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Abstract: A ball screw is a mechanical part that converts rotational motion into translational motion,
but when it receives an excessive axial load, permanent deformation occurs inside. As ball screws
are mostly used for precise driving, permanent deformation has a fatal effect on the operation of the
system. As this permanent deformation mostly occurs on the contact surface between the ball and
other parts, it is necessary to observe the change of internal stress caused by the contact of the parts in
order to determine whether permanent deformation occurs. Theoretical calculations or finite element
analysis (FEA) are mainly used for the analysis of rotating parts, but existing methods have difficulty
in observing stress changes occurring on the narrow contact surface of ball screws. In this paper, a
new FEA model that can efficiently estimate the stress caused by internal contact inside the ball screw
is presented. This model is a synthetic model that applies theoretical calculation results to a 3D FEA
model. Factors derived by theoretical calculation include the shape of the contact surface where the
ball and other parts meet and the contact pressure at the contact surface, which were derived by a
method based on Hertz contact theory. As a result of observing the internal stress distribution of the
ball screw estimated by the model, it was confirmed that the shape was similar to that of the actual
stress distribution and, compared with the analysis results of other conventional methods conducted
with the same mesh shape, the results of the model presented in this paper were more valid.

Keywords: Hertzian pressure; mesh dependency; permanent deformation; von Mises stress

1. Introduction

A ball screw is a mechanical part that converts rotational motion into translational
motion. As shown in Figure 1, ball screws are composed of a shaft, a nut, a circulation
part, balls, etc. It is designed in such a structure that the ball rolls between the grooves of
threaded shaft and nut and returns to its initial position through the circulation part. As
the ball screw adopts rolling friction and not sliding friction, it can have very low friction
loss and high efficiency. These characteristics of ball screws are the reason they are used
in precision mechanical devices such as artificial respirators, precision positioning tables,
machine tools, and guided missiles. However, when an excessive axial load is applied, the
narrow contact surface between the ball and the ball groove is dented, leaving permanent
deformation, which is fatal to the ball screw requiring precise driving [1,2]. To determine
whether such permanent deformation occurs, as it is necessary to know the change of the
internal stress caused by the contacts of the components, many studies are being conducted
to estimate this.

The following are studies analyzing the rotating parts, and it was determined whether
applied methodologies can observe stress changes occurring on the contact surface of the
ball screw. Research to analyze rotating parts is divided into three main categories. The first
is the theoretical method, the second is the FEA (Finite Element Analysis), and the third is
the synthetic method that applies both theoretical methods and FEA. The study of Wei and
Lin [3] and Lazović and Milović [4] could theoretically represent the magnitude of the load
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applied to the contact surface of the rotating parts from an external force, but there was a
limitation that the internal stress distribution could not be expressed. Du et al. [5] conducted
a 2D FEA considering the adhesive force be-tween two contacting objects. However, as one
of the two contacting objects was analyzed as a rigid flat surface, it is difficult to apply to
the case of a ball screw whose both contacting objects are soft bodies and both contacting
surfaces are curved. By applying the Laboratoire de Génie Mécanique de Toulouse model
in Daidié et al. [6] and two nodes calculating physical proper-ties in Azianou et al. [7], load
distribution and displacement were derived by FEA that replaced the ball between the
inner and outer rings of the bearing. These methodologies were effective in expressing the
rough behavior of the bearing, but still have difficulty in analyzing the stress distribution
from the contact load. There are studies that have conducted FEA considering the shape
and mesh of all ball bearing components, but this is a method that can only be applied to a
specific shape when the degree of freedom of the ball is considerably limited [8,9]. There
are studies deriving the friction torque, rotational speed, and load applied to the contact
surface through dynamic analysis of the ball screw, but there are also limits to deriving the
stress distribution by the load applied to the contact surface [10–12].
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There are various methodologies that can estimate the load applied to the contact
surface of rotating parts and express the approximate movement. However, overall, all
were limited in estimating how the stress distribution of the contact components changes
inside the rotating parts that have complex shapes such as ball screws. This paper presents
a new model that could observe the stress change of the internal contact components of the
ball screw by applying both the theoretical method and the FEA. The components of the
ball screw were separated one by one, and each FEA model was created and solved. To
this end, the shape of the contact surface and the pressure applied to the contact surface
were derived by a method based on Hertz contact theory. The shape of the contact surface
appeared elliptical and was applied to the 3D modeling of ball screw. The contact pressure
was derived as a formulation that gradually weakens from the center to the edge, and was
applied to an FEA model in the form of an APDL code.

In general, there are two FEA models most frequently used to observe changes in
contact surfaces: a model to which node connecting is applied in the mesh generation
step and a model to which contact conditions are added to the contact surface. This paper
compares the results of the model to which the contact condition is applied with the analysis
results of the presented model and confirms that the presented model has more valid results.
In the case of ball screws, application of node connecting is not appropriate because the
contact surface before load is very narrow and the size change of the contact surface after
load is large. Therefore, a model with node connecting was not built.
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2. Theoretical Analysis

Theoretical analysis includes all the processes of deriving the shape of the contact
surface and the formulation of contact pressure generated on the contact surface. The
assumptions applied in this study are described below.

2.1. Assumptions

To apply the Hertz contact theory, only the normal force was considered without fric-
tion in the contact, and the ball screw operates only within the range of elastic behavior [13].

In the actual ball screw interior case, there will be highly loaded balls and low loaded
balls depending on the external environment. However, we assumed all balls received the
same load in this paper.

There are two representative approaches for deriving the pressure applied to the
contact surface. The first is the Hertz contact theory and the second is the method apply-
ing Elastohydrodynamic. When Elastohydrodynamic is applied, a more realistic contact
pressure can be derived with the consideration of the lubricating film effect [14], but in
this paper, the pressure applied to the contact surface was derived by considering only the
simpler Hertz contact theory.

2.2. Theoretical Study of Ball Screw

Please read this subsection looking at the nomenclature section on the back.
In the stationary state, each ball in the ball screw has contact surfaces in a total of four

directions, but when an axial load P is applied to the nut, each ball can be viewed as a
two-force member having two contact points between the nut and the shaft. Axial load
means the load that is applied to the axial direction of the ball screw. This is shown in
Figure 2, and the normal load Q generated at the contact surface of the ball and the ball
groove can be expressed as follows [15]:

Q =
P

Z sin α cos λ
(1)
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The shape of the contact surface can be derived from the contact theory according to
the magnitude of normal load Q, and it appears in an elliptical shape as shown in Figure 3.
There were several formulas for calculating the semi major axis a and the semi minor axis b,
which are dimensional information that can define the shape of an ellipse [16–18]. However,
none of them could be directly applied for the case of ball screws with spiral ball grooves.
Accordingly, D. Olaru et al. [19] developed the study of L. Houpert [17] to be applicable to
ball screws and created a new model, which can be expressed as follows:

abs = 1.1552Rxbs kbs
0.4676

(
Q

E∗
bsR2

xbs

) 1
3

(2)
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bbs = 1.1502Rxbs kbs
−0.1876

(
Q

E∗
bsR2

xbs

) 1
3

(3)

abn = 1.1552Rxbn kbn
0.4676

(
Q

E∗
bnR2

xbn

) 1
3

(4)

bbn = 1.1502Rxbn kbn
−0.1876

(
Q

E∗
bnR2

xbn

) 1
3

(5)

here, the variable with the subscript bs means the variables related to the contact between
the ball and the shaft, and the variables with subscript bn mean the variables related to the
contact between the ball and the nut. In the above equation, to calculate the semi minor and
major axis of the contact ellipse, it can be confirmed that the equivalent radius in the rolling
direction Rx, the transversal equivalent radius Ry, the radii ratio k, and the equivalent
elastic modulus E∗ is needed. This can be expressed as follows:

1
Rxbs

=
2

dw
+

2 cos α

dm − dw cos α
(6)

1
Rxbn

=
2

dw
− 2 cos α

dm + dw cos α
(7)

Rybs =
fsdw

2 fs − 1
(8)

Rybn =
fndw

2 fn − 1
(9)

kbs =
Rybs

Rxbs

(10)

kbn =
Rybn

Rxbn

(11)

1
E∗

bs
=

1 − ν2
b

Eb
+

1 − ν2
s

Es
(12)

1
E∗

bn
=

1 − ν2
b

Eb
+

1 − ν2
n

En
(13)

here, f means the curvature parameter, and a value between 0.515 and 0.54 is generally
used [13,17,19].
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Assuming that the ball screw is operated within the range of elastic behavior of the
material, the pressure applied to the contact surface can be expressed as shown in Figure 3.
It appears in the form of a Hertzian pressure where the value approaches to 0 as it draws
closer to the edge from the center of the contact surface. The maximum contact pressure
σmax and partial contact pressure σ can be expressed as follows [17]:

σmaxbs = 0.3593E∗
bskbs

−0.2799

(
Q

E∗
bsR2

xbs

) 1
3

(14)

σmaxbn = 0.3593E∗
bnkbn

−0.2799

(
Q

E∗
bnR2

xbn

) 1
3

(15)

σbs = σmaxbs

√
1 −

(
x

abs

)2
−
(

y
bbs

)2
(16)

σbn = σmaxbn

√
1 −

(
x

abn

)2
−
(

y
bbn

)2
(17)

3. FEA

As mentioned earlier, the equations in Section 2 will be used to obtain the input values
of the new FEA model. In this section, the process of applying the equations derived in
Section 2 to the FEA model will be listed with an example. Additionally, the analysis results
of the new model will be compared with the analysis results of the model to which the
contact conditions are applied. The contact theory based models exist separately for each
component, but the model to which the contact condition is applied has the difference that
the two contact components are included in the same model.

3.1. Subject Configuration and Material Property

The ball screw to which the FEA is applied is a tube type as shown in Figure 4. The
shape information of it is written in Table 1, and the mechanical properties are shown
in Table 2.
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Table 1. Geometric parameters of ball screw.

Parameter Value

The number of balls between shaft and nut 42
Contact angle 49.0495◦

Ball diameter 2 mm
Pitch circle diameter of balls 10.3 mm

Curvature parameter 0.515
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Table 2. Material properties.

Parameter
STS440C SUJ2

Shaft Nut Ball

Elastic modulus (GPa) 200 210
Poisson’s ratio 0.283 0.28

Yield strength (MPa) 1280 1176
UTS (MPa) 1750 1274

If the ball screw receives an axial load of 100 N, the maximum contact pressure
calculated by Equations (14) and (15) is shown in Table 3, and it can be seen that the largest
contact pressure occurs at the contact surface between the ball and shaft.

Table 3. Maximum compressive stress.

Type Ball-Shaft Contact Ball-Nut Contact

Max. contact stress (MPa) 1178.2 1058.2

3.2. Boundary Conditions

The material of the shaft and the nut is the same, but the contact pressure between
the ball and the shaft is the largest, so the FEA was applied only to the shaft and the ball.
Before proceeding with the FEA, the dimensions of the contact ellipse were derived by
referring to the equations shown in Equations (2)–(5), and it is expressed in Table 4. As
shown in Figure 5, the shape of the contact ellipse surface was modeled as the shape of the
contact is projected on the shaft and the ball in the normal load direction. In addition, 3D
modeling was used on the shaft, leaving only one lead up and down at the point where the
contact surface was modeled for reducing the data processing requirements.

Table 4. Parameters of contact ellipse.

Type Ball-Shaft Contact Ball-Nut Contact

Semi major axis (mm) 0.4611 0.4442
Semi minor axis (mm) 0.0411 0.0475
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3.2.1. Contact Theory Based Model

In the case of a contact theory based model, local coordinate systems with the center of
the contact surface as the origin were created on the contact surface, and then the con-tact



Appl. Sci. 2022, 12, 4713 7 of 12

pressure shown in Equations (16) and (17) were written in APDL code and entered. As
for boundary conditions, as shown in Figure 6, the cut surface of the shaft was fixed and,
considering that the ball has a symmetrical shape, the degree of freedom of the nodes were
limited so that the nodes at circumference of the three directions (X, Y, and Z) could only
move in the circumferential direction.
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3.2.2. Contact Condition Applied Model

In the case of a model to which the contact condition was applied, the no separation
contact condition, in which two contact surfaces could slide without friction, was applied.
Formulation, which is mainly used in contact conditions, includes augmented Lagrange,
pure penalty, normal Lagrange, and MPC, but normal Lagrange and MPC were excluded
because they derive only the analysis result of one of the two components in contact.
Therefore, only the FEA models to which augmented Lagrange and pure penalty were
applied were separately built. As shown in Figure 7, the contact pressure derived in
Section 2 was applied to the surface where the ball is in contact with the nut, and the cut
surface of the shaft was fixed [20,21].
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3.3. Results and Discussion

The mesh was generated in a tetrahedral shape, and to reduce the dependency on
the mesh, theory based models were iteratively solved by decreasing the mesh size and
increasing the number of mesh until there was no change in the equivalent stress. As
shown in Table 5 and Figures 8 and 9, it could be observed that the maximum equivalent
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stress value vibrates and the shape of stress distribution is stable from the mesh size of
Type 3–5. Therefore, the mesh size of Type 4 was adopted to FEA model. In addition, the
results derived from the model composed of Type 4 mesh size were determined as the final
analysis results of theory based FEA model. The two cut surfaces shown in Figures 8 and 9
show the cut surface in the semi major axis direction and the semi minor axis direction
of the components, respectively. As shown in Figure 10, the shaft has 969,599 nodes and
4,837,708 elements, and the ball has 135,908 nodes and 663,794 elements.

Table 5. Results of mesh dependency test.

Types
Contact Surface

Mesh Size
(mm)

Other Mesh
Size

(mm)

Max.
Equivalent

Stress of Shaft
(MPa)

Max.
Equivalent

Stress of Ball
(MPa)

Type1 0.016 0.32 644.69 545.04
Type2 0.008 0.16 703 659.16
Type3 0.004 0.08 714.54 672.62
Type4 0.002 0.04 713.74 672.83
Type5 0.001 0.02 713.15 662.7
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Figure 10. Mesh configuration: (a) Shaft; (b) Ball.

The analysis of the model to which the contact conditions were applied was performed
with Type 4 mesh size for comparison in the same criteria, and the results are shown in
Figure 11. Figure 11 also shows both the semi major axis and the semi minor axis cut
surface of the analysis results as in Figures 8 and 9. As a result of solving models composed
of pure penalty or augmented Lagrange, both maximum stress recorded very high stress
values compared to the results of contact theory based models. In addition, the internal
stress estimated by the contact pressure should have a symmetrical shape in which the
stress is concentrated under the center of the contact surface, and the stress should weaken
as it deviates from the point. This shape can be observed in the results of the contact
theory based model shown in Figures 8 and 9. However, in the results of the model to
which the contact condition is applied, shown in Figure 11, it can be observed that greater
stress was generated at points farther from the center of the contact surface. As a result
of observing the shape of the contact pressure, as shown in Figure 12, it can be confirmed
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that the stress is concentrated in a very narrow area, which was determined to be the cause
of excessive stress. The contact theory based model directly inputs the contact pressure
to the contact surface, but the model to which the contact condition is applied seems to
have caused singularity in the process of calculating and applying contact pressure using
contact formulations. These comparison results prove that the contact theory based model
exhibits more valid results even when using the same mesh size [18,22].
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4. Conclusions and Future Works

In this paper, a new methodology that can observe how the stress in ball screws
changes in an environment in which they will be used was presented.

First, the contact surface shape and contact pressure between ball screw parts were
theoretically analyzed through several precedent studies based on the Hertz contact theory.
For theoretical analysis, the only equation that can express the shape of the contact surface
and the distribution of contact stress where the ball and the screw meet each other was
used to derive the shape of the elliptical contact surface and the pressure distribution on the
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contact surface. Additionally, this methodology has never been exploited in conventional
ball screw analysis research results. The shape of the contact surface was added in the 3D
modeling stage, and the pressure distribution on the contact surface was written in APDL
code and applied to FEA model. It was confirmed that the stress distribution inside the ball
screw derived from the analysis result of the model made by this process was similar to the
actual stress distribution. In addition, when compared with the results of the commonly
used model to which the contact condition is applied, it was confirmed that the contact
theory based model showed more valid results even in the same mesh size.

The methodology presented in this study does not consider friction in order to apply
the Hertz contact theory, and it can only be used when the load applied to the ball screw
causes the elastic behavior of the material alone. It will be interesting to develop this study
with the consideration of a realistic contact pressure considering Elastohydrodynamics or a
material plasticity. In addition, in this paper, it was not considered that the components
of the ball screw were heat-treated. It is also recommended to build an analysis model
that considers changes in material properties of heat-treated ball screw components for
surface hardening.
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Nomenclature

Z The number of balls between shaft and nut
P Axial load
Q Normal load
α Contact angle
λ Lead angle
a Semi major axis of contact ellipse
b Semi minor axis of contact ellipse
Rx Equivalent radius in the rolling direction
Ry Transversal equivalent radius
k Radii ratio
dw Ball diameter
dm Pitch circle diameter of balls
fs Curvature parameter for the shaft race
fn Curvature parameter for the nut race
E∗ Equivalent elastic modulus
Es Elastic modulus of shaft
Eb Elastic modulus of ball
En Elastic modulus of nut
νs Poisson’s ratio of shaft
νb Poisson’s ratio of ball
νn Poisson’s ratio of nut
σmax Max contact pressure
σ Local contact pressure
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