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Abstract: In recent years, deep learning-based detection methods have been applied to pavement
crack detection. In practical applications, surface cracks are divided into inner and edge regions for
pavements with rough surfaces and complex environments. This creates difficulties in the image
detection task. This paper is inspired by the U-Net semantic segmentation network and holistically
nested edge detection network. A side-output part is added to the U-Net decoder that performs edge
extraction and deep supervision. A network model combining two tasks that can output the semantic
segmentation results of the crack image and the edge detection results of different scales is proposed.
The model can be used for other tasks that need both semantic segmentation and edge detection.
Finally, the segmentation and edge images are fused using different methods to improve the crack
detection accuracy. The experimental results show that mean intersection over union reaches 69.32 on
our dataset and 61.05 on another pavement dataset group that did not participate in training. Our
model is better than other detection methods based on deep learning. The proposed method can
increase the MIoU value by up to 5.55 and increase the MPA value by up to 10.41 when compared to
previous semantic segmentation models.

Keywords: convolutional neural network; crack detection; semantic segmentation; edge detection

1. Introduction

Highway pavements are affected by many factors such as the natural environment,
load conditions, structural combinations, materials, construction techniques, and technical
levels, which can produce various types of distress. With the construction of highways,
pavement maintenance has begun increasing sharply. Accurate pavement distress detection
results can provide reliable and effective technical support for pavement maintenance
management decision making, improve highway pavement service performance, and
reduce traffic accidents. However, traditional manual detection methods are often affected
by subjective judgment in detecting highway pavement distress. There were considerable
errors and low detection efficiencies. Therefore, automatic distress recognition and feature
measurement of collected pavement images are the mainstream means of pavement detection.

The adoption of information management technology is an inevitable way to improve
the level of highway maintenance management and realize efficient and orderly organiza-
tion and management. For example, for common cracks on the highway, the development
of an effective pavement crack identification algorithm can evaluate the pavement condition
in advance and provide the basic data for maintenance decision making for the highway
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maintenance management department. The commonly used equipment for collecting
pavement crack information include digital cameras, depth cameras, and lasers. Many
researchers have studied pavement performance by using the images taken by digital
cameras. At this stage, it has been applied to pavement crack detection [1], asphalt mixture
crack detection [2], and concrete elements deformation tests [3]. Many researchers have
recently begun to apply depth imaging technology to pavement detection engineering [4–6].
Unlike the traditional 2D camera, the depth camera can obtain depth information and
provide the color image details in the 2D camera [7]. In addition, laser scanning is often
used to detect pavement damage [8,9]. Laser scanning technology was used to extract
cracks in concrete [10]. Although the depth camera and laser scanner can extract the three-
dimensional information of the pavement and more accurately identify the distresses. The
use of these two devices is limited due to the high purchase cost of the equipment, the
complex post-processing process of 3D data, and inconvenient daily maintenance.

Pavement cracks usually appear as curved configurations with different widths in an
image. They can be characterized by the edge detection and image segmentation methods
in computer vision. In the ideal case, for such deep cracks with good continuity and no
other noise interference, the traditional method can efficiently segment the crack from
the image. Lu et al. [11]. proposed a new double-threshold algorithm to obtain detailed
information on the crack number and width. Peng et al. [12]. proposed a triple-threshold
pavement crack detection method using a random structured forest. However, in an actual
detection task, different types of pavement types, shadows, and foreign objects will lead to
a decline in the detection accuracy of the traditional methods. In addition to the automatic
threshold segmentation method, there are crack detection methods based on spatial filtering
and wavelet analysis; however, they have some disadvantages such as high requirements
for equipment, complex operation, and environmental impact [13–16].

In recent years, convolutional neural networks (CNNs) have been proposed and ap-
plied to computer vision tasks such as image classification [17–19], target detection [20–22],
and semantic segmentation [23–25]. Simultaneously, a CNN-based method has also been
applied to pavement distress detection. Hoanga et al. [26] demonstrated the performance
of the traditional and intelligent methods based on CNN in the pavement crack detection
task. The experimental results show that the CNN-based crack detection methods are
promising alternatives to regular methods. Majidifard et al. [27] developed a hybrid model
by integrating the Yolo and U-Net models to classify pavement distresses and simulta-
neously quantify their severity. Jia et al. [28]. proposed a method based on Deeplabv3+
and a pixel-level quantization algorithm for crack detection. Park et al. [29] The CNN
composed segmentation and classification modules to extract pavement cracks and remove
the elements interfering in the image. Flah et al. [30] proposed a nearly automated detec-
tion model based on image processing and deep learning to detect defects in areas where
concrete structures usually cannot enter. In summary, traditional methods based on digital
image processing have been widely used in pavement damage detection and have laid
a theoretical foundation for methods based on deep learning. Methods based on deep
learning have strong potential, are more accurate and convenient than traditional methods,
and will be the mainstream methods for detecting pavement distress in the future.

In the pavement crack detection task, the semantic segmentation model can be used to
calculate the area occupied by cracks. It predicts the cracks pixel-by-pixel and segments
the cracks from the image. The existing neural network models perform very well in
the defect detection task, similar to the pavement crack detection task. For example, the
U-Net semantic segmentation network was applied to the defect detection task in the
industry [31–34]. Inspired by the above methods and the U-Net network structure, we
herein improve the U-Net convolutional neural network and apply it to crack identification
in complex pavement conditions. When measuring the characteristics of cracks, calculating
the width is necessary. The width calculation is related to the edge line, and the edge
detection algorithm is used to extract it. Classical edge detection algorithms in computer
vision include the Roberts operator, Sobel operator, and Canny operator [35]. These classical
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algorithms have also been applied to crack detection tasks. Wang et al. [36] designed a
local adaptive algorithm for Otsu threshold segmentation and proposed an improved Sobel
operator to extract crack edge lines. Qiang et al. [37] proposed an adaptive Canny edge
detection algorithm that achieved good results in crack detection. In addition to these
modified traditional algorithms, some edge detection algorithms based on deep learning
are also present.

Holistically nested edge detection (HED) [38] and side-output residual networks
(SRN) [39] are two relatively new edge detection networks, and both adopt the method
of deep supervision to improve the training effect. Liu et al. [40] continued the idea of
deep supervision and proposed a Deepcrack for crack detection in multiple scenes. Similar
to Heider et al. [41], by combining the two networks of HED and U-Net, we proposed
an end-to-end method for coast and coastline detection. Traditional edge detection algo-
rithms are easily disturbed by environmental factors. Especially in the pavement surface
images, factors such as rough surfaces, vehicle shadows, water stains, and uneven lighting
brightness affect the edge detection accuracy. In addition, the edge detection algorithm
cannot recognize the meaning of objects inside and outside the edge line; however, the
combination of semantic segmentation and edge detection results can solve this problem.

Therefore, a fusion model is proposed to segment cracks and simultaneously identify
crack edge lines. The model uses a U-Net structure for image segmentation. It continues the
idea of deep supervision in the HED and SRN networks. As the model uses the side-output
method for edge line detection, it is called a side-output U-Net (SoUNet).

The remainder of this paper is organized as follows. The second section presents the
proposed network model and the evaluation indicators in detail. The third section describes
the collection and production of data and introduces the process and details of training.
Section four provides the numerical results and intuitive prediction results. Our model was
also compared with existing methods. The final section provides concluding statements.

2. Proposed Method
2.1. Model Architecture

Based on the U-Net semantic segmentation network model, we herein improve it and
add a side-output module. We call the network model SoUNet. The traditional U-Net has
a residual connected encoder–decoder architecture. The encoder part can obtain the low-
resolution feature map after downsampling the high-resolution input image many times.
This part is mainly used to extract the image features, and each layer is called the feature
extraction layer. The decoder part includes several operations of feature concatenation,
convolution, and deconvolution. It enlarges the low-resolution image outputted by the
encoder through deconvolution, concatenates the same resolution image outputted by each
feature extraction layer, and finally outputs the binary image through activation.

The structure of SoUNet is divided into two parts: the basic U-Net structure and the
side-output structure. The structure of the network is shown in Figure 1. The first part is
a semantic segmentation task. We removed the last 3 layers of VGG16 and used the first
13 layers as the encoder, which contained 13 convolution layers and 4 max-pooling layers.
The max-pooling layer can downsample high-resolution images into low-resolution images,
and there are five resolutions from high to low. The max-pooling layer enables the network
model to learn semantic features at different resolutions and improve the learning efficiency
of the model. The decoder includes nine convolution layers and four deconvolution layers.
The deconvolution layer can restore the low-resolution feature map to a high-resolution one,
and the feature map of the same resolution requires feature fusion in the decoder. In the
entire U-Net structure, the kernel size of each convolution layer and deconvolution layer
was set to 3 × 3. The rectified linear unit (Relu) was used as the activation function after
the convolution layer. Only the last convolution layer uses a 1 × 1 kernel size, followed
by the sigmoid activation function layer. The sigmoid function activates the input image
after passing through the encoder–decoder structure. The final output image is output 1,
and its size is the same as that of the input image. Output 1 is the result of the semantic
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segmentation task and is the probability map. The value of each pixel is between 0 and 1,
indicating the probability that the pixel belongs to a category. The area with a high pixel
value is a crack, and the area with a low pixel value is the background. We used 0.5 as the
global threshold to transform the obtained probability map into a binary image.
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The second part of SoUNet is the side-output module, which performs the edge
detection task, as shown in Figure 2. We extract the feature maps of different resolutions
in the decoder and make them pass through two convolution layers of 3 × 3 kernel
size. After enlarging the size, the lower-resolution feature map was deconvoluted and
fused with the higher-resolution feature map. The feature maps of five resolutions were
obtained by convolution, and then they were processed by convolution with a 1 × 1 kernel
size. The feature map of each resolution was restored to the original image size after the
deconvolution operation. Therefore, the side-output module was divided into five stages,
corresponding to five feature maps of different scales. Five types of feature maps with the
original size are sent to the sigmoid function for activation, and five images are denoted as
Outputs 2–6. In addition, the feature maps of the five resolutions are fused into one size. It
is sent to the sigmoid activation function after it passes through the convolution layer with
a 1 × 1 kernel size. Finally, output the image called Output 7. The maximum ODS value
was taken as the segmentation threshold to generate a binary image.
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In this paper, we introduce a batch normalization (BN) layer [42] into the network
architecture. When the depth of the network model gradually deepens, the model is more
sensitive to changes in hyperparameters, and the model becomes more challenging to train.
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However, the BN operation enables the model to be trained with a large learning rate.
It reduces the requirements of parameter initialization, decays the oscillation of the loss
function, and accelerates the training process. The ReLU function is used as the activation
function in each convolution block of the middle architecture. The network was constructed
in the order of convolution layer, BN layer, and ReLU layer.

By observing the pixel value distribution of the original crack image and the labeled
image, it was observed that most cracks were composed of internal and edge areas. The
inspectors captured photographs of pavement cracks with a monocular camera, which was
mounted at the rear of the detection vehicle and had a fixed shooting distance and angle.
Therefore, image quality is easily affected by the pavement environment. Identifying the
crack width and length for road sections with limited daylighting conditions and rough
surfaces is difficult. The crack gradually transits from the edge area to the internal area of
the image. This means that the crack is composed of the inside and the edge. As shown in
Figure 3, the cracks affected by environmental factors are divided into two distinct areas.
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SoUNet can output both segmentation results and edge line results for the input
image. The linear fusion of the two results can effectively improve image segmentation
accuracy. Output 1 is the crack segmentation image, and Outputs 2–7 are the crack edge line
images. The detection accuracy can be improved by linear fusion of Output 1 and Outputs
2–7, respectively. In addition, the refinement method of guided filtering can improve
the identification accuracy of the network [41,43]. Output 1 and Output 3 are the input
image and guide image, respectively, and it sets the parameters of the guide filter as the
kernel radius r = 5 and the penalty ε = 1× 10−6. Therefore, the following three methods
must be considered. These are (1) adding a BN layer to the network, (2) linear fusion of
output results, and (3) processing the output results via guided filtering. We compared the
segmentation accuracy of these methods in Section 4.2.

2.2. Loss Function

The purpose of image segmentation is to segment the cracks from the background. In
the labeled image, the pixel value of the crack is 1, and the pixel value of the background is
0. It outputs the probability that each pixel is a crack after the input image passes through
the encoder and decoder. The network model is more likely to extract the background in
the training process because the area of the crack accounts for a small proportion of the
entire image, which is less than 10% in most images. The imbalance of categories leads
to a decline in the segmentation effect. We apply the loss function in HED [38] that can



Appl. Sci. 2022, 12, 4714 6 of 18

self-adaptively balance positive and negative samples. This cross-entropy loss function
with category balance is defined by Equation (1):

L(ŷ) = −β ∑
j∈Y−

log ŷj − (1− β) ∑
j∈Y+

log
(
1− ŷj

)
(1)

The predicted pixel is ŷ for a single-input image. There are β = |Y+|/|Y| and
1− β = |Y−|/|Y| on the corresponding labeled image. |Y+| and |Y−| represent the pixels
of the crack and background areas, respectively, and |Y| represents the total number of
pixels. This loss function can be used for segmentation and edge detection tasks, which are
unbalanced categories.

2.3. Metrics

In the field of computer vision, MIoU and MPA have extensively used evaluation
indicators for semantic segmentation tasks. Many conventional image segmentation algo-
rithms use the mean intersection over union (MIoU) and the mean pixel accuracy (MPA) as
evaluation indicators [23–25,34,44–46].

Accuracy indicators adopted in the training process: The MIoU) can be used as the
evaluation metrics for the image segmentation task of unbalanced category samples. It is
also an accuracy indicator for monitoring the training process, as shown in Equation (2):

MIoU =
1

k + 1

k

∑
i=0

Nii

∑k
j=0 Nij + ∑k

j=0 Nji − Nii
(2)

The intersection union (IoU) is the ratio of the overlapping part to the merged part
of the two regions. This is a general measurement method for semantic segmentation
tasks. k + 1 is defined as the number of categories to be classified, where k + 1 is 2 (the
types include the fracture area and background area). Nii is the number of pixels that are
predicted correctly, Nij is the number of pixels that class i is predicted as class j, and N is
the total number of pixels. We use pixel error to monitor the training process for the edge
detection task, as shown in Equation (3):

Pixel Error = ∑k
i=0 ∑k

j=0

Nij

N
(i 6= j) (3)

Other accuracy indicators: After the model was trained, the prediction accuracy was
evaluated on the test set. In addition to using the MIoU evaluation for crack segmentation
results, the MPA can also be used. It calculates the average value of the percentage of
correctly predicted pixels for each category, as shown in Equation (4):

MPA =
1

k + 1

k

∑
i=0

Nii

∑k
j=0 Nij

(4)

We use OIS-F and ODS-F to evaluate the boundary detection results. The training pro-
cess and training results will be evaluated and presented in Sections 3.4 and 4.2, respectively.

3. Experiment
3.1. Image Collection

The image data of pavement distresses used in this experimental study were provided
by the Yunnan Highway Science and Technology Research Institute. There are mainly net-
shaped cracks, longitudinal cracks, and transverse cracks in the image data. Fatigue failure
is the most common source of net-shaped cracks. The asphalt pavement structure eventually
loses its bearing capacity due to repeated vehicle loads, and fatigue failure occurs. Uneven
subgrade settlement and fatigue failure are the principal causes of longitudinal cracks. They
will eventually develop into net-shaped cracks if not maintained. The most typical causes
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of transverse cracks are temperature changes and reflection cracks. Transverse cracks grow
from top to bottom due to low-temperature shrinking. Reflection cracks develop from
the bottom up, penetrating the road structure. The information offer basis for subsequent
maintenance work.

We used the Teledyne Dalsa S3-24-02k40, which is a high-response, high-speed linear
array industrial digital camera with a 2048 × 2048 picture resolution. A Camera Link
is included within the camera. It can sustain a fast transmission speed while dealing
with enormous amounts of picture data and high bandwidth needs. At the same time,
the camera’s improved user interface makes data collecting personnel’s following image
processing job easier. After the images are gathered on-site, the cracks are manually
identified as mesh cracks, longitudinal cracks, and transverse cracks, and then images
including single cracks, multiple cracks, and mesh cracks are picked.

It contains 3000 pictures collected by the road detection vehicle, with a pixel reso-
lution of 2048 × 2048, and the format is a single-channel gray image. The images were
collected at the K1209 + 080 − K1210 + 096 Xiuhe section of the No. 326 State Road and
K1904 + 350 − K1902 + 300 Lanma section of the No. 248 State Road. Figure 4 shows the
information about the roads. The selected road section included both cement and asphalt
pavements. Owing to the influence of the driving load and natural environment, there
are different types of cracks on the pavement. These complex data contents cause some
difficulties in the crack identification task. We attempted to classify the degree of distress in
the original road image using a convolution neural network. However, owing to shadows,
water stains, and other foreign objects in the image, the identification accuracy can only
reach around 75%, which does not accomplish the desired impact. We plan to improve the
distress categorization method, as well as the accuracy and automation of pavement detec-
tion, in the future study. Water stains are caused by a portion of the road surface becoming
wet. Many provinces are connected by the No. 326 State Road, and the No. 248 State Road,
and trucks are frequently seen on the route. The sprinkler must constantly cool the heat
brake pads and tires to guarantee driving safety. Wet strip tire imprints are frequently
observed on the road. Some trucks will also be transporting wet goods, resulting in some
partial wetness on the road surface. These create certain challenges for the task of detecting
pavement cracks using digital images.
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The convolutional neural network model we constructed can only train images with
a pixel resolution of 256 × 256 due to the computing capability of the computer. The
open-source computer vision software OpenCV is used to resize the image to match it
with the network model’s input. The original collected images were pretreated. The image
with a pixel resolution of 2048 × 2048 was cropped to the image with a pixel resolution of
512 × 512, which is one-sixteenth of the original image. The image needs to be resized to
256× 256 pixels to match the input port of the network model. If we immediately compress
the image of 2048 × 2048 pixels to 256 × 256 pixels, the original image’s crack information
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is significantly lost, resulting in a decrease in identification accuracy. The original image
and the processing procedure are depicted in Figure 5.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 19 
 

frequently observed on the road. Some trucks will also be transporting wet goods, result-
ing in some partial wetness on the road surface. These create certain challenges for the 
task of detecting pavement cracks using digital images. 

The convolutional neural network model we constructed can only train images with 
a pixel resolution of 256 × 256 due to the computing capability of the computer. The open-
source computer vision software OpenCV is used to resize the image to match it with the 
network model’s input. The original collected images were pretreated. The image with a 
pixel resolution of 2048 × 2048 was cropped to the image with a pixel resolution of 512 × 
512, which is one-sixteenth of the original image. The image needs to be resized to 256 × 
256 pixels to match the input port of the network model. If we immediately compress the 
image of 2048 × 2048 pixels to 256 × 256 pixels, the original image’s crack information is 
significantly lost, resulting in a decrease in identification accuracy. The original image and 
the processing procedure are depicted in Figure 5. 

 
Figure 4. Selected detection part of the No. 326 State Road and the No. 248 State Road. 

 
Figure 5. The original images and the processed images. 

3.2. Image Dataset 
The open-source tool LabelMe [47] was downloaded for semantic annotation, ob-

tained from GitHub [48]. The annotated information is saved as a JSON file containing the 
marked image name, labeled type, coordinate points, and others. Extracting the infor-
mation in a file can generate a binary image for training. The original image, manually 
labeled crack, and crack edge images are shown in Figure 6. Six hundred images with 

Figure 5. The original images and the processed images.

3.2. Image Dataset

The open-source tool LabelMe [47] was downloaded for semantic annotation, obtained
from GitHub [48]. The annotated information is saved as a JSON file containing the marked
image name, labeled type, coordinate points, and others. Extracting the information in a file
can generate a binary image for training. The original image, manually labeled crack, and
crack edge images are shown in Figure 6. Six hundred images with cracks were selected
randomly from the dataset for the pixel-level annotation. The dataset included 420 images
as the training set, 120 as the validation set, and 60 as the test set. The ratio of the training
set, validation set, and test set was 7:2:1. Table 1 lists the percentages of the crack and
non-crack pixels in the dataset. The table shows that the crack images only account for
a small number, and the task is image segmentation with an unbalanced category. The
labeled dataset includes asphalt pavement and cement pavement, and some images contain
interference factors of water stains and shadow changes. Figure 7 shows labeled images
in different environments. Table 2 shows the proportion of asphalt pavement and cement
pavement images in the dataset and the proportion of images in different environments.
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Table 1. Proportion of crack and non-crack annotations in the dataset.

Quantity Crack Pixels (%) Non-Crack Pixels (%)

Training data 420 6.79 93.21
Validation data 120 4.14 95.86

Test data 60 6.52 93.48
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Table 2. Proportion of images in different pavement types and environmental conditions.

Pavement Environment

Types Concrete Asphalt Normal
Brightness

Low
Brightness

High
Brightness Shadow Water

Stain

Percentage (%) 21.6 78.4 81.8 13.0 5.2 9.2 20.7

3.3. Training Details

The training platform was performed on a workstation with an Intel(R) Core i9-10900k
CPU and an NVIDIA 3090, 24G GPU. This study uses TensorFlow, which is Google’s
open source deep learning framework, to build and train the network. The software
configuration was as follows: Windows 10, CUDA 11.1, cuDNN-v8.0.4, TensorFlow-GPU-
2.4, and Python 3.8.

A total of 420 labeled images were taken as the training set, and the data of eight
images in each batch were input into the SoUNet network after shuffling the training set. In
the training process, the cross-entropy loss function with category balance in Equation (1)
is used as the loss function. The adaptive moment estimation (Adam) optimizer [49] was
selected for optimization. The optimizer adjusts the learning rate in the training process
and changes the weight parameters and bias values in the network. The initial learning
rates were set to 1× 10−3, 1× 10−4, and 1× 10−5, respectively, and the training epochs
were set to 300. The accuracy indicators monitored during training are the MIoU value and
pixel error, respectively.

3.4. Training Process

The model was trained after setting the parameters, and the entire training process was
monitored. Figure 8 shows the training process of the model for different learning rates. It
includes the variation curves of four variables measured on the training set, which are seven
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loss values, overall loss values, MIoU, and pixel error. Figure 8a–c show that the seven
loss values continue to decline under different learning rates. We chose to stop training
at 300 rounds to prevent overfitting. As shown in Figure 8d–f. When the initial learning
rate was set to 1× 10−4, the overall loss value of the network decreased the fastest in the
training process and reached the lowest value at the end of the training. Simultaneously,
the MIoU value and pixel error measured in the training set can reach the optimal value.
Therefore, the most effective model was selected in the training process when the learning
rate was set to 1× 10−4.
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4. Training Result and Comparison
4.1. Training Result

TensorFlow 2 has the function of saving the optimal model. The best network model
for the validation set was extracted. This model was used to predict the test set. Figure 9
shows the crack segmentation results and edge extraction results of SoUNet for different
types of pavement images. The model has a good segmentation effect on a single crack of
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both asphalt pavement and cement pavement. The effect of edge detection is normal, but
the two edge lines tend to overlap for areas with narrow widths.

The model performs well for multiple cracks and net-shaped cracks, but there are
many problems such as noise points, incomplete segmentation, and blurred areas. The
recognition effect of the model on the cement pavement image is good, and there is more
noise and missed detections in the recognition results of asphalt pavement. Figure 10
shows the prediction results under the interference of water stains and shadows. There
are many cases of noise and missed detection in areas with water stains, and other missed
detections occur at the borders of the shadows. Water stains have a greater impact on the
prediction results. In general, the proposed model was effective. It shows a certain potential
in detecting images with interference, and the MIoU is greater than 50%. According to the
data statistics in Table 2, only 20.7% of the images contained water stains, and only 9.2% of
the images contained shadow interference in our dataset. In the future, we can increase the
number of such data and use more images with different interferences to participate in the
training process to enhance the accuracy and robustness of recognition.
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4.2. Evaluated Model

SoUNet can output both the crack segmentation image and the crack edge line image.
The optimal model was extracted to predict the test set, and the segmentation and edge
detection images were output. An input image corresponds to one segmentation image
and six edge line images. One segmented image was linearly fused with the other six
edge line images to optimize the segmentation results. The fusion images and fusion
results are presented in Figure 11. Table 3 lists the MIoU, mean pixel accuracy, ODS-F, and
OIS-F measured using different methods. SoUNet-Output-1 is the output of the semantic
segmentation network in SoUNet, which is the image of Output 1. SoUNet-Fusion-ij is
the linear fusion of outputs i and j. The numerical value shows that the linear fusion of
the semantic segmentation results and edge line detection results can effectively improve
the crack segmentation accuracy. The MIoU value increased by 2.47%, and the MPA value
increased by 9.58%. SoUNet-Fusion-13 has high MIoU and MPA values and is the most
stable under various accuracies from the result of the comprehensive comparison. The
results are compared with those of other semantic segmentation models in Section 4.3.

We selected 30 crack pictures from the test set and measured the width of the initial
position, middle position, and end position of the crack. The measurement direction is
perpendicular to the crack trend, as shown in Figure 12a. The same method is used to
measure the crack width in the label image, SoUNeT result image, and U-NET result image,
respectively. Taking the crack width measured in the label image as the actual width, the
width error statistical charts of SoUNet and U-NET are obtained. As shown in Figure 12b,
S1–3 in the figure shows the SoUNet initial position, middle position, and end position
of the crack, respectively. U1–3 indicates the U-Net initial position, middle position, and
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end position of the crack, respectively. It can be seen from Figure 12b that the width error
measured by SoUNet is about 2 pixels, and the measurement error is less than that of U-Net.
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4.3. Comparative Study

To test the performance of SoUNet, we selected four methods based on deep learn-
ing for comparative study: (1) SegNet [24] is a fully convolutional network, which was
used for semantic segmentation. It has also been proposed for crack identification of
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concrete pavement, asphalt pavement, and bridge deck [44]; (2) HED [38], which is an
edge detection model with high performance that can also be used for crack detection;
(3) VGG16-U-Net [45]: U-Net is a high-performance semantic segmentation network [25].
Its improved structure, VGG16 U-Net, has been used to detect surface defects in con-
crete and asphalt [46]. Comparing the recognition performance of the following strategies
for the proposed SoUNet model is necessary: (1) SoUNet-Basic: The basic side-output
U-Net structure, the side-output part plays the role of deep supervision and improves
the model learning efficiency; (2) SoUNet-BN: Adding a batch normalization layer based
on SoUNet-Basic. The BN layer can accelerate the training process; (3) SoUNet-GF: A
and B are taken as the original image and guide image, respectively, from the outputs of
SoUNet-BN and then perform the guided filter operation; (4) SoUNet-Fusion: This is the
same as SoUNet-Fusion-13 in Table 3 of Section 4.2.

Deep-learning-based methods can be applied to image recognition tasks, but these
methods are only suitable for specific scenes and tasks in most cases. Poor generalization
performance is one of the main drawbacks of these methods. To further test the general-
ization performance of SoUNet in the crack detection task, the FISSURES dataset [50] was
downloaded. This dataset is similar to our dataset. The preprocessing method in Section 3.1
is used to process the dataset and make those sizes suitable for the network model. Finally,
they were sent to the trained model to view the results. Table 4 shows the evaluation results
of the seven methods on the two datasets. Our test set is divided in Section 3.2, accounting
for one-tenth of the original dataset. None of the images for the prediction evaluation in
this section participated in the training process. The linear fusion method performs better
than the other methods on its own test set and FISSURES dataset.

Figure 13 shows the prediction results of the seven methods on our dataset. In the
case of no interference, the segmentation integrity of SoUNet-fusion is better than that of
other methods, and the noise produced is less than other results. In addition, our method
performs well on rough asphalt pavement that is difficult to identify, and the segmentation
results are relatively complete, but there are some false positive areas and a small number of
noise points. Shadows and water stains are not misjudged as cracks, but the segmentation
accuracy decreases, and the results are incomplete. Figure 14 shows the test results for the
FISSURES dataset. The asphalt pavement in the FISSURES dataset was relatively flat, but
the crack depth was shallow, and the width was narrow, so the noise of the segmentation
result was relatively small. Segmentation integrity is investigated in this section. SoUNet-
fusion has good segmentation integrity in the images of single cracks, multiple cracks, and
net-shaped cracks. There were relatively few misjudged areas. When interference occurs,
the crack area can still be completely segmented.

Table 4. Evaluation and comparison results of different methods on two datasets.

Datasets Our Test Datasets FISSURES Datasets

Metrics MIoU MPA MioU MPA

SegNet 63.77 69.92 56.34 60.65
HED 64.56 70.70 58.30 65.86

VGG16-U-Net 66.99 74.57 59.12 67.66
SoUNet-Basic 67.46 75.59 59.15 68.45
SoUNet-BN 68.46 74.65 60.07 65.56
SoUNet-GF 68.41 77.28 61.04 67.81

SoUNet-Fusion 69.32 80.33 61.05 68.60
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5. Conclusions

In this paper, we introduce a model that can simultaneously perform semantic segmen-
tation and edge detection. The proposed convolutional neural network SoUNet was used
to output the crack segmentation images and crack edge images. Finally, the two output
results were linearly fused to improve detection accuracy. When compared to previous
semantic segmentation models, our method can increase the MioU value by up to 5.55 and
increase the MPA value by up to 10.41.

The semantic segmentation part of SoUNet is based on the U-Net structure of the vgg16.
The convolution feature map on each scale was fused in pairs, and the low-resolution fusion
feature map was further fused to a higher resolution after passing through the convolution
layer. The edge detection part extracts the feature map of each scale based on the U-Net.
The low-resolution feature maps were trained and fused to the high-resolution features,
and the crack edge image was outputted. The edge detection part is also the side-output
part of the entire network. In addition, the crack dataset contains the pavement surface of
cement and asphalt, and it also contains images of water stains and shadows. Therefore, the
dataset is closer to the actual situation. The experimental results demonstrate that the edge
detection part of the proposed method achieves ODS-F 33.14, OIS-F 34.11 on our dataset.
Its MioU, the semantic segmentation evaluation indicator, reaches a value of 69.32. Both
the intuitive and numerical results are better than those of other segmentation methods
based on deep learning. The experimental results also show that SoUNet performs well in
rough asphalt pavement images, is less affected by water stains and shadows, and has the
potential to deal with multi-interference pavement conditions.

In the future, we plan to develop a new pavement detection network that is more
accurate for identifying types of pavement cracks. We will enrich the pavement dataset
and add crack images of various scenes to make the dataset closer to the actual situation. In
addition, we will also use the model for other tasks that need both semantic segmentation
and edge detection, such as pit contour detection in pavement distress detecting task, road
edge line detection in an automatic driving task, and diseased organ contour recognition in
picture medicine.
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Abbreviations

MIoU Mean intersection over union
MPA Mean pixel accuracy
ODS-F Optimal dataset scale F-score
OIS-F Optimal image scale F-score
CNN Convolutional neural network
HED Holistically nested edge detection network
SegNet A deep convolutional encoder-decoder architecture for image segmentation
U-Net U-shaped Convolutional networks for image segmentation
BN Batch normalization
GF Guided filter operation
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