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Abstract: The present paper proposes a framework for the systematic and fruitful application of
complex-order operators for modeling and control applications. We emphasize that special care must
be taken when using complex-order elements to ensure that their responses to real-valued stimuli
are real-valued themselves. The proposed complex-order real-valued elements enable the seamless
generalization of their conventional real and integer-order counterparts. We further demonstrate
how any linear operator can be extended in much the same way as the differintegral, by “raising” it
to a power of a complex order, while ensuring that its kernel remains real-valued. The applicability
of our considerations is demonstrated by a model of a compressed natural gas injection system.
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1. Introduction

According to the seminal book by Samko, Kilbas, and Marichev [1] (p. 83), integro-
differential operators of a complex order were originally considered during the 19th century,
by some of the founding figures of fractional calculus: Liouville, Riemann, Grünwald, Let-
nikov, and others. In recent literature, complex-order operators appear regularly, but more
often as a side-note, or a peculiarity, a possibly straightforward generalization of the real-
valued operators which are primarily considered. Miller and Ross [2] allow integral and
differential operators to have a complex order, but do not discuss their distinctive properties
and features in any significant detail. Podlubny, in his famous book [3], acknowledges the
existence of the complex-order operators, but purposefully focuses on the real-order case.
Numerous formal properties of complex-order differintegrals were investigated in some
detail within the well-known book by Kilbas, Srivastava, and Trujillo [4]. However, to the
best of the authors’ knowledge, the first work specifically targeting their applications in
an engineering context (at least in the English language) was published by the CRONE
team towards the end of the 20th century (see [5,6]). It was related to the so-called “third
generation CRONE” controller, in which complex-order derivatives were fruitfully utilized
for robust control synthesis. An even older reference seems to be [7], published in French.
Related work can also be found in [8–10]. It is particularly due to these control-oriented
practical applications that a more recent, control-oriented book by Valerio and Sá da Costa
devoted an entire second part to the topic of complex-order operators and related control
techniques [11]. More recently, complex-order operators have been used for modeling pur-
poses, particularly in the field of viscoelasticity, by Atanacković and his coworkers [12–14],
Makris and Constantinou [15–17], and Tenreiro Machado [18].

The question we are posing in this work, albeit not the one we are hoping to answer
thoroughly in the scope of a single paper, is: could the application of complex-order
operators introduce anything qualitatively new and essentially different—not just from a
mathematical perspective, but from a system identification point of view?
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Going one step back, we may identify at least two principal cases in which real non-
integer order models are preferable to conventional, integer-order ones. The first case
is when time domain responses, at least in some sufficiently long time interval, have
components containing factors of the form tγ for some γ ∈ R\Z. By design, the kernels
(impulse responses) of integer-order models can contain only terms of the form tneat

for some n ∈ N and for some a ∈ C. Consequently, one may need to use many such
polynomial–exponential terms in order to capture the power-law behavior with sufficient
accuracy. Even if the desired accuracy is achieved, with a sufficient number of terms (and,
therefore, a sufficiently high order of the approximate rational model), the behavior at
the vicinity of the initial time instant, as well as the asymptotic behavior for large t, will
forever remain elusive and impossible to capture exactly. The second case is apparent
in the frequency domain. It appears when the slope of the amplitude characteristics is
not approximately equal to an integer multiple of 20 dB/decade. Even in this case, it is
possible to obtain an integer-order approximation with arbitrary accuracy (see, e.g., the
rational approximation of Oustaloup, as presented in [3,11], or a number of alternative
approximations as discussed in [19]) but the resulting model may be of very high order.
Mirroring the time-domain behavior, the asymptotic characteristics for very small and
very large frequencies may very well be unattainable. Indeed, as is often the case with
integer-order models, there is a strong connection between these two seemingly unrelated
problems—a duality in which small frequencies map to large times, and vice versa, and in
which tγ in the time domain is coupled tightly with ω−(γ+1) in the frequency domain.

The high order of the resulting model is not an issue in some applications. In most
cases, however, models having a significant number of free (adjustable) parameters are
undesirable. The authors’ opinion is that it is those particular cases in which the application
of non-integer (“fractional”) models becomes a viable alternative to using high-order
rational ones.

To be absolutely precise and clear, non-integer-order models do not solve the problem
of high approximation order. If anything, they are making it worse, since all such models are
of infinite dimension (we can speak about the state function of so-called “fractional-order”
systems, but not about their state vectors; pseudo-state representation is an interesting
tool, but may be highly misleading if not interpreted properly). To make the matter even
worse, unless using special hardware and circuits (see [20] and references listed therein, as
well as the work presented in [21–23]), non-integer-order models (and other LTI models
with non-rational transfer functions) can be implemented only approximately, by using
high-order rational models. (It is possible to construct efficient rational models, valid in
a limited range of frequencies [24,25], and such approximations are more than sufficient
in many applications, particularly in control applications.) Thus, we arrive at a question
which has undoubtedly pressured every single young researcher in the field of fractional
calculus in the last few decades: What is the point?

The point is in the reduced number of parameters. At least from a modeling point of
view, this is the reason why non-integer-order models are used: they have the potential
to simplify the identification procedure and increase the interpretability of the resulting
models. Having compact representation with a small number of adjustable parameters
is beneficial for a variety of other purposes, including the possibility to form tuning
procedures in closed form, process monitoring via parameter change detection, fault
detection, etc.

It is, however, important to stress that real systems—even those that are linear and
stationary—often behave in a much more complex fashion: they are spatially distributed,
and are, thus, of infinite dimension. Their transfer functions are not rational in the Laplace
variable s, but they are also seldomly rational in sα: it is common to encounter terms of the
form

√
s, e−

√
s, hyperbolic, or even logarithmic functions of s. In fact, even more complex

expressions are encountered [26]. What makes rational models so appealing is that they can
be used to approximate more complex transfer functions with great ease, but with arbitrary
accuracy (at least within a bounded range of frequencies). The appeal of “fractional-order”
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systems, from a modeling perspective, lies primarily in the fact that they (almost) retain the
algebraic structure and modularity of integer-order models, but with superior flexibility.
At this point, it is worth stressing that the somewhat misleading adjective “fractional” is
used throughout the literature. Of course, orders are not confined to just rational values,
and therefore, we often use a more precise term: non-integer order models. For historic
reasons, and in order to avoid confusion, the original term “fractional-order models” is
used sporadically within this text also.

It is also interesting to note that, at least for stable minimal-phase systems, the informa-
tion contained in the phase characteristic is almost redundant, since the transfer function
(and therefore the phase characteristic) can be deduced from the amplitude one. The rela-
tion is, in fact, reciprocal, since it is also possible to reconstruct the amplitude characteristic
from the phase one, although the procedure may not be so straightforward [27,28]. Thus,
we are capable of constructing an infinity of LTI models, each with essentially identical
amplitude characteristics, but with different phase responses.

Going back to complex-order models, it is possible to construct them in a way which
preserves the modularity and extensibility of integer- and real-order models, but with
additional flexibility in adjusting phase characteristics. Indeed, the inclusion of imaginary
parts in the order of differintegrals enables us to independently describe log-linear changes
in phase and log-linear changes in amplitude, providing us with additional, tangible
degree of freedom. These additional degrees of freedom hold high potential in modeling
applications, especially in the context of control design, where many methodologies are
based solely on the frequency domain characteristics of the plant under consideration.
To the best of the authors’ knowledge, there is no comprehensive modeling framework
proposed in the literature which enables the full utilization of LTI operators of complex
order. Our ambition, within the scope of the present paper, is to develop a foundation for
such a framework.

The main contributions of the present work are the following:

• We present a manner in which it is possible to construct complex-order differintegral
operators with real-valued kernels, having amplitude and phase frequency character-
istics with arbitrary and independent log slopes determined, respectively, by the real
and imaginary part of the complex order;

• We propose an original technique for constructing complex powers of arbitrary linear
stationary operators. The resulting operators are always characterized by real-valued
kernels, and are well-defined for positive and negative values of both the real and
imaginary part of the complex power;

• We propose a framework for the systematic and fruitful application of the derived
complex-order operators for modeling purposes. The advantage of the proposed
framework lies in its versatility and the possibility of capturing complex behavior
with a smaller number of terms, and a smaller number of parameters, compared to
approaches based on integer-order and real-order models.

The remainder of the paper is organized as follows. We start by re-iterating the
properties of complex-order differential, integral, and aperiodic elements in Section 2.
We emphasize that special care must be taken when using complex-order elements to
ensure that their kernels are real-valued. If such precautions are met, we demonstrate that
complex-order operators enable the seamless extension and generalization of their real-
valued counterparts. We also demonstrate that it is possible to construct both integral and
differential elements with an either positive or negative logarithmic slope of the phase. This
possibility to adjust the phase slope of the complex-order differintegral can be extended to
the complex-order aperiodic element, as illustrated in Section 2.3. In fact, as exemplified
in Section 3, any linear operator can be used as the core of a complex-order real-valued
element in much the same way as the differential operator can be used to construct a
complex-order real-valued differintegral. Thus, we illustrate that introduction of complex
orders in modeling can be effectively used to generalize well-known dynamic elements
usually employed in modeling. Finally, Sections 4 and 5 show a practical use case for
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modeling a compressed natural gas (CNG) injection system. The results contained in those
closing sections clearly demonstrate that non-trivial complex-order models are fitted based
on the actual experimental measurements.

2. Operators of Complex Order
2.1. Differintegral of Complex Order

The integral operator of complex order α + jβ (for some positive real α and real β,
positive or negative) of an arbitrary signal f : R+ → C is defined as:

0I
α+jβ
t f :=

1
Γ(α + jβ)

∫ t

0
f (τ)(t− τ)α−1+jβdτ . (1)

As usual, the corresponding complex-order derivative of order α + jβ (with α > 0 and
β ∈ R) is defined as:

0D
α+jβ
t f :=

(
d
dt

)n

0I
n−α−jβ
t f , (2)

where n is the smallest integer greater than α. Similar to the real-order differintegrals,
by neglecting the initial conditions, both operators can be uniformly represented in the
Laplace domain by complex powers of the Laplace variable s: L{0I

α+jβ
t f }(s) = 1

sα+jβ F(s),

and L{0D
α+jβ
t f }(s) = sα+jβ F(s), where F(s) = L{ f }(s).

Properties in the Frequency Domain

The complex-order differintegral naturally extends and generalizes the frequency-
domain properties of the conventional differintegral operator of real order. In particular:

(jω)α+jβ = eα ln ω−β π
2 ej(β ln ω+α π

2 ) , (3)

implying that |(jω)α+jβ|dB = 20α log ω− 20β π
2 log e, and arg(jω)α+jβ = α π

2 + β ln ω.
The appeal of complex-order differintegrals is clearly visible from these expressions

(as illustrated also by Figure 1): similarly to the real-order differintegral, the complex-
order differintegral has the amplitude characteristic of constant slope, which is completely
determined by the real part of the differentiation order. Contrary to the real-order case, there
is an additional offset, which is solely influenced by the imaginary part of the differentiation
order. Again, similarly to the real-order case, the phase characteristic has a constant offset
equal to α π

2 rad; yet, in addition, it has a constant slope equal to β rad/decade (in the
logarithmic scale).

10 10
0

10
1

Frequency [rad/s]

0

5

10

15

20

25

A
m

p
lit

u
d
e
 [
d
B

]

=0.5, =0

=0.5, =1

=0

10 10
0

10
1

Frequency [rad/s]

0

1

2

3

4

P
h
a
s
e
 [
ra

d
]

=0.5, =0

=0.5, =1

=0

Figure 1. Amplitude (left) and phase (right) characteristics of the complex-order differintegral sα+jβ.
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Properties in the Time Domain

Let us introduce A(α, β) and B(α, β) as the real and imaginary parts, respectively, of
the gamma function of the complex argument 1

Γ(α+jβ) = A(α, β) + jB(α, β). The kernel of
the complex-order integral operator can be represented as:

kα,β(τ) =
1

Γ(α + jβ)
τα−1+jβ

= (A(α, β) + jB(α, β))τα−1(cos(β ln τ) + j sin(β ln τ))

with the real and imaginary parts (also depicted in Figure 2):

<{kα,β(τ)} = τα−1(A(α, β) cos(β ln τ)− B(α, β) sin(β ln τ)) , (4)

={kα,β(τ)} = τα−1(A(α, β) sin(β ln τ) + B(α, β) cos(β ln τ)) . (5)
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Figure 2. Real (left) and imaginary (right) parts of the impulse response (kernel) of the complex-
order integral.

2.2. Complex-Order Real-Valued Differintegral

Due to the fact that the impulse response is not real-valued, complex-order differin-
tegrals have complex-valued responses even to real-valued signals. This is an unwanted
phenomenon, and it would be more practical to use operators with strictly real-valued ker-
nels. We therefore enumerate several possible definitions of the complex-order real-valued
(CO-RV) differintegral operators.

2.2.1. Type 1 CO-RV Differential Operator

One possibility of defining a complex-order differential operator is to take the mean
value of differential operators of conjugate complex orders.

Definition 1. Given α > 0 and β > 0, the complex-order real-valued differential operator of the
first type (CO-RV-1) is defined as:

1
0D

α,β
t :=

1
2

(
0D

α+jβ
t + 0D

α−jβ
t

)
, (6)

with the associated Laplace domain operator:

1Dα,β(s) :=
1
2
(sα+jβ + sα−jβ) . (7)
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Such an operator has been previously used in [12]. By the direct application of (3), we
see that:

1Dα,β(jω) =
1
2

(
eα ln ω−β π

2 ej(β ln ω+α π
2 ) + eα ln ω+β π

2 ej(−β ln ω+α π
2 )
)

=
1
2

eα ln ωejα π
2

(
e−β π

2 ej(β ln ω) + e+β π
2 e−jβ ln ω

)
In order to lighten the notation slightly, let us introduce:

κ(p, q) :=
e−pejq + epe−jq

2
= cos q cosh p− j sin q sinh p , (8)

for which it is easy to conclude that:

|κ(p, q)| =
√

cos2 q + sinh2 p , (9)

arg∗ κ(p, q) = −atan∗(tan q tanh p) , (10)

where arg∗ and atan∗ denote the unwrapped argument and arcus tangent, respectively.
The introduced complex-order real-valued differential operator can now be expressed as:

1Dα,β(jω) = (jω)ακ

(
βπ

2
, β ln ω

)
, (11)

with:

|1Dα,β(jω)| = ωα

√
cos2(β ln ω) + sinh2(

βπ

2
) , (12)

arg∗ 1Dα,β(jω) =
απ

2
− atan∗(tan(β ln ω) tanh(

βπ

2
)) . (13)

We may finally conclude that the operator 1D of orders α, β > 0 has an amplitude
characteristic with an approximately constant logarithmic slope equal to 20α dB per decade,
and a phase characteristic with an approximately constant logarithmic slope of −β radians
per decade. Note that the phase slope is negative. As will be demonstrated in the sequel,
the sign of the amplitude slope is significant: we expect all CO-RV-1 differential operators
to have a positive slope, and all CO-RV-1 integral operators to have a negative slope of
the amplitude characteristics. The same does not hold for the slope of the phase. We will
demonstrate that it is possible to have both differential and integral operators with either
positive or negative phase slopes.

2.2.2. Type 2 CO-RV-1 Integral Operator

It is possible to define the CO-RV-1 integral operator by repeating essentially the same
procedure previously performed for the differential operator: by taking the mean of two
integral operators having complex-conjugate orders.

Definition 2. Given α > 0 and β > 0, the complex-order real-valued integral operator of the first
type (CO-RV-1) is defined as:

1
0I

α,β
t :=

1
2

(
0I

α+jβ
t + 0I

α−jβ
t

)
, (14)

with the associated Laplace domain operator:

1Iα,β(s) :=
1
2
(s−α+jβ + s−α−jβ) . (15)
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First note that the differential and integral operators of the first type are not reciprocal
to one another: 1Iα,β(s) 6= (1Dα,β(s))−1! In fact, by repeating exactly the same steps as
were taken previously, one readily concludes that:

|1Iα,β(jω)| = ω−α

√
cos2(β ln ω) + sinh2(

βπ

2
) , (16)

arg∗ 1Dα,β(jω) =
−απ

2
− atan∗(tan(β ln ω) tanh(

βπ

2
)) . (17)

In other words, the logarithmic slope of the amplitude is indeed negative and equal
to the expected −20α dB/decade; however, the phase slope is also negative, and approxi-
mately equal to −β rad/decade.

2.2.3. Type 3 CO-RV-2 Differential and Integral Operators

In order to obtain operators with a positive phase slope, we define differential and
integral operators of the second type as reciprocal to the corresponding operators of the
first type.

Definition 3. Given α, β > 0, the complex-order real-valued differential and integral operators of
the second type (CO-RV-2) are defined as:

2Dα,β(s) :=
1

1Iα,β(s)
(18)

2Iα,β(s) :=
1

1Dα,β(s)
. (19)

2.2.4. CO-RV Differintegral

It would be useful to have a single flexible operator parameterized in such a way
that its logarithmic slope in amplitude and phase may be adjusted independently. We can
define such an operator easily by combining the integral and differential operators of the
first and second type in an appropriate manner.

Definition 4. Given α, β ∈ R, the complex-order real-valued differintegral is defined as:

Dα,β(s) :=


1Dα,β(s) α ≥ 0, β ≥ 0 ,
2Dα,−β(s) α ≥ 0, β < 0 ,
1I−α,β(s) α < 0, β ≥ 0 ,
2I−α,−β(s) α < 0, β < 0 .

(20)

The amplitude and phase frequency characteristics of this element are illustrated in
Figure 3.
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2.3. Aperiodic Complex-Order Real-Valued Elements

Let us now consider some ways in which it is possible to develop real-valued complex-
order extensions of the element (s + a)n with n ∈ N and a ∈ R.

Even when considering elements of real non-integer order α ∈ R, there are two
obvious ways in which this generalization could be accomplished: either as (s + a)α, or as
sα + a. If we look at the recent FC (fractional calculus) literature, we see that both of these
forms are used, although it seems that the latter one is applied more frequently. This is
probably due to the fact that, from an implementation point of view, the latter one is more
modular, and enables the reduction of the problem of the implementation of compound
transfer functions to the problem of the implementation of a single operator: usually an
integral of non-integer order. On the other hand, from the stability point of view, the former
seems significantly more favorable, since it introduces a branching point at point s = −a,
compared to the branching point of the latter expression—which is fixed at s = 0, on the
very stability boundary, and independent of a. The immediate consequence is that systems
composed of the latter elements can never be exponentially stable. It is also true that the
actual amplitude and phase characteristics of the former models are often more similar to
their asymptotic approximations (which are commonly used in control and filter design).

Aperiodic Elements of the First and the Second Type

In the light of the discussion presented in the previous section, given a > 0 and α, β > 0,
we propose several possible complex-order real-valued generalizations of this element:

1
zA

α,β
( s

a

)
:=

1
2

[( s
a
+ 1
)α+jβ

+
( s

a
+ 1
)α−jβ

]
, (21)

1
pA

α,β
( s

a

)
:=

1
2

[
1( s

a + 1
)α+jβ +

1( s
a + 1

)α−jβ

]
. (22)

The chosen notation is somewhat heavy, but it is precise: the capital A is to remind us
that this is a generalization of the classical aperiodic element, with lowercase z or p in the
lower-left index distinguishing the generalization of a repeated zero from the generalization
of the repeated pole. The orders α and β are positioned at the upper-right index, as usual.

Straightforward computations lead us to:

∣∣∣1zAα,β
(

j
ω

a

)∣∣∣ = (1 +
(ω

a

)2
) α

2

√√√√cos2

(
β ln

√
1 +

(ω

a

)2
)
+ sinh2

(
β atan

(ω

a

))
, (23)

arg∗ 1
zA

α,β
(

j
ω

a

)
= α atan

(ω

a

)
− atan∗

[
tan

(
β ln

√
1 +

(ω

a

)2
)

tanh
(

β atan
(ω

a

))]
, (24)

∣∣∣1pAα,β
(

j
ω

a

)∣∣∣ = (1 +
(ω

a

)2
)− α

2

√√√√cos2

(
β ln

√
1 +

(ω

a

)2
)
+ sinh2

(
β atan

(ω

a

))
, (25)

arg∗ 1
zA

α,β
(

j
ω

a

)
= −α atan

(ω

a

)
− atan∗

[
tan

(
β ln

√
1 +

(ω

a

)2
)

tanh
(

β atan
(ω

a

))]
. (26)

As expected, the logarithmic slope of the amplitude characteristic of both operators is
approximatelly constant for ω � a, and is approximately equal to 20 dB per decade for 1

zA

and −20 dB per decade for 1
pA when ω � a. The phase approaches zero for small ω, and is

asymptotically equal to the phase of the corresponding differintegral operator of type 1
(and, therefore, with the always-negative logarithmic slope determined by β) for large ω.
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Elements of the second type, characterized by a positive-phase log slope, as reciprocals
of the corresponding elements of the first type, are:

2
zA

α,β(s) :=
1

1
pA

α,β(s)
, (27)

2
pA

α,β(s) :=
1

1
zA

α,β(s)
. (28)

Aperiodic Elements with Independent Log Slopes of the Magnitude and Phase

We are now ready to define a real-valued element with independent log slopes of the
amplitude and phase characteristics, which generalizes the conventional aperiodic element
s
a + 1 for some a ∈ R.

Definition 5. Given a ∈ R and α, β ∈ R, the complex-order real-valued aperiodic element is
defined as:

Aα,β(s) :=


1
zA

α,β(s) α ≥ 0, β ≥ 0 ,
2
zA

α,−β(s) α ≥ 0, β < 0 ,
1
pA
−α,β(s) α < 0, β ≥ 0 ,

2
pA
−α,−β(s) α < 0, β < 0 .

(29)

The amplitude and phase frequency characteristics of this element are illustrated in
Figure 4.
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Figure 4. Amplitude (left) and phase (right) frequency response of a complex-order differentiator
with α = 0.5 and β = ±0.1.

For simplicity, only minimum-phase systems were investigated in this section. Non-
minimum-phase systems can be considered in a similar way. For example, a complex-order
real-valued non-minimum-phase aperiodic element of the first type would be defined as:

1
zA

α,β
(
− s

a

)
:=

1
2

[(
1− s

a

)α+jβ
+
(

1− s
a

)α−jβ
]

. (30)

3. A Template for Deriving CO-RV Elements

In the previous two sections, complex-order real-valued elements have been derived
starting from the differential operator s and the aperiodic element of the first order s

a + 1.
It is clear that the same procedure can be performed starting from an arbitrary transfer
function G(s) (which may itself be non-rational).
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Given α, β > 0, we can derive the complex-order real-valued elements of the first type:

1
dC{G(s)} :=

1
2

[
G(s)α+jβ + G(s)α−jβ

]
, (31)

1
rC{G(s)} :=

1
2

[(
1

G(s)

)α+jβ
+

(
1

G(s)

)α−jβ
]

, (32)

where d, in the lower-left index, stands for the “direct” operator, while r stands for the
“reciprocal” operator. As before, we define operators of the second type as:

2
dC{G(s)} :=

1
1
rC{G(s)} , (33)

2
rC{G(s)} :=

1
1
dC{G(s)}

. (34)

Finally, a generalization suitable for arbitrary real α and β can be defined as:

Cα,β{G(s)} :=


1
dC

α,β{G(s)} α ≥ 0, β ≥ 0 ,
2
rC

α,−β{G(s)} α ≥ 0, β < 0 ,
1
dC
−α,β{G(s)} α < 0, β ≥ 0 ,

2
rC
−α,−β{G(s)} α < 0, β < 0 .

(35)

4. A Use Case in System Identification

In past decades, researchers have developed many investigations, and industry has
implemented several technologies, to model and control automotive systems (such as
innovative combustion engines, fuel injection, air–fuel ratio control, spark-timing control,
exhaust-gas recirculation, common-rail injection systems, electric and hybrid powertrains,
fuel cells, energy management systems, cruise control, idle-speed control, antilock and dif-
ferential braking, active/semiactive suspensions, collision avoidance, autonomous vehicles,
etc.), but there is still space for the improvement of performance, fuel-efficiency man-
agement, intelligent transportation and congestion reduction, and finally, environmental
impact, if advanced robust control systems are employed [29].

In this context, internal combustion engines have been the most common source of
propulsion in automotive vehicles because of the high energy density of diesel/gasoline
fuels, which offer the best compromise among fossil fuels in terms of cost, safety, and
pollution in a “well-to-wheel” cycle [30]. However, cleaner compression ignition engines
and more efficient spark ignition engines can be designed. This improvement can be
especially provided by control system technology, especially in increasingly complex
systems, which can also be affected by imperfections and hidden dynamics [31]. Namely,
electronic control is most responsible for reducing fuel consumption and pollutant emissions,
while also taking the assignment of other tasks such as increasing stability, safety, comfort,
drivability, etc.

Therefore, this paper is based on a control-oriented approach, in which the mathe-
matical representation of the physical processes occurring in the system is preliminary to
the model-based control system design and optimization [30]. This is fundamental in the
design of innovative internal combustion engine control systems and control strategies.

In this field, injection systems still require optimization (e.g., by approaches that could
be similar to those developed for flow monitoring and control in other applications [32–34]),
although the technology used for fuel delivery to the intake manifold through a typical
common rail, and the technology for fuel combustion, can be considered mature. Namely,
government regulations continuously increase the demand for systems with a lesser impact
on the environment, such as with the very limited emission of polluting gases, particulate
matter, noise, etc. Note that this requirement fueled the growth of electric or hybrid vehicles,
and other types of engines, even in prototype form [35]. In such cases, although energy
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management is complex, control plays a crucial role in applying suitable strategies to
split the power demand between the engine and the battery of hybrid vehicles, and in
coordinating the interacting subsystems [35].

In this work, however, a peculiar injection system is considered. It employs com-
pressed natural gas (CNG) as fuel because gas is cheaper and more equally distributed
than conventional fuels, and possesses other good characteristics, e.g., the possibility to
achieve an optimal air–gas mix, a good knocking resistance, the prevention of particulate
matter emissions, the reduction of energy consumption, etc. Problems arise because the
reduction of emissions and the optimization of energy consumption requires accurately
metering the mix between air and gas [36,37].

To address this issue, the control of the injectors delivering gas to the intake manifold
is coupled with the control of gas pressure in the common-rail volume of the injection
system. Namely, the timing of the injectors (i.e., their opening and closing time intervals)
can be regulated in a very precise manner due to electronic commands to the available
electro-injectors. However, the intrinsic compressibility of gas makes pressure regulation a
very hard task, depending on complex and nonlinear fuel dynamics and parameter changes
due to various working points associated with power and speed requests [38–42].

Therefore, it is necessary to develop suitable models for analyzing system perfor-
mance, predicting correct and anomalous behaviors in the injection process, evaluating
working conditions and system configurations, and designing controllers for common-rail
pressure regulation [38,43]. In any case, a compromise between simplicity and accuracy
must be achieved to simplify control design and make the controller effective. Moreover,
few approaches are available in the literature for modeling and controlling gas-injection
systems [42,44]. However, the available models do not show a good fitting to experimental
data and are not so suitable for control.

Herein, a model represented by a transfer function with aperiodic CO-RV elements
is identified based on an integer-order ARX model. (ARX models are used as regularized
representations of frequency responses. Although it would be, in principle, possible to
determine the frequency characteristics of the system under consideration by computing the
ratios of Fourier transforms of the output and input, such a procedure would be numerically
ill-conditioned, and ill-suited for practical applications.) The models are identified by using
data from a real, prototype injection system. The CO-RV model parameters are determined
by an optimization procedure based on a cost function that considers deviations of the
magnitude and phase characteristics of the considered model from the corresponding ones
of the ARX model.

The Injection System: General Description and Problem Formulation

The proposed modeling methodology is applied to the key part of the injection system,
such that a good data fitting is obtained and the gas pressure dynamics can be easily
predicted and controlled by the identified model.

The considered injection system is based on six interacting main components in which
gas flows: a gas tank, a mechanical pressure reducer, an electro-hydraulic valve, a common-
rail volume, a set of injectors, and an electronic control unit (see Figure 5). Temperature
is nearly constant and uniform in all parts of the system. The components are connected
by pipes, in which transmission delays are neglected. Gas from the tank feeds the other
elements, but its pressure inside the tank can be assumed as slowly varying (40–200 bars),
with respect to pressure dynamics in the other parts. The task of the mechanical element,
thanks to a valve–shutter coupling—in the upper part of the reducer—actuated by the
valve, and to a piston–shutter coupling—in the lower part of the reducer, is to decrease
pressure to lower values (5–20 bars) before gas reaches the common-rail volume. To this
aim, the valve regulates the gas inflow into the “control chamber” of the mechanical reducer
volume; then, this gas pressure acts on the upper surface of the piston separating the control
chamber from a “main chamber”. On the other hand, gas inflow into the main chamber is
determined by the motion of the lower shutter, in its turn caused by the gas arriving from
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the tank, and acts on the lower surface of the piston. In more detail, the gas pressure in the
control chamber pushes the piston and the lower shutter down; hence, this allows more
gas into the main chamber. Moreover, if the gas pressure on the piston is decreased, the
lower shutter closes and the pressure in the main chamber is reduced. To synthesize, the
equilibrium between pressure forces determines the amount of gas that feeds the common-
rail volume from the main chamber and from the control chamber. Consequently, gas
flows through the injectors to the intake manifold, where gas is mixed with air. Finally, the
control unit commands the valve to control the gas flow. To this aim, it employs various
information on current system state (engine speed, air pressure in the intake manifold,
common-rail pressure, etc.). On this basis, the unit determines the timing of injectors and
the command to the valve. As previously mentioned, the objective in this complex process
is to achieve an accurate regulation of the gas pressure in the common rail.

If one considers the operation of several electro-mechanical elements or the dynamics
of most physical processes occurring in the CNG injection system, then constitutive dif-
ferential equations of integer order can be derived. However, the resulting integer-order
models are not able to fit experimental data and satisfy the control performance and robust-
ness indexes well—as can be easily understood by recalling the famous “Procrustes’ bed”
example [45]. This fact can be attributed to the complexity of time and spatial dynamics
that are not easily and simply described by ordinary and partial differential equations of
integer order. Namely, the literature proved that many physical systems show behaviors
that are modeled by non-integer-order—also misnamed as “fractional-order”—differential
equations or transfer functions, in case of input–output relations [46]. In the case of the
CNG injection system, it is difficult to etablish a priori that the selected class of models
will be appropriate to capture the underlying process dynamics; however, such models
can be compared with a more general model—namely, the model with aperiodic CO-RV
elements, which is introduced to overcome fitting problems given by both integer- and
non-integer-order models. In general, the model structure is not known in advance and the
available data are such that some frequency-domain methods [47,48] cannot be applied.
However, the selection of the most suitable model structure is based on the frequency
response characteristics provided by an ARX model, which is identified by the classical
least squares method.

Figure 5. Representation of the gas-injection system.

In the considered problem, injection basically depends on the common-rail pressure
regulation around reference values established by the electronic control unit (ECU), which
are determined by the operating conditions (speed, power request, etc.). Namely, the
opening time intervals of the injectors are precisely adjusted by the ECU and do not
represent a hard control problem. Therefore, the model should be identified to describe,
predict, and control the common-rail pressure dynamics. Such pressure is affected by
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the inflow from the main chamber and the control chamber and by the outflow from
the injectors, which is obviously strictly related to the timing of the injectors, taken as a
disturbance input. Then, the command to the solenoid valve is selected as the model input,
and the common-rail pressure is selected as the output.

5. Identification Results

Model identification and validation was performed by data measured from an ex-
perimental test bench, which is a prototype of a commercial car [36]. In particular, for a
tank pressure of 40 bar, the solenoid valve was commanded as shown in Figure 6. In this
way, the control chamber pressure and, hence, the response in the common-rail pressure,
determines the output shown in the same Figure 6.

The behavior of the described process could be modeled as a two-inputs–one-output
system. The first input is given by abrupt variations of the duty cycle of the control valve
driving current, while the ramp variation of the engine speed, which affects the frequency
of injections, is considered as the second input. The output response is the common-rail
pressure. Figure 6 shows the experimental input and output signals.
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Figure 6. Inputs and output data used to fit the high-order ARX model (data are sampled every
1 ms).

An integer-order discrete-time ARX model is considered as a term of comparison. It is
characterized by a sufficiently high order such that a non-parametric identification can be
made, independently of any fixed model structure, which is, in any case, unknown and can
be determined by comparison only. Moreover, in this way, problems of sensitivity to noise
and disturbances are prevented by fitting time-domain data with the ARX model of high
order and regularizing identification. The discrete-time representation is:

A(q)y(k) = B1(q)u1(k) + B2(q)u2(k) + e(k), (36)

where u1 is the input representing the duty cycle for the driving current, u2 is the second
input representing the engine speed, y is the output, i.e., the common-rail pressure, e is the
disturbance, A(q) and Bi(q), for i ∈ {1, 2}, are polynomials in the forward shift operator
q of orders n and n− 1, respectively, and n is taken as sufficiently large for capturing the
process dynamics. The parameters of the ARX models are estimated by the least-squares
method [49] and n = 10 is empirically determined by numerical tests (this value was
necessary to optimally represent the frequency response). Each of such discrete-time ARX
models has 20 parameters in total, as indicated by the following polynomials:
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A(z) = 1− 1.028 z−1 − 0.1695 z−2 + 0.208 z−3 − 0.2639 z−4 + 0.3578 z−5 − 0.3181 z−6

− 0.01813 z−7 − 0.02773 z−8 + 0.3347 z−9 − 0.07473 z−10

B1(z) = 0.02052− 0.005222 z−1 − 0.09316 z−2 + 0.1346 z−3 − 0.1157 z−4 + 0.1004 z−5

− 0.01834 z−6 − 0.07983 z−7 + 0.09431 z−8 − 0.03754 z−9

B2(z) = −6.924 · 10−5 + 0.0007713 z−1 − 0.002213 z−2 + 0.002686 z−3 − 0.001219 z−4

− 0.0004619 z−5 + 0.0004533 z−6 + 0.0007231 z−7 − 0.001037 z−8 + 0.000366 z−9

Therefore, the obtained model is a multi-input system which is described by two
transfer functions. Figure 7 shows the frequency response of the fitted ARX model, which
considers the duty cycle as input and the common-rail pressure as output (the first transfer
function), and the influence of the engine speed on the output (the second transfer function).
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Figure 7. Frequency response of the fitted ARX model: the first transfer function (left) and the second
transfer function (right).

Figure 8 shows the time-domain responses provided by the ARX model and by the
experimental common-rail pressure obtained when the inputs are as indicated in Figure 6.
A reasonable accuracy is obtained if one considers the remarkable process nonlinearities
and uncertainties of the relation between the inputs and the common-rail pressure [50].
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Figure 8. Comparison between experimental and simulated common-rail pressures.

To obtain the unknown parameter values, the following cost function is used:

J =
N

∑
`=1

∣∣∣∣20 log
∣∣∣∣ G(jω`)

Go(jω`; p)

∣∣∣∣∣∣∣∣+ ρ|arg∗ G(jω`)− arg∗ Go(jω`; p)| , (37)
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with ρ > 0 being a scale factor used to tune the relative importance of amplitude and
phase errors, and where G(s) is the transfer function of the fitted ARX model, and ω`,
for ` = 1, . . . , N, with N = 100, are adjacent, uniformly logarithmic distributed angular
frequencies between 0.1 and 1000 rad/s. Note that arg∗ denotes the unwrapped argument.

Identification of the First Transfer Function

The shape of the amplitude response shown in Figure 7 (left) strongly indicates
that a proper model could be obtained using a pair of aperiodic elements, one at the
numerator and one at the denominator of the transfer function. Based on the shape of
the frequency response, we expect that the numerator corner frequency is several orders
of magnitude higher than the denominator one. Considering the slopes of the amplitude
response, we also expect that the real part of the order of the denominator will be close to
1 (since the the slope of the second segment is approximately −20 dB/decade), and that
the real part of the numerator will be close to 1.5 (since the slope in the third segment is
approximately 10 dB/decade). Finally, considering the shape of the phase response, we
expect the numerator element to be a non-minimal-phase one. All these assumptions will
be confirmed by the optimization process, as seen in Table 1.

We focus on the transfer functions of the form:

Go(s; p) = K
1

1
zA

α1,β1( s
ω1

)1
pA

α2,β2(− s
ω2

)

= K
2
zA

α2,β2(− s
ω2

)

1
zA

α1,β1( s
ω1

)
= K

Aα2,−β2(− s
ω2

)

Aα1,β1( s
ω1

)
(38)

The given transfer function was selected based on the observation that the amplitude
characteristic changes slope two times: firstly, just above 0.1 rad/s, the amplitude slope
decreases, and then at about 50 rad/s, the slope increases (see Figure 9 (upper part)). This
would indicate that we need two factors, the first one being a generalization of a pole,
and the second one being the generalization of a zero. We also noticed that at the second
critical frequency, instead of presenting the expected increase, the phase actually decreases
further, indicating non-minimum phase behavior. The choice of the specific complex-
order elements, of the first or second kind, was performed by means of the optimization
procedure itself. Here, we explicitly present the kind of each element in order to illustrate
that both of them are practically significant (see Figure 9 (lower part)).

Figure 9 compares the frequency responses of this model with that of the previously
identified ARX model. The plots clearly show that the more compact complex-order model
can replace the high-order ARX model. Table 1 provides the parameters of the identified
complex-order model, which was obtained with ρ = 5.

The optimization has shown that the numerator element should be selected to be of
the second type. This can be seen from the fact that a negative imaginary part of the order
is obtained. The resulting transfer function is proper, since the numerator has a lower order
than the denominator.
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Figure 9. Comparison of the frequency responses of the fitted high-order ARX model and the
complex-order model (first transfer function).

Table 1. Parameters of the fitted 7-parameter complex-order model.

K ω1 α1 β1 ω2 α2 β2

7 pars. 0.9740 0.2016 1.0223 0.0970 44.2719 1.5781 0.4348

Identification of the Second Transfer Function

We focus on the transfer functions of the form:

Go(s; p) = K

[
( s

γ1,1
)2 − 2 s

γ1,1
γ1,2 + 1

]γ1,3
∏3

i=1
1
zA

α1,i ,β1,i ( s
ω1,i

)

1
zA

α2,1,β2,1(− s
ω2,1

)

= K

[
( s

γ1,1
)2 − 2 s

γ1,1
γ1,2 + 1

]γ1,3
∏3

i=1 A
α1,i ,β1,i ( s

ω1,i
)

Aα2,1,β2,1(− s
ω2,1

)
, (39)

Figure 10 compares the frequency responses of this model with that of the previously
identified ARX model. Table 2 gives the parameters of the complex-order fractional model.
Again, the results indicate agreement between the two models and the accuracy of the
complex-order model. In this particular case, the actual structure of the model was obtained
empirically: by trial and error. First, a non-minimum phase real-order resonant element
was placed at the numerator in order to capture the resonant peak, visible at approximately
200 rad/s. Other elements were added iteratively until a proper fit was obtained.
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Figure 10. Comparison of the frequency responses of the fitted high-order ARX model and the
complex-order model (second transfer function).

Table 2. Parameters of the fitted 16-parameter complex-order model.

K ω1,1 α1,1 β1,1 ω2,1 α2,1 β2,1

16 pars. 0.0004 0.0923 1.0031 0.1744 0.2450 1.9615 0.1708

ω1,2 α1,2 β1,2 ω1,3 α1,3 β1,3 γ1,1 γ1,2 γ1,3

−26.4457 0.3644 0.0000 −35.7210 0.6965 0.0003 167.7741 0.0484 1.0395

Remark 1. In order to point out the advantages of the proposed complex-order schema, the results
obtained for the second transfer function (39) are compared with the frequency responses of the
following transfer functions:

G2,1(s) = K

[
( s

γ1,1
)2 − 2 s

γ1,1
γ1,2 + 1

]γ1,3
∏3

i=1(
s

ω1,i
+ 1)α1,i

(1− s
ω2

)α2
, (40)

G22(s) = K

[
( s

γ1,1
)2 − 2 s

γ1,1
γ1,2 + 1

]γ1,3
∏3

i=1(
s

ω1,i
+ 1)α1,i

∏3
j=1(

s
ω2,j

+ 1)α2,j
. (41)

The parameters of all transfer functions have been obtained optimally, applying the same
procedure described in Section 5. Transfer function G2,1 contains the same number of poles and
zeros as transfer function (39), but as real-order elements (12 parameters), while G2,2 has the same
number of unknown parameters (16 parameters) as structure (39). The obtained simulation results
are shown in Figure 11, while the obtained optimal parameters are specified in Tables 3 and 4. It is
not hard to notice that the approximated transfer function with complex-order elements gives more
accuracy in fitting both the phase and magnitude of the high-order ARX model.

Table 3. Parameters of the fitted 12-parameter real-order model.

K ω1,1 α1,1 ω1,2 α1,2 ω1,3 α1,3

12 pars. 0.0004 103,709.2351 0.0020 0.5567 −1.0161 −293.093 10.0495

ω2,1 α2,1 γ1,1 γ1,2 γ1,3

1769.5799 113.8638 0.1647 439.2359 6.0003
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Table 4. Parameters of the fitted 16-parameter real-order model.

K ω1,1 α1,1 ω1,2 α1,2 ω1,3 α1,3 γ1,1

16 pars. 2.5186 0.0043 2.2748 195.7408 4.6835 1.3786 1.8735 0.0193

γ1,2 γ1,3 ω2,1 α2,1 ω2,2 α2,2 ω2,3 α2,3

−39,713.78 −0.9435 0.0052 1.1469 0.6288 2.3355 1.9707 0.64830
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Figure 11. Comparison of the frequency responses of the fitted high-order ARX model, complex-order
model, and the real-order models G2,1, G2,2.

6. Conclusions

This work proposed integro-differential fractional operators of complex order for
application in modeling and control problems. The previous literature has shown some
examples in which complex-order operators can be used for robust control, as well as
many cases in which real, not simply fractional but not complex, non-integer order op-
erators are fruitfully used. Moreover, it is remarkable that models based on non-integer
order operators—often misnamed as fractional models—allow a compact representation,
reducing the number of model parameters with respect to integer-order models. This
last important property is further extended in this paper by taking advantage of the new
complex-order operators, which have the important potential to describe the amplitude
of the frequency response, independent of phase, and vice versa. In fact, compared to
modeling frameworks based solely on integer- and/or real-order models, the proposed
framework facilitates the development of models with simpler structures (a smaller number
of factors) and even a reduced number of parameters.

The benefits of the introduced complex-order operators are shown on a testbed that
is the injection system of an automotive engine fueled by compressed gas. The system
is highly nonlinear, time-varying, and subject to uncertainties, such that control of the
common-rail pressure, the main output variable, is really a hard task. The model is
identified through the optimization of a cost index, and is compared with a classical ARX
model of high-integer order. Results indicate that the model based on complex-order
operators fits experimental data and can be effectively used for control.
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Abbreviations
The following abbreviations are used in this manuscript:

CRONE Commande robuste d’ordre non entiér
ARX Autoregressive exogenous model (with extra input)
CO-RV Complex-order real-valued
CO-RV-1 Complex-order real-valued differential operator of the first type
CO-RV-2 Complex-order real-valued differential operator of the second type
CNG Compressed natural gas
ECU Electronic control unit
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