimental data and this method replaces complex operations with a lot
of real experimental logs. For example, the aging of the battery is obtained by interpolating
the database based on the current state of the battery, e.g., temperature, SoC, voltage, etc.
This approach requires less computational effort and is relatively easy to integrate into a
BMS where storage resources are more easily obtained than computational resources when
designing the hardware of BMS. The empirical algorithm in this paper is suitable for the
second method.

To obtain detailed data to build a comprehensive database, this paper tested many
cells meaning that the lifetime of the battery is predicted by interpolation from the multi-
dimensional database. By this method, the algorithms can be imported into BMS. When
the lifetime is needed to predict, BMS will first investigate the present battery health status
and prepare a driving characteristic from memory. With the inputs, it can quickly simulate
the remaining life based on the conditions. Furthermore, the multi-model framework
can continuously be optimized if the database is regularly updated (i.e., IR growth). For
example, the framework can stay in the cloud continuously collecting battery data from the
BMS upon connection.

8. Conclusions

In this paper, a detailed understanding of the aging behavior of LTO 23 Ah batteries
has been presented. The developed knowledge from a comprehensive aging campaign led
to the construction of a cell-level lifetime model. The model is validated with a realistic
WLTC profile, and the result is found to be excellent with only 0.45 RMSE. This lifetime
model is then upscaled for a modular battery pack that is designed for a PHEV use case.

Additional modeling works are performed from the cell-level study to extend a
reduced-order electro-thermal coupled model to pack-level using commercial AST pack-
ages. The resultant temperature is used to finally simulate the connected pack-level lifetime
model to obtain the lifespan of the battery pack. The result shows that without considering
any thermal management system, the battery pack could travel 358,412 km before reaching
the EoL threshold.
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The developed framework is a powerful tool not only making an accurate lifetime
prediction on pack-level considering relevant factors but also giving guidelines to the
pack-level model considerations. The framework is a combined research outcome of two
EU projects that can be further improved by adding other models.
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