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Abstract: In this study, leaf area prediction models of Dendrobium nobile, were developed through
machine learning (ML) techniques including multiple linear regression (MLR), support vector re-
gression (SVR), gradient boosting regression (GBR), and artificial neural networks (ANNs). The best
model was tested using the coefficient of determination (R2), mean absolute errors (MAEs), and root
mean square errors (RMSEs) and statistically confirmed through average rank (AR). Leaf images
were captured through a smartphone and ImageJ was used to calculate the length (L), width (W),
and leaf area (LA). Three orders of L, W, and their combinations were taken for model building.
Multicollinearity status was checked using Variance Inflation Factor (VIF) and Tolerance (T). A total
of 80% of the dataset and the remaining 20% were used for training and validation, respectively.
KFold (K = 10) cross-validation checked the model overfit. GBR (R2, MAE and RMSE values ranged
at 0.96, (0.82–0.91) and (1.10–1.11) cm2) in the testing phase was the best among the ML models. AR
statistically confirms the outperformance of GBR, securing first rank and a frequency of 80% among
the top ten ML models. Thus, GBR is the best model imparting its future utilization to estimate leaf
area in D. nobile.

Keywords: leaf area; smartphone; ImageJ; Dendrobium nobile; Gradient Boosting Regression (GBR);
Average Rank (AR)

1. Introduction

Dendrobium nobile (Orchidaceae) is an endangered orchid species listed under Appendix
II of CITES [1] and forms the largest vascular epiphytes having features of CAM plants [2].
It serves as an ornamental and medicinal food for humans [3]. Recently HPLC fingerprints
showed a strong inhibiting effect on cancer cells, through increased bioactive compounds;
signifying D. nobile as a functional herb for the market [4]. Leaf area is a necessary bio-
metrical variable that helps not only in the computation of various physiological indices
such as leaf area index (LAI), specific leaf area (SLA), net assimilation rate (NAR), specific
leaf weight (SLW), leaf area duration (LAD) and various plant physiological mechanisms
viz., photosynthesis, respiration, light interception, transpiration, etc. [5–7], but also water-
related anatomical traits such as leaf density and vein density, thus, helping in water
conservation and transport ultimately resulting in the ability of Dendrobium to cope in
water stress situations in the environment [8]. Leaf area, shape, size, and number present
per plant affects the source–sink relationship and ultimately the yield of the plant as green
leaves act as a primary source of assimilates for petals in Dendrobium orchid [9,10]. Leaf
area is also responsible for nutrient spray responsiveness in Dendrobium [11]. The leaf
area trait, i.e., specific leaf area (SLA), is strongly influenced by phylogeny (k value > 1)
indicating strong conservation in changes in this trait over evolution in Dendrobium [12].
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Leaf area further can act as an important component of complex process-based plant
growth models for the development of support decision-based systems for management of
cultural practices in Dendrobium. Therefore, leaf area (LA) is a fundamental component
of estimation of physiological, ecological, evolutionary, and anatomical traits that affect
the survival, growth, and distribution of Dendrobium. Leaf area modeling enables an easy
way of predicting LA through models which aid in a non-destructive estimation, rather
than manual methods.

LA can be measured directly through techniques such as photographing [13], image
analysis, blueprinting, use of expensive instruments including digital planimeter [14], scan-
ning planimeter [15], etc. Major disadvantage in these direct methods lies in the removal of
leaves, which poses a problem of not only for the experiments which are time-shared, but
also leads to a decline in these valuable plant samples, in our case a rare and endangered
orchid species. Other problems in these methods can be mentioned as requirements of
time and labor, costly instruments, reduction in canopy affecting photosynthesis, growth,
etc. The above bottleneck in LA estimation is successfully overcome through the various
non-invasive technologies using very few measurements such as leaf length (L) and leaf
width (W) or its different combination [16–19], constant leaf area term KA [20] or a correc-
tion factor [21]. These indirect LA estimation methods are performed in situ [22], low in
cost, reliable, provide fast results without detachment of the leaves from the plants, and
also excludes biological variations in the experiment [23]. In our study, an Orchidaceae
family member, D. nobile, was assessed for LA estimation where conservation prioritization
is essential and automated conservation assessments were recently performed through
deep learning [24]; thus making it inevitable to use the non-destructive ML methods for
development of LA prediction models.

Machine learning (ML) techniques have gained a lot of importance due to their non-
requirement of explicit instructions, i.e., a data driven nature, and their reliable, non-
destructive, fast, accurate, high throughput, user friendly and less laborious approach of
solving real life problems. Recently, ML and modeling has become very popular in the field
of LA estimation, as it allows the adjustments and improvements of the model for accurate
prediction of LA in crops. The regression problem depicts the relationship between one
continuous dependent variable and multiple independent variables. LA modeling in the
present study underwent regression problem analysis as a continuous dependent variable
leaf area (LA) was predicted by a numerical value using two independent variables leaf
length (L) and leaf width (W). Multiple linear regression (MLR), the most common form of
linear regression analysis, computes a weighted sum of the input features and a bias term,
the intercept. Support vector regression (SVR) is a supervised ML algorithm to predict
the dependent variable in the model. In principle, SVR is same as support vector machine
(SVM) [25] which is capable of computing linear and non-linear regression problems.
The gradient boosting regression (GBR) [26] algorithm is a decision tree-based ensemble
technique for solving both linear and non-linear regression problems. The high flexibility
to construct new base-learners which correlates maximally with the negative gradient
of the loss function makes it a highly customizable data driven ML technique. Boosting
algorithms are also very easy for various model design implementations, thus imparting
gradient boosting machine applications in various fields of both practical and data mining
and machine learning studies [27–29]. It is faster and has better model performance due
to its principle of hypothesis boosting; the requirement of minimum data pre-processing
has outperformed Artificial Neural Network (ANN) and SVM in many reports [30–32].
ANN techniques have been used in a limited number of crops which are summarized in
the paper [33]. These models are self-adaptive, data driven, and non-linear in nature which
helps to find the relationship between the predictor and predicted [34].

Performance metrices have been used for evaluation in multiple machine learning
algorithms, but a unified and single standard metric is difficult to find. Another drawback
of these metrices is since regression problem may have multiple values ranging from zero
to infinity, merely a single metric cannot solve the problem of regression with respect to



Appl. Sci. 2022, 12, 4770 3 of 25

the ground truth elements in the study. Thus, in our study three performance evaluation
metrices were used to assess the results of regression viz., coefficient of determination (R-
squared or R2 [35]) which determines the proportion of variance in the dependent variable
which can be predicted from the independent variables; mean absolute error (MAE [36])
depicting the quality of fit in terms of the distance of the regressor to the actual training
points; and Root mean Square Error (RMSE) for the detection of outliers [37]. We also
used another statistical ranking method Average Rank (AR) that follows Friedman’s M
statistic [38] to select the best model for Dendrobium orchid.

LA modeling has been reported for many crops including apple [39], walnut [13],
apricot [40], onion [41], jatropha [42], cacao [43], cherry cultivars [14], chestnut [44],
grapes [45,46], green and black peppers [33,47,48], ginger [49], medicinal and aromatic
plants [50], niagara and grave vines [51], som [52], mango [53], tomato [54], cotton [55–57],
multiple crops [58], kiwi fruit [59], durian [60], pecan [61], forest tree [62], and hazelnut [63].
Ornamentals received meagre attention; among them LA modeling was performed in zin-
nia [64], sunflower [65], rose [66], Euphorbia × lomi Thai hybrids [67], bedding plants [68],
and bougainvillea [69]. The development of leaf dry weight and leaf area models in the
four cultivars of Phalaenopsis orchids [70] was reported by considering the length and
width of leaves and linear regression analysis, but a major limitation is the non-utilization
of the progressively utilized ML techniques.

Advanced ML techniques to predict leaf area are reported in a very limited number
of crops and the existing LA models are mostly based on linear regression analysis. Until
now, no other attempts have been reported for non-destructive estimation of LA through
ML techniques in the Orchidaceae family, which constitutes the second largest (c. 28,000)
flowering family in the world; it is the most widespread and accounts for 8% of angiosperm
species diversity [71]. Dendrobium, in this study for LA modeling, constitutes the largest
genus of Orchidaceae, over 1800 species [72]. To the best of our knowledge, only a linear
regression-based model (LRM) and recently very few works on neural net (NN)-based
models have been reported for LA prediction. Our study reports for the first time a non-
linear regression-based model, i.e., support vector regression (SVR) and decision tree-based
ensemble model gradient boosting regression (GBR) for LA modeling and its robustness
was compared with the state-of-the-art ML models and a novel method of statistical ranking
of the LA models based on average rank (AR) was proposed. Keeping this in mind, the
objectives of this study were set as to (i) determine the individual leaf length (L), width
(W) and the leaf area (LA) using the ImageJ software [73], to ultimately develop a leaf
area model from the nine input combinations of L and W using different ML techniques
viz., MLR, SVR, GBR, and the nine best selected ANN models (ii) to evaluate the model
robustness through various statistical performance metrices (R2, MAE and RMSE) for
selecting the best LA prediction model and (iii) to rank the ML models based on average
rank (AR) ranking methodology in the orchid D. nobile.

2. Materials and Methods
2.1. Plant Material

The present study was conducted in the glass house located at ICAR-National Research
Centre for Orchids (ICAR-NRCO), Pakyong, Sikkim, India (27.2267◦ N, 88.5877◦ E). The
individual leaf images were collected from D. nobile orchid from 1.5 to 2 years of age. A
mixture of stone or brick pieces, leaf mold, coconut husks, and semi rotten logs in the ratio
of 1:1:1:1 in plastic pots of (5 to 6) inches was used as the potting media of D. nobile. The
N:P:K composition as 20:10:10 @ 0.5% was sprayed on the 1 to 2 year old plants and potting
materials at an interval of 15 days and other nutrients such as calcium nitrate @ 0.05%, iron
sulphate @ 50 ppm, magnesium sulphate @ 0.1%, boric acid @ 50 ppm and zinc sulphate @
50 ppm were sprayed at 60 days interval. Neem @ 3% and copper oxychloride @ 0.3% were
sprayed once every fortnight for controlling sucking pests and foliar diseases, respectively.
The number of average leaves in the plant was approximately 10 and image was captured
by a smartphone (Samsung Galaxy J7 with 13 MP camera, resolution of 4128 × 3096 pixels,
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autofocus, and LED flash) during 10:30 a.m. to 3:30 p.m. from July to August of 2020. The
light intensity was recorded by lux meter (LutronLX-101A, Delhi, India) every day at 12:00
p.m. regardless of the weather or cloud cover over the 4 weeks experimental period. The
glass house ambient light intensity varied from 531 lux to 1413 lux. Direct bright sunlight was
avoided by providing a green colored shade net of 50% over the glass house (Saveer Biotech
Ltd., New Delhi, India). Ambient day and night temperature ranged to about 32 ◦C and 17 ◦C
during the photoperiod and relative humidity varied from 60 to 80% inside the glass house.

2.2. Process Flow of Selection of Best Leaf Area Model in D. nobile through ML Techniques

Figure 1 depicts the whole workflow of the study conducted for the non-destructive
estimation of leaf area using ML. Firstly, the individual leaves of the D. nobile were captured
with a reference scale by a smartphone (Figure 2). Then the ImageJ (https://imagej.nih.
gov/ij/ (accessed on 27 April 2020)) software was used for determining the individual
leaf length (L), width (W), and the leaf area (LA) of D. nobile. Three orders of independent
variable viz., first order, second order, and third order polynomial functions of L and W
were taken which can be denoted as L, L2, and L3 and W, W2, and W3, respectively. L, L2,
and L3 were combined with W, W2, and W3, respectively, thus totalling to the number of
input combinations as 3 × 3, i.e., 9. These nine combinations of inputs were used for MLR,
SVR, and GBR machine learning techniques for model building. For ANN, we used four
types of architectures and considered the nine combinations of L and W, the total number
of models were 4 × 9 = 36. Finally, the nine best ANN models were selected based on
R2, MAE, and RMSE values. Thus, the above nine models from each of MLR, SVR, GBR,
and ANN were compared together with their respective performance metrices. For the
study, the original dataset was split into 80% training and 20% testing dataset for model
development and its validation. To avoid the over fitting of the ML model KFold (k = 10)
cross-validation [74] was performed using cross_val_score on the training dataset. The rest
of the 20% holdout data were used for testing of the model. R2, MAE, and RMSE were used
for ranking of the models. Selection of the best leaf area model was performed through
higher R2 values and lower MAE and RMSE values. Lastly, AR was used to statistically
confirm the best performing models through ranks.

Figure 1. Flow diagram depicting the workflow of selection of best leaf area model through ML
techniques in D. nobile.

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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Figure 2. Images of individual leaf of D. nobile captured through smartphone with a reference scale
for measurement of leaf length (L) and leaf width (W).

2.3. Dataset

A total of 1589 D. nobile leaf images were collected by Samsung Galaxy J7 smartphone
for the study. The image was captured with a reference scale and the ImageJ software
was used for estimation of the length, width, and area of the individual leaf [75]. The
color threshold function of ImageJ was used to demarcate the captured leaf area from its
background, thus automatically calculating the region of interest, i.e., measured leaf area
(LA). The dataset contains one continuous dependent variable, i.e., leaf area (LA) and two
independent variables—leaf length (L) and leaf width (W). The measurement of the leaf
length (L) was taken from the tip of the lamina to the intersection point between the leaf
and petiole. The leaf width (W) measurement was taken from end-to-end point between the
broadest part of the lamina exactly perpendicular to the midrib of D. nobile lamina. All the
variables were measured in cm scale. The values of three variables, length (L), width (W),
and leaf area (LA) were stored in csv format for further model development processing and
submitted to the dataset repository Mendeley data [http://doi.org/10.17632/8tk2sc4ytg.1
(published on 28 June 2021)] and KRISHI, ICAR research data repository for knowledge
management [http://krishi.icar.gov.in/jspui/handle/123456789/71908 (published on 6
May 2022)] (Supplementary S1). Table 1 depicts the different combination of inputs of L
and W along with their ML models. In this experiment three orders of L and W were taken,
so L, L2, and L3 were combined with W, W2, and W3. Each L and its higher order were
combined with W and its higher order. The total number of input combination thus can
be calculated as 3 × 3, i.e., 9. These nine combinations of inputs were used for MLR, SVR,
and GBR techniques. The higher orders of L and W were taken to observe their effect on
model building. For ANN, four types of architectures were designed and the total number
of models were 4 × 9 = 36. Finally, the nine best ANN models were selected based on R2,
MAE, and RMSE values (Figure 3 and Table 2).

http://doi.org/10.17632/8tk2sc4ytg.1
http://krishi.icar.gov.in/jspui/handle/123456789/71908
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Table 1. Input combinations of L, W, and their variants with model names of MLR, SVR, and GBR.

Inputs W W2 W3

L L, W (MLR1, SVR1, GBR1) L, W2 (MLR2, SVR2, GBR2) L, W3 (MLR3, SVR3, GBR3)
L2 L2, W (MLR4, SVR4, GBR4) L2, W2 (MLR5, SVR5, GBR5) L2, W3 (MLR6, SVR6, GBR6)
L3 L3, W (MLR7, SVR7, GBR7) L3, W2 (MLR8, SVR8, GBR8) L3, W3 (MLR9, SVR9, GBR9)

Figure 3. ANN network structures used in this study includes three types of layers. Input layer (with
input neuron i1 and i2) taking values from leaf length (L) and leaf width (W), hidden layer (H1, H2)
(with hidden neuron hk, where k = 3 or 5 when architecture has single hidden layer and k = 3 when
architecture has double hidden layer) and output layer (with output neuron O1) were utilized to
predict the leaf area (LA). Furthermore, 4 × 9 = 36 models of ANN were developed. W and f depict
the weights and sigmoid activation function, respectively.

Table 2. Combination of different inputs for ANN techniques with different ANN architectures.

Models Input Variables Output Variable Layers
(Input-Hidden-Output)

ANN1 L, W LA 2-3-1
ANN2 L, W LA 2-5-1
ANN3 L, W LA 2-10-1
ANN4 L, W LA 2-3-3-1
ANN5 L, W2 LA 2-3-1
ANN6 L, W2 LA 2-5-1
ANN7 L, W2 LA 2-10-1
ANN8 L, W2 LA 2-3-3-1
ANN9 L, W3 LA 2-3-1
ANN10 L, W3 LA 2-5-1
ANN11 L, W3 LA 2-10-1
ANN12 L, W3 LA 2-3-3-1
ANN13 L2,W LA 2-3-1
ANN14 L2,W LA 2-5-1



Appl. Sci. 2022, 12, 4770 7 of 25

Table 2. Cont.

Models Input Variables Output Variable Layers
(Input-Hidden-Output)

ANN15 L2,W LA 2-10-1
ANN16 L2,W LA 2-3-3-1
ANN17 L2, W2 LA 2-3-1
ANN18 L2, W2 LA 2-5-1
ANN19 L2, W2 LA 2-10-1
ANN20 L2, W2 LA 2-3-3-1
ANN21 L2, W3 LA 2-3-1
ANN22 L2, W3 LA 2-5-1
ANN23 L2, W3 LA 2-10-1
ANN24 L2, W3 LA 2-3-3-1
ANN25 L3, W LA 2-3-1
ANN26 L3, W LA 2-5-1
ANN27 L3, W LA 2-10-1
ANN28 L3, W LA 2-3-3-1
ANN29 L3, W2 LA 2-3-1
ANN30 L3, W2 LA 2-5-1
ANN31 L3, W2 LA 2-10-1
ANN32 L3, W2 LA 2-3-3-1
ANN33 L3, W3 LA 2-3-1
ANN34 L3, W3 LA 2-5-1
ANN35 L3, W3 LA 2-10-1
ANN36 L3, W3 LA 2-3-3-1

2.4. ML Methodologies Used for LA Prediction Modeling
2.4.1. Multiple Linear Regression Analysis (MLR) Models

Multiple linear regression (MLR) is a variant of simple linear regression with more
than one explanatory or independent variable. It can capture linear relationships between
independent variables and the dependent variable. It performs better in the absence of
multicollinearity within the dependent variables and dependent and independent should
be linearly correlated with each other [76]. The equation for MLR model estimation is as
follows [77]:

y = β0 + β1x1 + . . . + β2x2 + . . . + βkxk + ε (1)

where y is the dependent variable (LA), xi is the ith independent variable (L or W), βi is
the polynomial coefficients of xi, k is the number of independent variables, and ε is the
possible variation form.

2.4.2. Support Vector Regression (SVR) Models

SVR is based on the Vapnik–Chervonenkis (VC) theory which in principle is structural
risk minimization [78] and is an effective tool for estimating real-valued functions [79]. The
advantages of SVR, which was harnessed in this study, is its highly effective performance
for both the linear and non-linear regression dataset and not too large dataset which results
in the use of Gaussian RBF kernel hyperparameter (for non-linear regression) thus mapping
each training instance to an infinite-dimensional space [80]. The other usefulness of SVR can
be summarized as its excellent capability of generalization with high accuracy prediction.
Default hyperparameters used in sklearn.svm.SVR are kernel = ‘rbf’, degree = 3, gamma
= ‘scale’, coef0 = 0.0, tol = 0.001, C = 1.0, epsilon = 0.1, shrinking = True, cache_size = 200,
verbose = False, and max_iter = −1.

2.4.3. Gradient Boosting Regression (GBR) Models

GBR develops an additive model that serially adds predictors or new base learners
to an ensemble and each one corrects its predecessors leading to the minimization of the
loss function. In each iterative training process, the residual value in the current model
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denotes the negative gradient of the loss function, and a new regression tree (predictor)
is trained to fit the current residual and added subsequently to the previous model. For
developing a GBM model, both the loss function and the function corresponding to the
negative gradient must be specified. In our study, loss function for continuous response
viz., least-square was used which usually neglects smaller deviations but refits larger ones.
One of the advantages of GB models is that it provides the flexibility to use a variety of base
learning models at the same time for designing a complex model for a particular solution. A
model’s regularization capability is of the utmost importance for model building from data
because it prevents the overfit of the data [81]. Our study used shrinkage as a regularization
technique which reduces unstable regression coefficients by shrinking it to zero which is
normally used in ridge regression problems. The hyperparameters used in our study were
n_estimators to control the ensemble training through the number of boosted trees to fit
the training data; min_samples and max_depth to control the growth of decision trees; and
learning rate to scale the contribution of each tree via a regularization technique known
as shrinkage, the lower the value the better the generalization of the predictions will be.
The value of the learning rate and n_estimator were adjusted in our experiment to 0.01
and 500, respectively, which performed better than the other combinations tried. The loss
hyperparameter controls the cost function of GBR. Table 3 depicts the hyperparameters,
their values and descriptions which were adjusted to improve the learning performances
in GBR and ANN.

Table 3. Descriptions of hyperparameters tuned in GBR and ANN models.

GBR ANN

Hyper Parameters Values Descriptions Hyper Parameters Values Descriptions

n_estimators 500 No of decision tree
in the ensemble alpha 0.001 Regularization

parameter

max_depth 4 Maximum depth
of the decision tree hidden_layer_sizes

(3,);
(5,);
(10,);
(3,3)

Four architecture
2-3-1, 2-5-1, 2-10-1,

2-3-3-1

min_samples_split 5

Minimum number
if sample required
to split an internal

node

max_iter 1000 No. of iteration

learning_rate 0.01
Determine the

impact of each tree
on final outcome.

activation ‘logistic’
Logistic sigmoid

function
1

(1+exp−x)

loss ‘ls’ Least square loss
function learning_rate ‘adaptive’

Keep learning rate
constant as the

initial learning rate

2.4.4. Artificial Neural Networks (ANNs) Models

ANNs are data-driven, non-linear, and self-adaptive techniques capable of establishing
a relationship between the input data and target output data even when they have an un-
known relationship [82]. The mathematical structures of ANN models have a resemblance
with the neural system of the human brain [78]. They process data collectively through
interconnected neurons depending on factors including thresholds, adjustable weights,
and mathematical transformation functions of the images [83]. The ANN architecture
used in our study comprised of three layers, where the input and output layers depict the
independent and dependent variables, and the hidden layer (inter layer) deals with the
computation of data and establishes interconnection between the input and output layers
through the hidden neurons. The optimum neurons in the hidden layer were determined
through the trial and error approach [84]. In our study, a single hidden layer was found
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to provide better accuracy than the double hidden layers which is in accordance with the
literature [61]. Figure 3 and Table 2 depict the different ANN models where nine types of
inputs (as described in Table 1) were combined with four types of ANN architectures, i.e.,
input layer-hidden layer-output layer (2-3-1, 2-5-1, 2-10-1, 2-3-3-1) in total calculating to
4 × 9 = 36 models of ANN. This was performed to observe the effects of different hidden
layers on ANN models leading to the selection of the nine best models based on the coef-
ficient of determination (R2), mean absolute errors (MAEs), and root mean square errors
(RMSEs) values of the testing phase.

The learning rate was adaptive in nature, i.e., constant as the initial learning rate
(0.001) as long as the training loss decreased and number of iterations were determined as
1000 epochs for convergence. To capture the non-linearity of the data an activation function,
sigmoid, was used. The hyperparameters, their values and descriptions used for ANN
model building are described in Table 3.

2.5. Feature Correlation Heatmap and Multicollinearity of the Independent Variables

A feature correlation heatmap of L, W, and its variants (L2, L3, W2, and W3) and
LA was generated through the matplotlib package of Python library. Pairwise Pearson’s
correlation coefficient, r [85] in the seaborn heatmap functions from seaborn module of
Python was applied among the different combination of variables. The Variance Inflation
Factor (VIF) and Tolerance values (T) were calculated to check the multicollinearity status
of the two independent variables (L and W) and their variants (L2, L3, W2, and W3). VIF
values >10 or T value <0.10 denote the effect of multicollinearity on the estimation of the
parameters of the model that lead to its non-reliability and for that problem at least one of
the independent variables must be excluded from the prediction model [86].

The equations of Pairwise Pearson’s correlation coefficient (r) and Variance Inflation
Factor (VIF) [87] and Tolerance (T) [88] are shown below:

r =
∑n

i (xi − x)(yi − y)

∑n
i (xi − x)2(yi − y)2 (2)

where n = number of data points; i varies from 1 to n; x and y are two independent variables;
x and y are means of x and y, respectively.

VIF =
1

(1− r2)
(3)

r is the correlation coefficient.
T =

1
VIF

(4)

2.6. Programming Set-Up

The experiment was conducted on an HP Omen laptop computer with i7 9th genera-
tion processor (8 GB RAM, 4 GB GEFORCE GTX nVIDIA GPU, 1 TB HDD, 250 GB SSD
Windows 10 operating system). The experiments were conducted in Pycharm Community
Edition 2020.2 IDE using Python 3.7 version. For our study, we used many python packages
including numpy, pandas, sklearn, matplotlib, etc.

Linear regression of sklearn.linear_model, SVR of sklearn.svm, gradient boosting
regressor of ensemble, and MLP regressor of sklearn.neural_network modules avail-
able in sklearn were used for implementation of MLR, SVR, GBR, and ANN ML tech-
niques respectively. Training and testing was performed using train_test_split methods
of sklearn.model_selection, mean_squared_error, mean_absolute_error, and r2_score of
sklearn.metrics were used for calculation of the performance of the machine learning
algorithm [89].



Appl. Sci. 2022, 12, 4770 10 of 25

The equations are defined as under [77]:

R2 =
∑n

i=1
(
LAmea − LAmea

)(
LAmea − LAest

)
∑n

i=1
(
LAmea − LAmea

)2
∑n

i=1
(
LAmea − LAest

)2 (5)

MAE =
∑n

i=1
∣∣LAmea − LAest

∣∣
n

(6)

RMSE =

√
∑n

i=1
(
LAmea − LAest

)2

n
(7)

where LAmea = measured LA value; LAest = estimated LA value; (LAmea) = average values
of measured LA value; (LAest) = average values of estimated LA value; n = number of
leaves used for training or testing phase.

2.7. Model Performance Evaluation

A model evaluation is an essential step in machine learning problems. Several methods
are available in literature to evaluate machine learning methods. The statistical model
performance criteria used in this study were: coefficient of determination (R2), mean
absolute errors (MAEs), and root mean square errors (RMSEs).

In general, R2, MAE, or RMSE cannot predict the departure patterns of observed
values in the study against the predicted values. In the scatter plot an overlap of the
reference line (y = x) and regression line of observed vs. predicted values were visualized.
Departures of the regression line of observed vs. predicted values from the reference line
suggests an over or underestimation [90].

2.8. Model Ranking Based on Average Rank (AR) Ranking Methodology

For each 36 ML models which includes the four ML techniques viz., MLR, SVR, GBR,
and ANN, based on the performance metrices R2, MAE, and RMSE, ranks were assigned.
The best algorithm was ranked as first (1st) and second best as second (2nd) and so on,
both for the testing as well as training phase, so each model obtains six ranks, three from
training (R2, MAE and RMSE) and three from testing (R2, MAE and RMSE). The average
ranks were obtained by averaging the ranks for each model. The final rank was derived by
arranging the average ranks in an ascending order.

The formula for the calculation of average rank (AR) is as follows [38]:

ARmodelj =
∑6

i=1 ri

6
(8)

where j varies from 1 to 36 for 36 ML models, ri represents the ith rank of a model, i varies
from 1 to 6

3. Results and Discussion

The LA prediction modeling study presented here is of importance to the physiologists,
horticulturalist, and environmentalist as D. nobile is a rare and endangered epiphytic
medicinal orchid listed officially in the Pharmacopoeia of the People’s Republic of China
(Chinese Pharmacopoeia Commission, 2015) for the Dendrobine content as an active
ingredient category [91]. The low reproduction rate in the wild, slow growth, and poor
regeneration ability may prove D. nobile to be vulnerable under the predicted scenario of
climate change as suggested by MaxEnt ML models that their habitat will shrink from
(1–10)% in the future [92]. Leaf area (LA) estimation is of the utmost importance for
performing any physiological experiments investigating the growth characteristics for
studying the impact of predicted climate change.

First, the descriptive statistics of D. nobile leaves was calculated, next feature correlation
heatmap and multicollinearity status of the variables was assessed. A selection of nine best
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performing ANN models based on R2, MAE, and RMSE was tested. Finally, a comparison
of state-of-the-art ML models for estimating leaf area of D. nobile leaves based on R2, MAE,
and RMSE was addressed and ranking of the models was performed statistically based on
Average Rank (AR) ranking methodology.

3.1. Descriptive Statistics of D. nobile Leaves Used for LA Model Building

The descriptive statistics was studied and summarized in Table 4 where maximum
length, minimum length, width, and leaf area as well as mean and standard deviation of
those parameters of D. nobile leaves were described. Sampling of leaves for image capture
was performed to cover a wide range of leaf sizes. Leaf length (L) ranged from 5.24 cm to
16.30 cm with the mean of 10.68 and standard deviation of 1.57. Width (W) ranged from 1.30
cm to 4.34 cm with the mean of 2.39 and standard deviation of 0.51. Leaf area (LA) ranged
from 6.39 cm2 to 43.902 cm2 with the mean of 20.042 cm and standard deviation of 6.26.

Table 4. Descriptive statistics of D. nobile leaves.

Parameters Maximum Minimum Mean and Standard Deviation

Leaf Length (L) cm 16.30 5.24 10.68 and 1.57
Leaf Width (W) cm 4.34 1.30 2.39 and 0.51
Leaf Area (LA) cm2 43.90 6.39 20.04 and 6.26

3.2. Feature Correlation Heatmap between the Variables through Correlation Coefficient

The correlation heatmap illustrating the relationship between each variable and com-
pared with every other variable is depicted in Figure 4. The following observations can
be made from the heatmap generated for the two independent variables (L, L2, L3, W, W2,
W3) and LA in our study:

i. Leaf length (L) and width (W) are linearly least correlated (r = 0.43–0.49) to each
other as depicted from the light green color;

ii. L, L2, L3, and LA are nearly equally correlated (r = 0.76–0.78) to each other as
depicted from the medium green color;

iii. Leaf width (W) shows more correlated to leaf area (LA) with correlation coefficient
(r) values ranging between 0.87 and 0.9 than leaf length (L) 0.76–0.78 as depicted
from the darker green color in the heatmap;

iv. Among the variants of leaf width, the best to worst correlation with the leaf area
(LA) can be shown in the order of W (r = 0.9) = W2 (r = 0.9) > W3(r = 0.87);

v. L, W, and their variants are strongly linearly correlated with leaf area (LA) where r
ranges from 0.76 to 0.90 as depicted from dark green color in the heatmap.

Figure 4. Correlation heatmap illustrating the relationship between each variable and compared with
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every other variable. Dark green (r = 1) color indicates a positive correlation between the variables
while white (r = 0) indicates no correlation between the variables and dark brown (r = −1) indicates a
negative correlation. Pairwise Pearson’s coefficient was used for correlation coefficient determination
between the variables and seaborn module with matplotlib of Python was used for generation of
the heatmap.

3.3. Multicollinearity Status of the Two Independent Variables (L and W)

In our study, the VIF ranged from (1.22 to 1.31) and T ranged from (0.76 to 0.82) for in-
dependent variables L, W, and their variants (Table 5) which are less than the non-acceptable
VIF values, i.e., >10 and higher than T value < 0.10 to state the effect of multicollinearity on
the estimation of the parameters of the model. Thus, the independent variables and the
variants can provide accurate and reliable model building results overcoming the effects
of multicollinearity.

Table 5. The values of VIF and T of L, W, and their input combinations.

Methods Input Combinations

L, W L, W2 L, W3 L2, W L2, W2 L2, W3 L3, W L3, W2 L3, W3

Variance
Inflation Factor

(VIF)
1.31 1.27 1.23 1.30 1.27 1.23 1.28 1.25 1.22

Tolerance
(T) 0.76 0.78 0.81 0.77 0.79 0.81 0.78 0.80 0.82

3.4. Selection of Nine Best Performing ANN Models Based on R2, MAE and RMSE

From 36 models of ANN, nine models were selected based on nine different input
combinations as mentioned in Table 2. One best model was selected from every input
combination. ANN1–ANN4 came under the LW combination of inputs. ANN2 showed the
highest R2 value (0.96) and lowest MAE (0.86) and RMSE (1.13 cm2) in the testing phase.
ANN5–ANN8 came under the LW2 combination of inputs. ANN6 showed highest R2 value
(0.96) and lowest MAE (0.84) and RMSE (1.18 cm2) in the testing phase. ANN9–ANN12
came under LW3 combination of inputs. ANN10 showed highest R2 value (0.97) and lowest
MAE (0.87) and RMSE (1.18 cm2) in the testing phase. ANN13-ANN16 came under L2W
combination of inputs. ANN15 showed highest R2 value (0.97) and lowest MAE (0.86) and
RMSE (1.11 cm2) in the testing phase. ANN17–ANN20 came under the L2W2 combination
of inputs. ANN18 shows the highest R2 value (0.96) and lowest MAE (0.77) and RMSE
(1.11 cm2) in the testing phase. ANN21–ANN24 came under the L2W3 combination of
inputs. ANN22 showed the highest R2 value (0.97) and lowest MAE (0.86) and RMSE
(1.19 cm2) in the testing phase. ANN25–ANN28 came under the L3W combination of
inputs. ANN26 showed the highest R2 value (0.88) and lowest MAE (1.35) and RMSE
(2.06 cm2) in the testing phase. ANN29–ANN32 came under the L3W2 combination of
inputs. ANN31 showed the highest R2 value (0.94) and lowest MAE (1.01) and RMSE
(1.47 cm2) in the testing phase. ANN33–ANN36 came under the L3W2 combination of
inputs. ANN35 showed the highest R2 value (0.96) and lowest MAE (0.97) and RMSE
(1.31 cm2) in the testing phase. Finally, the selected nine best performing ANN models
which were to be compared with the other three models viz., MLR, SVR, and GBR includes
ANN2, ANN6, ANN10, ANN15, ANN18, ANN22, ANN26, ANN31, and ANN35. Table 6
enumerates the performance metrices (R2, MAE, and RMSE) of 36 ANN models.



Appl. Sci. 2022, 12, 4770 13 of 25

Table 6. Comparative analysis of 36 ANN models with different inputs, i.e., LW, LW2, LW3, L2W,
L2W2, L2W3, L3W, L3W2, L3W3 for selection of 9 best models for each input combinations based on
the statistical performance metrices (R2, MAE and RMSE) of models.

Inputs Model
Training Testing

R2 MAE RMSE (cm2) R2 MAE RMSE (cm2)

LW ANN1 0.96 0.93 1.29 0.96 0.89 1.21
LW ANN2 0.96 0.87 1.27 0.96 0.86 1.13
LW ANN3 0.96 0.86 1.26 0.96 0.93 1.32
LW ANN4 0.85 1.03 2.51 0.96 0.98 1.32
LW2 ANN5 0.96 0.96 1.30 0.96 0.88 1.23
LW2 ANN6 0.96 0.90 1.25 0.96 0.84 1.18
LW2 ANN7 0.96 0.91 1.28 0.96 0.84 1.21
LW2 ANN8 0.93 1.13 1.50 0.94 1.18 1.62
LW3 ANN9 0.96 0.92 1.28 0.95 0.91 1.35
LW3 ANN10 0.96 0.90 1.27 0.97 0.87 1.18
LW3 ANN11 0.96 0.90 1.23 0.96 0.91 1.29
LW3 ANN12 0.95 1.12 1.63 0.96 0.88 1.20
L2W ANN13 0.94 1.00 1.55 0.94 1.12 1.60
L2W ANN14 0.95 0.96 1.48 0.96 0.92 1.40
L2W ANN15 0.95 0.94 1.41 0.97 0.86 1.11
L2W ANN16 0.92 2.28 5.17 0.95 1.07 1.45
L2W2 ANN17 0.95 1.00 1.44 0.96 0.91 1.34
L2W2 ANN18 0.94 0.93 1.36 0.97 0.77 1.11
L2W2 ANN19 0.95 0.94 1.39 0.96 0.89 1.24
L2W2 ANN20 0.74 1.60 4.05 0.00 4.62 5.84
L2W3 ANN21 0.94 1.03 1.47 0.95 0.88 1.32
L2W3 ANN22 0.95 0.97 1.39 0.97 0.86 1.19
L2W3 ANN23 0.95 0.90 1.32 0.96 0.92 1.34
L2W3 ANN24 0.83 1.67 3.19 0.95 0.93 1.26
L3W ANN25 0.47 2.73 3.74 0.88 1.42 2.06
L3W ANN26 0.73 2.77 3.78 0.88 1.35 2.06
L3W ANN27 0.70 2.46 4.32 0.88 1.38 2.17
L3W ANN28 0.39 3.19 4.41 0.83 1.61 2.68
L3W2 ANN29 0.86 1.63 3.46 0.93 1.07 1.61
L3W2 ANN30 0.81 1.36 2.15 0.89 1.13 1.97
L3W2 ANN31 0.88 1.41 2.22 0.94 1.01 1.47
L3W2 ANN32 0.75 1.90 3.02 0.88 1.54 2.06
L3W3 ANN33 0.87 2.04 2.32 0.85 1.58 2.45
L3W3 ANN34 0.77 1.57 2.54 0.86 1.41 2.38
L3W3 ANN35 0.88 1.29 2.34 0.96 0.97 1.31
L3W3 ANN36 0.85 1.92 3.58 0.89 1.38 1.99

3.5. Comparisons of Different ML Models for Estimating Leaf Area of D. nobile Leaves

A sum of 63 different ML models was developed for estimating the LA of D. nobile
leaves. Input combinations are described in Table 1, which forms the various ML mod-
els: MLR (1–9), SVR (1–9), and GBR (1–9), each has nine models using the various input
combinations. ANN also used these input combinations along with different network
architectures which are described in Table 2. Among the 36 ANN models (Table 6) devel-
oped for each input combination, the best nine ANN models were taken based on higher
R2 and lower MAE and RMSE values. Therefore, for LW, LW2, LW3, L2W, L2W2, L2W3,
L3W, L3W2, and L3W3 input combinations ANN2 (2-5-1), ANN6 (2-5-1), ANN10 (2-5-1),
ANN15(2-10-1), ANN18 (2-5-1), ANN22 (2-5-1), ANN26 (2-5-1), ANN31 (2-10-1), and
ANN35 (2-10-1) models, respectively, were compared with other models, i.e., MLR, SVR,
and GBR. Table 7 depicts the LA models developed using different input combinations of L
and W of D. nobile leaves using MLR (MLR1-MLR9) machine learning techniques.
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Table 7. Developed LA models for three orders of L and W input combinations of D. nobile leaves
using MLR techniques.

Model Input Combinations Models

MLR1 LA = −18.72 + L × 1.74 + W × 8.41
MLR2 LA = −9.01 + L × 1.79 + W2 × 1.65
MLR3 LA = −6.76 + L × 1.92 + W3 × 0.40
MLR4 LA = −9.56 + L2 × 0.08 + W2 × 8.34
MLR5 LA = 0.28 + L2 × 0.75 + W2 × 0.98
MLR6 LA = 3.37 + L2 × 0.089 + W3 × 0.40
MLR7 LA = −6.6 + L3 × 0.00049 + W × 8.45
MLR8 LA = 3.5 + L × 1.79 + W2 × 1.65
MLR9 LA = 6.8 + L3 × 0.0054 + W3 × 0.40

A comparison of the performance statistics of MLR, SVR, GBR, and ANN models
used for LA estimation was performed based on testing and training results using R2,
MAE, and RMSE values which are enumerated in Table 8. The R2 value in the training
phase varied from (0.95–0.97), 0.94, 0.96, and (0.73–0.96) in case of MLR, SVR, GBR, and
ANN, respectively. Similarly, the MAE values in the training phase varied from (0.84–1.11),
(0.87–0.93), 0.86 and (0.87–2.77), for MLR, SVR, GBR, and ANN, respectively. RMSE
values in the training phase ranged from (1.15–1.42) cm2, (1.47–1.58) cm2, 1.18 cm2 and
(1.25–3.78) cm2, for MLR, SVR, GBR, and ANN, respectively. In the testing phase, the
R2 values ranged from (0.94–0.96), 0.96, 0.96, and (0.88–0.97) for MLR, SVR, GBR, and
ANN, respectively. Similarly, the MAE values in the testing phase varied from (0.85–1.12),
(0.83–0.86), 0.82 and (0.77–1.35), for MLR, SVR, GBR, and ANN, respectively. RMSE
values ranged from (1.13–1.46) cm2, (1.21–1.28) cm2, 1.11 cm2 and (1.03–2.06) cm2, for
MLR, SVR, GBR, and ANN, respectively. It was observed in our study that R2, MAE,
and RMSE values among the different input combinations in the training as well as in
the testing dataset in GBR models showed nearly indifferent performance values. GBR
showed a stable high R2 values and low MAE and RMSE values in the dataset studied
(Table 8) and outperformed other ML methods studied as also evident from the AR ranking
methodology (Table 9). This can be attributed due to GBR models ensembling individual
models which can have characteristics of being both weak and overfitting nature but the
final ensembled model leads to overcome these problems, also it requires lower data pre-
processing leading to low error of prediction and high stability [93,94]. No reports of GBR
for LA prediction modeling in plants is known to date. However, the outperformance
of GBR over other ML methods are noticed in other fields. A recent study reported that
gradient boosting regression algorithm (GBR) and random forest (RF) was employed for
predicting and analyzing the net ecosystem carbon exchange (NEE) at UK-Gri, based on the
flux data and meteorological data. GBR outperformed three state-of-the-art ML regression
prediction models viz., stochastic gradient descent, support vector machine, and Bayesian
ridge as GBR allows to tune a sufficient number of hyperparameters [31]. Another study
depicted a model built on the gradient boosting regression tree (GBRT) with a limited
sample size of data for predicting complex battery dynamics and its lifespan; having many
extracted features was shown to outperform other ML algorithms. They suggested the
hyperparameters viz., learning rate, maximum number of splits, and number of trees as the
key to such performance. A 5-fold cross-validation technique was also applied to GBRT to
prevent overfit [32]. Similar tuning of the hyperparameters (n_estimator, maximum_depth,
min_sample split and learning rate) and a 10-fold cross-validation technique were applied
in our leaf area modeling study and may have resulted in the best performance of GBR
in our study. Again, an experiment was performed for predicting the return temperature
over other ML models of district heating systems in Tianjin, China on a decision tree-
based ensemble algorithm gradient boosting (GB) and it can be seen that GB outperforms
other ML models without the requirement of complex feature transformation and they
highlighted the importance of n_estimator in lowering the RMSE values of the tree-based
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model GB and RF [95]. A plot of RMSE of GBR with n_estimator tuned for our study
is drawn in Figure 5. In our study RMSE equals to 2.78 when n_estimator is 100 and
there is a decreasing trend upon increment of the n_estimator. RMSE is reduced to around
1.21 and 1.12 when n_estimator is 300 and 400, respectively. Eventually, the RMSE stabilizes
to 1.1 at n_estimator 500 and achieves asymptote until it reaches 1000. This revealed the
general principle that an improvement in the performance of the serial framework-based
model, i.e., GBR model may be achieved (through decreased RMSE) upon increasing the
n_estimator number [95]. Similarly, another report supporting GBR performance over
other ML methods revealed that gradient boosting models achieved the best performance
outperforming random forest and SVM for identifying the relation extraction of medications
to the adverse effects of drugs, [96]. A recent report on the outperformance of GBR over
ANN can be seen in the prediction of risk analysis of offshore platform integrity for its
subsequent use or reuse for alternative energy applications. They studied the effect of
stressors on the Remaining Useful Life (RUL). The performance metrices in the study viz.,
R2, MAE, MSE, and RMSE depicted a slightly higher value of R2 for GBR and a lower value
for MAE, MSE, and RMSE than ANN model [30]. The results of these studies on the recent
literatures were in general agreement of our observation highlighting our result of the best
performance of GBR models in LA prediction in D. nobile orchid over the three ML models
MLR, SVR, and ANN.

Figure 5. RMSE of GBR with different numbers of n_estimator.

In our study, it can be seen that within the 10 best models MLR5 and MLR4 secured
second and seventh position, respectively, based on AR ranking methodology (Table 9).
Suitability criteria of MLR to produce good prediction accuracy are dependent on the
factors which include the absence of multicollinearity between the predictors (measured by
VIF and T), strong linear correlation between the predictors and dependent variable, and
finally imposing the cross-validation methodology to prevent the over fit of the models.
The results depicted from VIF and T values of our experiment show that L, W, and their
variants are linearly independent to each other, i.e., there is an absence of multicollinearity.
From the feature correlation heatmap it can be inferred that L, W, and their variants are
strongly linearly correlated with leaf area (LA) where r ranges from 0.76 to 0.90. The
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10-fold cross-validation was also performed to prevent overfitting of the models. Although
the MLR model for LA prediction in previous studies did not outperform ANN or other
decision tree-based models, there are reports in other fields in agreement with our results
of outperformance over ANN and other complex models. A study by [97] showed MLR
outperformed random forest based on the VIF values and cross-validation techniques for
predicting Soil Organic Carbon stocks. Similar results were seen in another report [98] of
the outperformance of MLR over other more complex modeling approaches. The reports of
better prediction performance of MLR over ANN were further inferred by [99].

Table 8. Comparative statistical performance analysis of MLR, SVR, GBR, and ANN with different
inputs, i.e., LW, LW2, LW3, L2W, L2W2, L2W3, L3W, L3W2, L3W3 studied for LA estimation of D. nobile.

Inputs Model
Training Testing

R2 MAE RMSE (cm2) R2 MAE RMSE (cm2)

LW ANN2 0.96 0.87 1.27 0.96 0.86 1.13
LW GBR1 0.96 0.86 1.18 0.96 0.82 1.11
LW SVR1 0.94 0.87 1.47 0.96 0.83 1.21
LW MLR1 0.96 0.90 1.2 0.96 0.9 1.24
LW2 ANN6 0.96 0.90 1.25 0.96 0.84 1.18
LW2 GBR2 0.96 0.86 1.18 0.96 0.82 1.11
LW2 SVR2 0.94 0.89 1.52 0.96 0.84 1.23
LW2 MLR2 0.97 0.87 1.15 0.96 0.94 1.22
LW3 ANN10 0.96 0.90 1.27 0.97 0.87 1.18
LW3 GBR3 0.96 0.86 1.18 0.96 0.82 1.11
LW3 SVR3 0.94 0.93 1.58 0.96 0.86 1.25
LW3 MLR3 0.95 1.05 1.34 0.95 1.06 1.42
L2W ANN15 0.95 0.94 1.41 0.97 0.86 1.11
L2W GBR4 0.96 0.86 1.18 0.96 0.82 1.10
L2W SVR4 0.94 0.88 1.48 0.96 0.83 1.21
L2W MLR4 0.96 0.86 1.15 0.96 0.86 1.13
L2W2 ANN18 0.95 0.93 1.36 0.97 0.77 1.03
L2W2 GBR5 0.96 0.86 1.18 0.96 0.82 1.10
L2W2 SVR5 0.94 0.89 1.53 0.96 0.85 1.24
L2W2 MLR5 0.97 0.84 1.16 0.96 0.85 1.13
L2W3 ANN22 0.95 0.97 1.39 0.97 0.86 1.19
L2W3 GBR6 0.96 0.86 1.18 0.96 0.82 1.10
L2W3 SVR6 0.94 0.92 1.57 0.96 0.86 1.26
L2W3 MLR6 0.95 1.04 1.36 0.95 1.06 1.36
L3W ANN26 0.73 2.77 3.78 0.88 1.35 2.06
L3W GBR7 0.96 0.86 1.18 0.96 0.82 1.10
L3W SVR7 0.94 0.88 1.49 0.96 0.85 1.25
L3W MLR7 0.96 0.89 1.17 0.95 0.88 1.22
L3W2 ANN31 0.88 1.41 2.22 0.94 1.01 1.47
L3W2 GBR8 0.96 0.86 1.18 0.96 0.91 1.10
L3W2 SVR8 0.94 0.89 1.53 0.96 0.85 1.26
L3W2 MLR8 0.96 0.88 1.17 0.96 0.88 1.2
L3W3 ANN35 0.91 1.29 2.34 0.91 0.97 1.31
L3W3 GBR9 0.96 0.86 1.18 0.96 0.91 1.10
L3W3 SVR9 0.94 0.92 1.56 0.96 0.86 1.28
L3W3 MLR9 0.95 1.11 1.42 0.94 1.12 1.46
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Table 9. Comparative statistical performance analysis of MLR, SVR, ANN, and GBR based on average
rank (AR) ranking methodology.

Models
Ranks Based on Training Results Ranks Based on Testing Results Average

Rank (AR) Final Rank
R2 MAE RMSE (cm2) R2 MAE RMSE (cm2)

GBR7 7 4 8 11 2 2 5.67 1
MLR5 1 1 3 7 13 12 6.17 2
GBR6 8 5 9 12 3 3 6.67 3
GBR5 9 6 10 13 4 4 7.67 4
GBR4 11 8 11 14 5 5 9.00 5
GBR9 3 2 6 9 28 6 9.00 6
MLR4 10 7 1 5 19 13 9.17 7
GBR8 5 3 7 10 29 7 10.17 8
GBR3 12 9 12 15 6 8 10.33 9
GBR2 14 10 13 16 7 9 11.50 10

ANN18 22 27 20 2 1 1 12.17 11
MLR2 2 12 2 6 30 22 12.33 12
MLR8 4 15 4 8 25 18 12.33 13
GBR1 17 11 14 17 8 10 12.83 14

ANN10 13 22 18 1 24 16 15.67 15
ANN6 15 23 16 19 11 15 16.50 16
ANN2 18 13 17 20 20 14 17.00 17
MLR7 6 18 5 30 26 21 17.67 18

ANN15 23 29 23 4 18 11 18.00 19
ANN22 21 30 22 3 17 17 18.33 20

SVR1 33 14 25 21 9 19 20.17 21
MLR1 16 24 15 18 27 25 20.83 22
SVR4 30 17 26 22 10 20 20.83 23
SVR7 27 16 27 23 14 26 22.17 24
SVR2 32 21 28 24 12 23 23.33 25
SVR8 26 19 29 25 15 28 23.67 26
SVR5 29 20 30 26 16 24 24.17 27
SVR9 25 25 31 27 21 30 26.50 28
SVR6 28 26 32 28 22 29 27.50 29
MLR6 20 31 21 32 34 32 28.33 30
SVR3 31 28 33 29 23 27 28.50 31
MLR3 24 32 19 31 33 33 28.67 32
MLR9 19 33 24 33 35 34 29.67 33

ANN35 34 34 35 35 31 31 33.33 34
ANN31 35 35 34 34 32 35 34.17 35
ANN26 36 36 36 36 36 36 36.00 36

Previous studies on leaf area modeling by [34,47,54,60,100,101] depicted that ANN
outperformed MLR. On the contrary, in our study ANN could not perform better in other
input combinations than MLR as well as GBR except in L2W2 input combinations of testing
results where, ANN18 with (2-5-10) architecture secured a rank of eleventh based on AR
ranking (Table 9) (R2 = 0.97, MAE = 0.77 and RMSE = 1.03), which may be due to its
inherent disadvantages such as overfitting. The reason behind this abrupt performance is
due to the observed training results of ANN18, which shows R2 = 0.95, MAE = 0.93, and
RMSE = 1.36 denoting an overfit. The problems of local minima as well as selection of
suitable hyper-parameters suitable for our study may be the other causes of such results of
ANN18 [102].

From Table 9 It can be seen that SVR occupied ranks between twenty-first to thirty-first
among the 36 models. So, it can be inferred that SVR was unable to perform better than
three other ML models tested in our dataset.

For evaluating the prediction quality, a scatter plot of predicted LA and measured LA
values along with the reference line (y = x) of D. nobile for the four ML models viz., MLR,
SVR, GBR, and ANN in the testing period was used (Figure 6). A deviation of the regression
line of predicted LA and measured LA values from the reference line is suggestive of a bias.
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In our study, the model showing the least bias was gradient boosting regression (GBR).
Thus, it can be depicted that GBR models have a better capacity to predict LA in D. nobile
than other ML models used. ANN and SVR models showed maximum deviations from the
measured leaf area for all the input combinations studied.

Figure 6. Cont.
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Figure 6. Comparison of predicted and measured values of leaf area of D. nobile using MLR, SVR,
GBR, and ANN models in different input combinations. The x-axis represents measured values of leaf
area by ImageJ software and y-axis denotes the predicted values by the two models above. The red
line represents the reference line (y = x). Blue triangles represent the regression line of the predicted
and measured leaf area. R2 refers to the coefficient of determination, MAE refers to mean absolute
errors and RMSE refers to root mean square errors (cm2).

The main limitations of performance metrices viz., R2, MAE, and RMSE metrices as
seen in our study is that if algorithm A outperforms B based on only r2, then again it takes
down A and brings up B on the basis of either MAE or RMSE. This is in accordance with the
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theorem of No Free Lunch (NFL) and the solution depends on the domain of the problem
and knowledge of algorithms by the analysts [103,104]. Thus, ranking of the algorithms
by average rank (AR) was chosen, whereby for each 36 ML models which includes the
four ML techniques viz., MLR, SVR, GBR, and ANN ranks were assigned based on R2,
MAE, and RMSE. The average ranks were obtained by averaging the ranks for each model.
The final rank was derived by arranging the average ranks in ascending order. Table 9
depicts a comparative statistical analysis of MLR, SVR, ANN, and GBR algorithms and
assigned ranks on R2, MAE, and RMSE each based on the training results and testing
results to calculate the average rank. The final rank depicted that GBR7 secured the first
rank among the 36 models as well as GBR algorithm has a frequency of occurrence of nearly
80% among the top 10 ML models. This provided a conclusive decision to select GBR as
the best model for leaf area predictive modeling in the case of the Dendrobium orchid.
Subsequent to the GBR algorithm, MLR occupied nearly 20% frequency among the top 10
ML models. Figure 7 depicts the frequency of the occurrence of the ML models studied in
our experiment among the top ten ranks. It can be seen from the graph that GBR occupies
80% and MLR occupies 20% among the top ten ranks. On the other hand, SVR and ANN
occupy nil percentage in the proposed rank group.

Figure 7. Frequency of ML models based on top 10 ranks by AR ranking methodology.

Light interception by the plant is totally dependent on the two-dimensional structure
viz., length (L) and width (W) [105] and thus highlighting the importance of only those
two proxy variables [13,40,62,87,106–109]. In this study, a non-destructive methodology of
LA modeling in D. nobile through ML techniques was proposed that can be employed to
develop a web portal or mobile app for providing an interactive user interface to obtain
rapid, precise, and accurate leaf area estimation results from simple measurements such as
leaf length (L) and leaf width (W). The proposed best model, i.e., GBR can play a crucial
role in real time LA estimation of D. nobile avoiding the need for expensive instruments
and destructive sampling procedures.
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4. Conclusions

Leaf area (LA) is a biophysical variable of utmost importance which helps in main-
taining various physiological processes ultimately helping in the adaptation of the plant to
its environment. LA estimation is necessary for calculating various physiological indices.
In summary, the main goal of our study is to develop a simple, non-destructive, low cost,
reliable machine learning LA prediction model for D. nobile. This is the first attempt in
the Orchidaceae family for leaf area estimation using ML techniques. To the best of our
knowledge, the use of GBR and SVR models for predicting leaf area have not been reported
in the earlier studies. Our experiment showed that GBR outperforms the other models
viz., MLR, SVR, and ANN in terms of R2, MAE, and RMSE in the testing period. Thus,
GBR provided the best predictive capacity for leaf area estimation in the case of D. nobile
with higher R2 (0.96) and lower MAE (0.82–0.91) and RMSE (1.10–1.11) cm2 values. Model
ranks based on average rank (AR) also statistically suggested the outperformance of GBR
over the other state-of-the-art ML models such that it occupies first rank and a frequency
of around 80% of the top ten models tested in our study. Limitations of our study include
identification of the theoretical basis of the causal relationship between the rigidly stable
behavior of GBR in the training phase irrespective of different input combinations. The
leaf area models developed in our study were carried on healthy plants under control
conditions only, ignoring the biotic and abiotic stress situation present in real situation.
Sampling for images can be performed in the future in real conditions. In the future, a
substantial increase in the training dataset has the possibility to be used for a deep learning
set up for developing a nearly perfect model. Machine vision field can be considered for
automated area calculation of D. nobile using leaf images directly.
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