
����������
�������

Citation: Majorkowska-Mech, D.;

Cariow, A. Some FFT Algorithms for

Small-Length Real-Valued Sequences.

Appl. Sci. 2022, 12, 4700. https://

doi.org/10.3390/app12094700

Academic Editor: Yutaka Ishibashi

Received: 15 March 2022

Accepted: 2 May 2022

Published: 7 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Some FFT Algorithms for Small-Length Real-Valued Sequences
Dorota Majorkowska-Mech *,† and Aleksandr Cariow †

Faculty of Comuter Science and Information Technology, West Pomeranian University of Technology,
Zolnierska 49, 71-210 Szczecin, Poland; acariow@wi.zut.edu.pl
* Correspondence: dmajorkowska@wi.zut.edu.pl
† These authors contributed equally to this work.

Abstract: This paper proposes fast algorithms for computing the discrete Fourier transform for
real-valued sequences of lengths from 3 to 9. Since calculating the real-valued DFT using the complex-
valued FFT is redundant regarding the number of needed operations, the developed algorithms do
not operate on complex numbers. The algorithms are described in matrix–vector notation and their
data flow diagrams are shown.

Keywords: discrete Fourier transform; fast algorithm; matrix–vector notation

1. Introduction

Today, discrete Fourier transform (DFT) is one of the most popular digital signal- and
image-processing tools [1–7]. However, it was used quite rarely for a long time due to its
high computational complexity. In 1965, J. Cooley and J. Tukey proposed a fast algorithm
to compute DFT with a drastically reduced number of arithmetical operations [8]. This
discovery caused a furore among specialists and gave impetus to developing high-speed
data processing algorithms based on fast Fourier transform (FFT). Mathematically, FFT
algorithms are based on a factorization of the Fourier matrix into a product of sparse
matrices, meaning matrices with many zero entries. In the case of the Cooley–Tukey
algorithm, we are dealing with the representation of the original matrix as a product of
log2 N sparsely structured matrices. As is well known, the complexity of this algorithm is
approximately (N/2) log2 N multiplications and the same number of additions of complex
numbers.

In DFT algorithms, the input data is usually complex-valued. However, in practical
digital signal-processing applications, the dataset for which the DFT is calculated is most
often real-valued [9–11]. Therefore, developing algorithms suited explicitly for computing
the DFT of real-valued data is an actual problem [12].

DFT algorithms for complex-valued data can be used directly for real-valued data.
Specifically, the DFT of a real-valued dataset can be computed by converting it into a
complex-valued dataset with zero imaginary parts. This approach, although simple, re-
quires about twice the amount of computation and memory than that required in the case
of more efficient algorithms designed for real-valued data. Moreover, ordinarily calcu-
lating the real-valued DFT using the complex-valued DFT is redundant regarding the
number of operations performed. It is well known that the DFT of a real-valued signal
is conjugate-symmetric. Therefore, even intuitively, one can assume that the calculations
can be reduced by about half in this case. There are two main rational approaches to
using the conventional complex-valued DFT to calculate the real-valued DFT. The first
approach allows the simultaneous calculation of two N-point real-valued DFTs using a
complex-valued DFT of the same size. The second approach is based on the transformation
of an N-point real-valued sequence into an N/2-point complex-valued sequence, which
leads to a reduction in computational complexity. Despite the existence of the mentioned
approaches, there are a large number of algorithmic solutions developed specifically for
real-valued data [12–41]. In this regard, articles [14,25,26] may be particularly noted.

Appl. Sci. 2022, 12, 4700. https://doi.org/10.3390/app12094700 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12094700
https://doi.org/10.3390/app12094700
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2123-0521
https://orcid.org/0000-0002-4513-4593
https://doi.org/10.3390/app12094700
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12094700?type=check_update&version=1

Appl. Sci. 2022, 12, 4700 2 of 21

The developed algorithms were presented mainly in algebraic relations, and less often
in DFT matrix factorizations. However, none of the publications known to us explains
how these ratios were obtained and from what considerations the presented matrices
were constructed. This is especially true for small-length real-valued DFT algorithms.
Thus, the details of constructing small-length real-valued DFT algorithms are essential.
Nevertheless, the solutions given in the literature do not provide a complete imagination
about the organization of the small-length real-valued DFT calculation process since their
corresponding signal flow graphs are not presented anywhere. In addition, it should
be noted that real-valued DFT algorithms for small-length sequences are described in
publications available to the authors rather poorly [14].

Applications of short-size FFT algorithms are known from the literature [1,3–5,7].
The need to calculate real-valued DFTs arises, for example, in the world of the Internet
of Things, smart sensors and connected devices generate a massive amount of data on
petabytes per second. Due to communication costs that impact performance and energy
consumption, there is an increasing need to perform a significant amount of computation
closer to the edge rather than transferring large portions of raw data to the cloud. The
latency and security risk of relying on the cloud is intolerable for applications deployed
in drones, autonomous vehicles, robotics, and wearables. These applications are often
enabled by DSP algorithms and, more specifically, by small-length real-valued DFTs, which
extract meaningful information from raw data. Therefore, the efficient deployment of signal
processing in embedded devices will improve near-sensor processing, avoid expensive
data transmission, enable freedom from the cloud, and provide low latency and low
energy consumption. This is a significant challenge due to the embedded systems resource
constraints and the increased computational requirements of data processing.

The purpose of the article is to show the details of the organization of calculations of
small-length DFTs for the case of real-valued input data as well as to reduce the number of
arithmetic operations needed to compute the output.

Similar solutions for some N(3, 5, 7) can be found in [14]. However, there are no
considerations of how the presented matrices were constructed and the data flow diagrams
are not shown. We have completed the missing algorithms for the remaining N(4, 6, 8, 9),
described the way in which these algorithms were obtained, and shown the data flow
diagrams for all N from 3 to 9.

2. Mathematical Background

The DFT of a discrete signal x(n) of size N is given by

c(n) =
N−1

∑
k=0

x(k) exp
−j2πnk

N
=

N−1

∑
k=0

x(k)
(

cos
2πnk

N
− j sin

2πnk
N

)
(1)

for n = 0, 1, . . . , N − 1, where j is the imaginary unit. Each coefficient c(n) of DFT, as a
complex number, can be written as a sum

c(n) = a(n) + jb(n) (2)

where a(n) and b(n) are the a real part and an imaginary part of c(n), respectively. For real
signal x(n)

a(n) =
N−1

∑
k=0

x(k) cos
2πnk

N
(3)

b(n) = −
N−1

∑
k=0

x(k) sin
2πnk

N
(4)

Appl. Sci. 2022, 12, 4700 3 of 21

In this case, the DFT is redundant since it is conjugate-symmetric. Its real and imaginary
parts meet the following properties:

a(N−n)=
N−1

∑
k=0

x(k) cos
2π(N−n)k

N
=

N−1

∑
k=0

x(k) cos
2πnk

N
= a(n) (5)

b(N−n)=−
N−1

∑
k=0

x(k) sin
2π(N−n)k

N
=

N−1

∑
k=0

x(k) sin
2πnk

N
=−b(n) (6)

Taking into account the periodicity of the signal x(n) and their DFT with the period N, we
can write

a(N − n) = a(−n) = a(n) (7)

so the real part of DFT is an even function. Since

b(N − n) = b(−n) = −b(n) (8)

then the imaginary part of DFT is an odd function. From (8) for n = 0 we have b(−0) =
b(0) = −b(0), so we obtain

b(0) = 0 (9)

and if N is an even number b(N/2) = b(N−N/2) = b(−N/2) = −b(N/2), so

b
(

N
2

)
= 0 (10)

In order to avoid redundancy and to use real transform for real signals the real discrete
Fourier transform (RDFT) has been defined [25]

y(n) =
N−1

∑
k=0

x(k) cos
(

2πnk
N

+ θ(n)
)

(11)

where

θ(n) =

{
0 0 ≤ n ≤ bN

2 c
π
2 bN

2 c < n ≤ N − 1
(12)

and b·c denotes the floor function.
To see the relationship between the RDFT and the DFT of the signal x(n), it is better to

write the RDFT in a slightly different form

y(n) =

{
∑N−1

k=0 x(k) cos 2πnk
N 0 ≤ n ≤ bN

2 c

−∑N−1
k=0 x(k) sin 2πnk

N bN
2 c < n ≤ N − 1

(13)

Now it is clear that

y(n) =

{
a(n) 0 ≤ n ≤ bN

2 c
b(n) bN

2 c < n ≤ N − 1
(14)

so the RDFT contains the not repeated and non-zero coefficients from the real and imaginary
parts of the DFT.

Appl. Sci. 2022, 12, 4700 4 of 21

Knowing the RDFT coefficients of the signal and the relationships (7)–(10) and (14), it
is easy to obtain the DFT coefficients. Namely, if N is an even number then

a(0) = y(0)
a(1) = y(1)
...
a(N

2 − 1) = y(N
2 − 1)

a(N
2) = y(N

2)

a(N
2 + 1) = a(N

2 − 1) = y(N
2 − 1)

...
a(N − 1) = a(1) = y(1)

b(0) = 0
b(1) = −b(N − 1) = −y(N − 1)
...
b(N

2 − 1) = −b(N
2 + 1) = −y(N

2 + 1)

b(N
2) = 0

b(N
2 + 1) = y(N

2 + 1)
...
b(N − 1) = y(N − 1)

(15)

If N is an odd number then

a(0) = y(0)
a(1) = y(1)
...
a(N−1

2) = y(N−1
2)

a(N+1
2) = a(N−1

2) = y(N−1
2)

...
a(N − 1) = a(1) = y(1)

b(0) = 0
b(1) = −b(N − 1) = −y(N − 1)
...
b(N−1

2) = −b(N+1
2) = −y(N+1

2)

b(N+1
2) = y(N+1

2)
...
b(N − 1) = y(N − 1)

(16)

Later in the article, the matrix–vector notation will be used, so the discrete real input
signal x(n) of size N will be represented by a column vector xN = [x0, x1, . . . , xN−1]

T ,
the N-by-N RDFT matrix will be denoted by RN and the output signal y(n)—by yN =
[y0, y1, . . . , yN−1]

T , where [·]T means standard transposition operation. In matrix–vector
notation the RDFT transform can be described as follows:

yN = RNxN (17)

The entries rnk of the matrix RN are obtained from (11)

rnk = cos
(

2πnk
N

+ θn

)
(18)

where the indexes n and k vary from 0 to N − 1 and θn = θ(n) is defined by (12).

3. RDFT Algorithm for N = 3

For N = 2, the DFT is real-valued for real input signal and it is the same as RDFT,
so we will start from N = 3. We introduce the denotation φN = 2π/N. In this case the
Equation (17) will take the form

y3 = R3x3 (19)

where

R3 =

 cos 0 cos 0 cos 0
cos 0 cos φ3 cos 2φ3
cos π

2 cos(2φ3 +
π
2) cos(4φ3 +

π
2)

 =

1 1 1
1 cos φ3 cos 2φ3
0 − sin 2φ3 − sin 4φ3

 (20)

Since φ3 = 2π/3 then using the trigonometric reduction formulas we obtain cos 2φ3 =
cos φ3, sin 2φ3 = − sin φ3, and sin 4φ3 = sin φ3, so the R3 matrix will take the form

R3 =

1 1 1
1 cos φ3 cos φ3
0 sin φ3 − sin φ3

 (21)

Appl. Sci. 2022, 12, 4700 5 of 21

When we calculate the product of this matrix by the input vector x3 we obtainy0
y1
y2

 =

 x0 + (x1 + x2)
x0 + cos φ3(x1 + x2)

sin φ3(x1 − x2)

 =

 x0 + (x1 + x2)
(cos φ3 − 1)(x1 + x2) + [x0 + (x1 + x2)]

sin φ3(x1 − x2)

 (22)

Figure 1 shows a data flow diagram corresponding to this calculation, where d1 =
cos φ3 − 1 and d2 = sin φ3.

x0

x1

x2

y0

y1

y2

d1

d2

Figure 1. Data-flow diagram of the RDFT algorithm for N = 3.

In this paper, data flow diagrams are oriented from left to right. Straight lines in
the figures denote the operations of data transfer. Points where lines converge denote
summation. The dotted lines indicate a signed-changed data transfer operation. The circles
in these figures show the operation of multiplication by a number inscribed inside a circle.

When the vector z3 = a3 + ib3 of complex coefficients of DFT for the real input vector
x3 is needed, it can be easily obtained from the output vector y3 of RDFT, according to (16)

a3 =

a0
a1
a2

 =

y0
y1
y1

 b3 =

b0
b1
b2

 =

 0
−y2
y2

 (23)

The algorithm of the RDFT for N = 3, presented in Figure 1, can be described by the
following matrix–vector procedure, in which the matrix R3 has been factorized:

y3 = C3D3Ã3Â3y3 (24)

where

Â3 =

1 0 0
0 1 1
0 1 −1

 Ã3 =

1 1 0
0 1 0
0 0 1

 D3 =

1 0 0
0 d1 0
0 0 d2

 C3 =

1 0 0
1 1 0
0 0 1

 (25)

According to this algorithm we need only 2 multiplications and 4 additions of real
numbers to calculate the output vector y3. It should be noted that only the matrix D3 is
responsible for multiplications and that matrix is diagonal

D3 = diag(1, d1, d2) (26)

4. RDFT Algorithm for N = 4

For N = 4, the Equation (17) will take the form

y4 = R4x4 (27)

where

R4 =


1 1 1 1
1 cos φ4 cos 2φ4 cos 3φ4
1 cos 2φ4 cos 4φ4 cos 6φ4
0 − sin 3φ4 − sin 6φ4 − sin 9φ4

 (28)

Appl. Sci. 2022, 12, 4700 6 of 21

Since φ4 = 2π/4 = π/2 then cos φ4 = 0, cos 2φ4 = −1, cos 3φ4 = 0, cos 4φ4 = 1,
cos 6φ4 = −1 and sin 3φ4 = −1, sin 6φ4 = 0, sin 9φ4 = 1, so the R4 matrix will take
the form

R4 =


1 1 1 1
1 0 −1 0
1 −1 1 −1
0 1 0 −1

 (29)

When we calculate the product of this matrix by the real input vector x4 we obtain
y0
y1
y2
y3

 =


(x0 + x2) + (x1 + x3)

x0 − x2
(x0 + x2)− (x1 + x3)

x1 − x3

 (30)

Figure 2 shows a data-flow diagram corresponding to this calculation.

x0

x1

x2

x3

y 0

y1

y 2

y 3

Figure 2. Data-flow diagram of the RDFT algorithm for N = 4.

When the vector z4 = a4 + ib4 of complex coefficients of DFT for the input vector x4
is needed, it can be easily obtained from the output vector y4 of RDFT, according to (15)

a4 =


a0
a1
a2
a3

 =


y0
y1
y2
y1

 b4 =


b0
b1
b2
b3

 =


0
−y3

0
y3

 (31)

The algorithm of the RDFT for N = 4, presented in Figure 2, can be described by the
following matrix-vector procedure, in which the matrix R4 has been factorized:

y4 = C4D4Ã4Â4x4 (32)

where

Â4 =


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 Ã4 =


1 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

 D4 = I4 C4 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (33)

and Ik denotes the identity matrix of size k.
According to this algorithm, we need only 6 additions of real numbers to calculate the

output vector y4. It should be noted that the matrix D4 is responsible for multiplications and
that, in this case, this matrix is equal to identity matrix, so we need not any multiplications
of real numbers.

5. RDFT Algorithm for N = 5

For N = 5, the Equation (17) will take the form

y5 = R5x5 (34)

Appl. Sci. 2022, 12, 4700 7 of 21

where

R5 =


1 1 1 1 1
1 cos φ5 cos 2φ5 cos 3φ5 cos 4φ5
1 cos 2φ5 cos 4φ5 cos 6φ5 cos 8φ5
0 − sin 3φ5 − sin 6φ5 − sin 9φ5 − sin 12φ5
0 − sin 4φ5 − sin 8φ5 − sin 12φ5 − sin 16φ5

 (35)

Since φ5 = 2π/5 then cos 3φ5 = cos 2φ5, cos 4φ5 = cos φ5, cos 6φ5 = cos φ5, cos 8φ5 =
cos 2φ5 and sin 3φ5 = − sin 2φ5, sin 4φ5 = − sin φ5, sin 6φ5 = sin φ5, sin 8φ5 = − sin 2φ5,
sin 9φ5 = − sin φ5, sin 12φ5 = sin 2φ5, sin 16φ5 = sin φ5, so the R5 matrix will take the form

R5 =


1 1 1 1 1
1 cos φ5 cos 2φ5 cos 2φ5 cos φ5
1 cos 2φ5 cos φ5 cos φ5 cos 2φ5
0 sin 2φ5 − sin φ5 sin φ5 − sin 2φ5
0 sin φ5 sin 2φ5 − sin 2φ5 − sin φ5

 (36)

When we calculate the product of this matrix by the input vector x5 we obtain
y0
y1
y2
y3
y4

 =


x0 + [(x1 + x4) + (x2 + x3)]

x0 + cos φ5(x1 + x4) + cos 2φ5(x2 + x3)
x0 + cos 2φ5(x1 + x4) + cos φ5(x2 + x3)

sin 2φ5(x1 − x4)− sin φ5(x2 − x3)
sin φ5(x1 − x4) + sin 2φ5(x2 − x3)

 (37)

To better understand the construction of the RDFT algorithm for N = 5, we will introduce
the notations t1 = x1 + x4, t2 = x2 + x3, t3 = x2 − x3, t4 = x1 − x4, t0 = x0 + t1 + t2 and
consider the sub-blocks of the output vector y5. The first sub-block is[

y1
y2

]
=

[
x0
x0

]
+

[
cos φ5 cos 2φ5
cos 2φ5 cos φ5

][
t1
t2

]
=

=

[
x0
x0

]
+

[
1 1
1 −1

]cos φ5 + cos 2φ5

2
0

0
cos φ5 − cos 2φ5

2

[1 1
1 −1

][
t1
t2

]
(38)

We can also write it as

[
y1
y2

]
=

[
t0
t0

]
+

[
1 1
1 −1

]cos φ5 + cos 2φ5

2
− 1 0

0
cos φ5 − cos 2φ5

2

[1 1
1 −1

][
t1
t2

]
(39)

The second sub-block is[
y3
y4

]
=

[
− sin φ5 sin 2φ5
sin 2φ5 sin φ5

][
t3
t4

]
=

=

[
1 0 1
0 1 1

]− sin φ5 − sin 2φ5 0 0
0 sin φ5 − sin 2φ5 0
0 0 sin 2φ5

1 0
0 1
1 1

[t3
t4

]
(40)

Figure 3 shows a data flow diagram corresponding to the calculation of the output
vector, where d1 = (cos φ5 + cos 2φ5)/2− 1, d2 = (cos φ5 − cos 2φ5)/2, d3 = − sin φ5 −
sin 2φ5, d4 = sin φ5 − sin 2φ5 and d5 = sin 2φ5.

Appl. Sci. 2022, 12, 4700 8 of 21

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

x0

x1

x2

x3

x4

d1

d2

d3

d4

d5

Figure 3. Data-flow diagram of the RDFT algorithm for N = 5.

When the vector z5 = a5 + ib5 of complex coefficients of DFT for the real input vector
x5 is needed, it can be easily obtained from the output vector y5 of RDFT, according to (16)

a5 =


a0
a1
a2
a3
a4

 =


y0
y1
y2
y2
y1

 b5 =


b0
b1
b2
b3
b4

 =


0
−y4
−y3
y3
y4

 (41)

The algorithm of the RDFT for N = 5, presented in Figure 3, can be described by the
following matrix–vector procedure, in which the matrix R5 has been factorized:

y5 = C5×6C̃6D6Ã6A6×5Â5x5 (42)

where

Â5=


1 0 0 0 0
0 1 0 0 1
0 0 1 1 0
0 0 1 −1 0
0 1 0 0 −1

 A6×5=



1 0 0 0 0
0 1 1 0 0
0 1 −1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 1

 Ã6=



1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (43)

D6=



1 0 0 0 0 0
0 d1 0 0 0 0
0 0 d2 0 0 0
0 0 0 d3 0 0
0 0 0 0 d4 0
0 0 0 0 0 d5

 C̃6=



1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

C5×6=


1 0 0 0 0 0
0 1 1 0 0 0
0 1 −1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1

 (44)

According to this algorithm we need only 13 additions and 5 multiplications of real
numbers to calculate the output vector y5.

6. RDFT Algorithm for N = 6

For N = 6, the Equation (17) will take the form

y6 = R6x6 (45)

where

R6 =



1 1 1 1 1 1
1 cos φ6 cos 2φ6 cos 3φ6 cos 4φ6 cos 5φ6
1 cos 2φ6 cos 4φ6 cos 6φ6 cos 8φ6 cos 10φ6
1 cos 3φ6 cos 6φ6 cos 9φ6 cos 12φ6 cos 15φ6
0 − sin 4φ6 − sin 8φ6 − sin 12φ6 − sin 16φ6 − sin 20φ6
0 − sin 5φ6 − sin 10φ6 − sin 15φ6 − sin 20φ6 − sin 25φ6

 (46)

Appl. Sci. 2022, 12, 4700 9 of 21

Since φ6 = 2π/6 then cos 2φ6 = − cos φ6, cos 3φ6 = −1, cos 4φ6 = − cos φ6, cos 5φ6 =
cos φ6, cos 6φ6 = 1, cos 8φ6 = − cos φ6, cos 9φ6 = −1, cos 10φ6 = − cos φ6, cos 12φ6 = 1,
cos 15φ6 = −1 and sin 4φ6 = − sin φ6, sin 5φ6 = − sin φ6, sin 8φ6 = sin φ6, sin 10φ6 =
− sin φ6, sin 12φ6 = 0, sin 15φ6 = 0, sin 16φ6 = − sin φ6, sin 20φ6 = sin φ6, sin 25φ6 =
sin φ6, so the R6 matrix will take the form

R6 =



1 1 1 1 1 1
1 cos φ6 − cos φ6 −1 − cos φ6 cos φ6
1 − cos φ6 − cos φ6 1 − cos φ6 − cos φ6
1 −1 1 −1 1 −1
0 sin φ6 − sin φ6 0 sin φ6 − sin φ6
0 sin φ6 sin φ6 0 − sin φ6 − sin φ6

 (47)

When we calculate the product of this matrix by the input vector x6 we obtain

y0
y1
y2
y3
y4
y5

 =



(x0 + x3) + (x1 + x5) + (x2 + x4)
(x0 − x3) + cos φ6[(x1 + x5)− (x2 + x4)]
(x0 + x3) + cos φ6[−(x1 + x5)− (x2 + x4)]

(x0 − x3)− (x1 + x5) + (x2 + x4)
sin φ6[(x1 − x5)− (x2 − x4)]
sin φ6[(x1 − x5) + (x2 − x4)]

 =

=



(x0 + x3) + [(x1 + x5) + (x2 + x4)]
(cos φ6 + 1)[(x1 + x5)− (x2 + x4)] + [(x0 − x3)− (x1 + x5) + (x2 + x4)]
(− cos φ6 − 1)[(x1 + x5) + (x2 + x4)] + [(x0 + x3) + (x1 + x5) + (x2 + x4)]

(x0 − x3)− (x1 + x5) + (x2 + x4)
− sin φ6[(x2 − x4)− (x1 − x5)]
sin φ6[(x2 − x4) + (x1 − x5)]

 (48)

Figure 4 shows a data-flow diagram corresponding to the calculation of the output
vector, where d1 = − cos φ6 − 1, d2 = cos φ6 + 1, d4 = − sin φ6, and d5 = sin φ6.

 y0

y1

y2

y3

y4

y5

x0

x1

x2

x3

x4

x5

d1

d2

d4

d5

Figure 4. Data flow diagram of the RDFT algorithm for N = 6.

When the vector z6 = a6 + ib6 of complex coefficients of DFT for the real input vector
x6 is needed, it can be easily obtained from the output vector y6 of RDFT, according to (15)

a6 =



a0
a1
a2
a3
a4
a5

 =



y0
y1
y2
y3
y2
y1

 b6 =



b0
b1
b2
b3
b4
b5

 =



0
−y5
−y4

0
y4
y5

 (49)

Appl. Sci. 2022, 12, 4700 10 of 21

The algorithm of the RDFT for N = 6, presented in Figure 4, can be described by the
following matrix-vector procedure, in which the matrix R6 has been factorized:

y6 = C6D6Ã6A6Â6x6 (50)

where

Â6 =



1 0 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 0
1 0 0 −1 0 0
0 0 1 0 −1 0
0 1 0 0 0 −1

 A6 =



1 0 0 0 0 0
0 1 1 0 0 0
0 1 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 −1
0 0 0 0 1 1

 (51)

Ã6 =



1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 −1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 D6 =



1 0 0 0 0 0
0 d1 0 0 0 0
0 0 d2 0 0 0
0 0 0 1 0 0
0 0 0 0 d4 0
0 0 0 0 0 d5

 (52)

C6 =



1 0 0 0 0 0
0 0 1 1 0 0
1 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (53)

According to this algorithm we need only 14 additions and 4 multiplications of real
numbers to calculate the output vector y6.

7. RDFT Algorithm for N = 7

For N = 7, the Equation (17) will take the form

y7 = R7x7 (54)

where

R7 =



1 1 1 1 1 1 1
1 cos φ7 cos 2φ7 cos 3φ7 cos 4φ7 cos 5φ7 cos 6φ7
1 cos 2φ7 cos 4φ7 cos 6φ7 cos 8φ7 cos 10φ7 cos 12φ7
1 cos 3φ7 cos 6φ7 cos 9φ7 cos 12φ7 cos 15φ7 cos 18φ7
0 − sin 4φ7 − sin 8φ7 − sin 12φ7 − sin 16φ7 − sin 20φ7 − sin 24φ7
0 − sin 5φ7 − sin 10φ7 − sin 15φ7 − sin 20φ7 − sin 25φ7 − sin 30φ7
0 − sin 6φ7 − sin 12φ7 − sin 18φ7 − sin 24φ7 − sin 30φ7 − sin 36φ7


(55)

Since φ7 = 2π/7 then cos 4φ7 = cos 3φ7, cos 5φ7 = cos 2φ7, cos 6φ7 = cos φ7, cos 8φ7 =
cos φ7, cos 9φ7 = cos 2φ7, cos 10φ7 = cos 3φ7, cos 12φ7 = cos 2φ7, cos 15φ7 = cos φ7,
cos 18φ7 = cos 3φ7 and sin 4φ7 = − sin 3φ7, sin 5φ7 = − sin 2φ7, sin 6φ7 = − sin φ7,
sin 8φ7 = sin φ7, sin 10φ7 = sin 3φ7, sin 12φ7 = − sin 2φ7, sin 15φ7 = sin φ7, sin 16φ7 =

Appl. Sci. 2022, 12, 4700 11 of 21

sin 2φ7, sin 18φ7 = − sin 3φ7, sin 20φ7 = − sin φ7, sin 24φ7 = sin 3φ7, sin 25φ7 = − sin 3φ7,
sin 30φ7 = sin 2φ7, sin 36φ7 = sin φ7, so the R7 matrix will take the form

R7 =



1 1 1 1 1 1 1
1 cos φ7 cos 2φ7 cos 3φ7 cos 3φ7 cos 2φ7 cos φ7
1 cos 2φ7 cos 3φ7 cos φ7 cos φ7 cos 3φ7 cos 2φ7
1 cos 3φ7 cos φ7 cos 2φ7 cos 2φ7 cos φ7 cos 3φ7
0 sin 3φ7 − sin φ7 sin 2φ7 − sin 2φ7 sin φ7 − sin 3φ7
0 sin 2φ7 − sin 3φ7 − sin φ7 sin φ7 sin 3φ7 − sin 2φ7
0 sin φ7 sin 2φ7 sin 3φ7 − sin 3φ7 − sin 2φ7 − sin φ7


(56)

When we calculate the product of this matrix by the input vector x7 we obtain

y0
y1
y2
y3
y4
y5
y6


=



x0 + [(x1 + x6) + (x2 + x5) + (x3 + x4)]
x0 + cos φ7(x1 + x6) + cos 2φ7(x2 + x5) + cos 3φ7(x3 + x4)
x0 + cos 2φ7(x1 + x6) + cos 3φ7(x2 + x5) + cos φ7(x3 + x4)
x0 + cos 3φ7(x1 + x6) + cos φ7(x2 + x5) + cos 2φ7(x3 + x4)

sin 3φ7(x1 − x6)− sin φ7(x2 − x5) + sin 2φ7(x3 − x4)
sin 2φ7(x1 − x6)− sin 3φ7(x2 − x5)− sin φ7(x3 − x4)
sin φ7(x1 − x6) + sin 2φ7(x2 − x5) + sin 3φ7(x3 − x4)


(57)

To better understand the construction of the RDFT algorithm for N = 7, we will
introduce the notations t1 = x1 + x6, t2 = x2 + x5, t3 = x3 + x4, t4 = x3 − x4, t5 = x2 − x5,
t6 = x1− x6, t0 = x0 + t1 + t2 + t3 and consider the sub-blocks of the output vector y7. The
first sub-block is y1

y2
y3

 =

x0
x0
x0

+

 cos φ7 cos 2φ7 cos 3φ7
cos 2φ7 cos 3φ7 cos φ7
cos 3φ7 cos φ7 cos 2φ7

t1
t2
t3

 =

=

x0
x0
x0

+

1 1 1 0
1 −1 0 1
1 0 −1 −1




d̂1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4




1 1 1
1 0 −1
0 1 −1
−1 1 0


t1

t2
t3

 (58)

where d̂1 =
1
3
(cos φ7+cos 2φ7+cos 3φ7), d2 =

1
3
(2 cos φ7−cos 2φ7−cos 3φ7),

d3 =
1
3
(−cos φ7+2 cos 2φ7−cos 3φ7), d4 =

1
3
(−cos φ7−cos 2φ7+2 cos 3φ7).

It can also be written as

y1
y2
y3

 =

t0
t0
t0

+

1 1 1 0
1 −1 0 1
1 0 −1 −1




d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4




1 1 1
1 0 −1
0 1 −1
−1 1 0


t1

t2
t3

 (59)

where d1 =
1
3
(cos φ7+cos 2φ7+cos 3φ7)− 1. The second sub-block is

y4
y5
y6

 =

 sin 2φ7 − sin φ7 sin 3φ7
− sin φ7 − sin 3φ7 sin 2φ7
sin 3φ7 sin 2φ7 sin φ7

t4
t5
t6

 =

=

−1 0 1 −1
1 −1 0 −1
1 1 1 0




d5 0 0 0
0 d6 0 0
0 0 d7 0
0 0 0 d8



−1 1 1
1 0 1
−1 −1 0
0 1 −1


t4

t5
t6

 (60)

Appl. Sci. 2022, 12, 4700 12 of 21

where d5 =
1
3
(sin φ7 + sin 2φ7 − sin 3φ7), d6 =

1
3
(2 sin φ7 − sin 2φ7 + sin 3φ7),

d7 =
1
3
(sin φ7 − 2 sin 2φ7 − sin 3φ7), d8 =

1
3
(sin φ7 + sin 2φ7 + 2 sin 3φ7).

Figure 5 shows a data-flow diagram corresponding to the calculation of the output
vector y7.

y0

y1

y2

y3

y4

y5

y6

x0

x1

x2

x3

x4

x5

x6

d1

d2

d3

d4

d5

d6

d7

d8

Figure 5. Data-flow diagram of the RDFT algorithm for N = 7.

When the vector z7 = a7 + ib7 of complex coefficients of DFT for the real input vector
x7 is needed, it can be easily obtained from the output vector y7 of RDFT, according to (16)

a7 =



a0
a1
a2
a3
a4
a5
a6


=



y0
y1
y2
y3
y3
y2
y1


b7 =



b0
b1
b2
b3
b4
b5
b6


=



0
−y6
−y5
−y4
y4
y5
y6


(61)

The algorithm of the RDFT for N = 7, presented in Figure 5, can be described by the
following matrix–vector procedure, in which the matrix R7 has been factorized:

y7 = C7×9C̃9D9Ã9A9×7Â7x7 (62)

where

Â7=



1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 0 0 1 0
0 0 0 1 1 0 0
0 0 0 1 −1 0 0
0 0 1 0 0 −1 0
0 1 0 0 0 0 −1


A9×7=



1 0 0 0 0 0 0
0 1 1 1 0 0 0
0 1 0 −1 0 0 0
0 0 1 −1 0 0 0
0 −1 1 0 0 0 0
0 0 0 0 −1 1 1
0 0 0 0 1 0 1
0 0 0 0 −1 −1 0
0 0 0 0 0 1 −1


(63)

Appl. Sci. 2022, 12, 4700 13 of 21

Ã9=



1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


D9=



1 0 0 0 0 0 0 0 0
0 d1 0 0 0 0 0 0 0
0 0 d2 0 0 0 0 0 0
0 0 0 d3 0 0 0 0 0
0 0 0 0 d4 0 0 0 0
0 0 0 0 0 d5 0 0 0
0 0 0 0 0 0 d6 0 0
0 0 0 0 0 0 0 d7 0
0 0 0 0 0 0 0 0 d8


(64)

C̃9=



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


C7×9=



1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 1 −1 0 1 0 0 0 0
0 1 0 −1 −1 0 0 0 0
0 0 0 0 0 −1 0 1 −1
0 0 0 0 0 1 −1 0 −1
0 0 0 0 0 1 1 1 0


(65)

According to this algorithm we need only 30 additions and 8 multiplications of real
numbers to calculate the output vector y7.

8. RDFT Algorithm for N = 8

For N = 8, the Equation (17) will take the form

y8 = R8x8 (66)

where

R8=



1 1 1 1 1 1 1 1
1 cos φ8 cos 2φ8 cos 3φ8 cos 4φ8 cos 5φ8 cos 6φ8 cos 7φ8
1 cos 2φ8 cos 4φ8 cos 6φ8 cos 8φ8 cos 10φ8 cos 12φ8 cos 14φ8
1 cos 3φ8 cos 6φ8 cos 9φ8 cos 12φ8 cos 15φ8 cos 18φ8 cos 21φ8
1 cos 4φ8 cos 8φ8 cos 12φ8 cos 16φ8 cos 20φ8 cos 24φ8 cos 28φ8
0 −sin 5φ8 −sin 10φ8 −sin 15φ8 −sin 20φ8 −sin 25φ8 −sin 30φ8 −sin 35φ8
0 −sin 6φ8 −sin 12φ8 −sin 18φ8 −sin 24φ8 −sin 30φ8 −sin 36φ8 −sin 42φ8
0 −sin 7φ8 −sin 14φ8 −sin 21φ8 −sin 28φ8 −sin 35φ8 −sin 42φ8 −sin 49φ8


(67)

Since φ8 = 2π/8 then cos 2φ0 = 0, cos 3φ8 = − cos φ8, cos 4φ8 = −1, cos 5φ8 =
− cos φ8, cos 6φ8 = 0, cos 7φ8 = cos φ8, cos 8φ8 = 1, cos 9φ8 = cos φ8, cos 10φ8 = 0,
cos 12φ8 = −1, cos 14φ8 = 0, cos 15φ8 = cos φ8, cos 16φ8 = 1, cos 18φ8 = 0, cos 20φ8 = −1,
cos 21φ8 = − cos φ8, cos 24φ8 = 1, cos 28φ8 = −1, and sin 5φ8 = − sin φ8, sin 6φ8 =
−1, sin 7φ8 = − sin φ8, sin 10φ8 = 1, sin 12φ8 = 0, sin 14φ8 = −1, sin 15φ8 = − sin φ8,
sin 18φ8 = 1, sin 20φ8 = 0, sin 21φ8 = − sin φ8, sin 24φ8 = 0, sin 25φ8 = sin φ8, sin 28φ8 = 0,
sin 30φ8 = −1, sin 35φ8 = sin φ8, sin 36φ8 = 0, sin 42φ8 = 1, sin 49φ8 = sin φ8, so the R8
matrix will take the form

R8 =



1 1 1 1 1 1 1 1
1 cos φ8 0 − cos φ8 −1 − cos φ8 0 cos φ8
1 0 −1 0 1 0 −1 0
1 − cos φ8 0 cos φ8 −1 cos φ8 0 − cos φ8
1 −1 1 −1 1 −1 1 −1
0 sin φ8 −1 sin φ8 0 − sin φ8 1 − sin φ8
0 1 0 −1 0 1 0 −1
0 sin φ8 1 sin φ8 0 − sin φ8 −1 − sin φ8


(68)

Appl. Sci. 2022, 12, 4700 14 of 21

When we calculate the product of this matrix by the input vector x8 we obtain

y0
y1
y2
y3
y4
y5
y6
y7


=



[(x0 + x4) + (x2 + x6)] + [(x1 + x7) + (x3 + x5)]
(x0 − x4) + cos φ8[(x1 + x7)− (x3 + x5)]

(x0 + x4)− (x2 + x6)
(x0 − x4) + cos φ8[−(x1 + x7) + (x3 + x5)]

[(x0 + x4) + (x2 + x6)]− [(x1 + x7) + (x3 + x5)]
−(x2 − x6) + sin φ8[(x1 − x7)− (x3 − x5)]

(x1 − x7)− (x3 − x5)
(x2 − x6) + sin φ8[(x1 − x7) + (x3 − x5)]


(69)

Figure 6 shows a data-flow diagram corresponding to the calculation of the output
vector y8, where d3 = cos φ8 and d5 = sin φ8.

y0

y1

y2

y3

y4

y5

y6

y7

x0

x1

x2

x3

x4

x5

x6

x7

d3

d5

Figure 6. Data flow diagram of the RDFT algorithm for N = 8.

When the vector z8 = a8 + ib8 of complex coefficients of DFT for the real input vector
x8 is needed, it can be easily obtained from the output vector y8 of RDFT, according to (15)

a8 =



a0
a1
a2
a3
a4
a5
a6
a7


=



y0
y1
y2
y3
y4
y3
y2
y1


b8 =



b0
b1
b2
b3
b4
b5
b6
b7


=



0
−y7
−y6
−y5

0
y5
y6
y7


(70)

The algorithm of the RDFT for N = 8, presented in Figure 6, can be described by the
following matrix–vector procedure, in which the matrix R8 has been factorized:

y8 = C8D8Ã8A8Â8x8 (71)

where

Â8=



1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0
1 0 0 0 −1 0 0 0
0 0 0 1 0 −1 0 0
0 0 1 0 0 0 −1 0
0 1 0 0 0 0 0 −1


A8=



1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 1


(72)

Appl. Sci. 2022, 12, 4700 15 of 21

Ã8=



1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


D8=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 d3 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 d5 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(73)

C8=



1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0


(74)

According to this algorithm we need only 20 additions and 2 multiplications of real
numbers to calculate the output vector y8.

9. RDFT Algorithm for N = 9

For N = 9, the Equation (17) will take the form

y9 = R9x9 (75)

where

R9 =

 1 11×4 11×4
14×1 A4 B4
04×1 C4 D4

 (76)

and 1n×k, 0n×k are n by k submatrices with all entries equal to 1 or 0, respectively. After ap-
plying the reduction formulas and taking advantage of the fact that cos 3φ9 = cos(6π/9) =
−0.5, the component submatrices can be written in the following forms:

A4 =


cos φ9 cos 2φ9 −0.5 cos 4φ9

cos 2φ9 cos 4φ9 −0.5 cos φ9
−0.5 −0.5 1 −0.5

cos 4φ9 cos φ9 −0.5 cos 2φ9

 (77)

B4 =


cos 4φ9 −0.5 cos 2φ9 cos φ9
cos φ9 −0.5 cos 4φ9 cos 2φ9
−0.5 1 −0.5 −0.5

cos 2φ9 −0.5 cos φ9 cos 4φ9

 (78)

C4 =


sin 4φ9 − sin φ9 sin 3φ9 − sin 2φ9
sin 3φ9 − sin 3φ9 0 sin 3φ9
sin 2φ9 sin 4φ9 − sin 3φ9 − sin φ9
sin φ9 sin 2φ9 sin 3φ9 sin 4φ9

 (79)

D4 =


sin 2φ9 − sin 3φ9 sin φ9 − sin 4φ9
− sin 3φ9 0 sin 3φ9 − sin 3φ9

sin φ9 sin 3φ9 − sin 4φ9 − sin 2φ9
− sin 4φ9 − sin 3φ9 − sin 2φ9 − sin φ9

 (80)

It is easy to see that the matrix B4 can be obtained from the matrix A4 by reversing the
order of its columns, and the matrix D4 is the opposite matrix to the matrix obtained from

Appl. Sci. 2022, 12, 4700 16 of 21

C4 by reversing the order of its columns. When we calculate the product of the matrix R9
by the input vector x9 we obtain

y0
y1
y2
y3
y4
y5
y6
y7
y8


=



[x0 + (x3+x6)] + [(x1+x8) + (x2+x7) + (x4+x5)]
[x0−0.5(x3+x6)] + cos φ9[(x1+x8) + cos 2φ9[(x2+x7) + cos 4φ9[(x4+x5)
[x0−0.5(x3+x6)] + cos 2φ9[(x1+x8) + cos 4φ9[(x2+x7) + cos φ9[(x4+x5)

[x0 + (x3+x6)]− 0.5[(x1+x8) + (x2+x7) + (x4+x5)]
[x0−0.5(x3+x6)] + cos 4φ9[(x1+x8) + cos φ9[(x2+x7) + cos 2φ9[(x4+x5)

sin 3φ9(x3 − x6)]− sin 2φ9[(x4 − x5)− sin φ9[(x2 − x7) + sin 4φ9[(x1 − x8)
sin 3φ9[(x4−x5)− (x2−x7) + (x1−x8)]

− sin 3φ9(x3−x6)]− sin φ9[(x4−x5) + sin 4φ9[(x2−x7) + sin 2φ9[(x1−x8)
sin 3φ9(x3−x6)] + sin 4φ9[(x4−x5) + sin 2φ9[(x2−x7) + sin φ9[(x1−x8)


(81)

To better understand the construction of the RDFT algorithm for N = 9, we will
introduce the notations t1 = x1 + x8, t2 = x2 + x7, t3 = x3 + x6, t4 = x4 + x5, t5 = x4 − x5,
t6 = x3 − x6, t7 = x2 − x7, t8 = x1 − x8 and consider the sub-blocks of the output vector y8.
The first sub-block isy1

y2
y4

 =

x0 − 0.5t3
x0 − 0.5t3
x0 − 0.5t3

+

 cos φ9 cos 2φ9 cos 4φ9
cos 2φ9 cos 4φ9 cos φ9
cos 4φ9 cos φ9 cos 2φ9

t1
t2
t4

 =

=

x0 − 0.5t3
x0 − 0.5t3
x0 − 0.5t3

+

1 1 1 0
1 −1 0 1
1 0 −1 −1




d5 0 0 0
0 d6 0 0
0 0 d7 0
0 0 0 d8




1 1 1
1 0 −1
0 1 −1
−1 1 0


t1

t2
t4

 (82)

where d5 =
1
3
(cos φ9+cos 2φ9+cos 4φ9), d6 =

1
3
(2 cos φ9−cos 2φ9−cos 4φ9),

d7 =
1
3
(−cos φ9+2 cos 2φ9−cos 4φ9), d8 =

1
3
(−cos φ9−cos 2φ9+2 cos 3φ9).

The second sub-block isy5
y7
y8

 =

 t4 sin 3φ9
−t4 sin 3φ9
t4 sin 3φ9

+

− sin 2φ9 − sin φ9 sin 4φ9
− sin φ9 sin 4φ9 sin 2φ9
sin 4φ9 sin 2φ9 sin φ9

t5
t7
t8

 =

=

 t4 sin 3φ9
−t4 sin 3φ9
t4 sin 3φ9

+

 1 1 1 0
−1 1 0 −1
1 0 −1 −1




d9 0 0 0
0 d10 0 0
0 0 d11 0
0 0 0 d12




1 −1 1
1 0 −1
0 −1 −1
−1 −1 0


t5

t7
t8

 (83)

where d9 =
1
3
(sin φ9 − sin 2φ9 + sin 4φ9), d10 =

1
3
(− sin φ9 − 2 sin 2φ9 − sin 4φ9),

d11 =
1
3
(2 sin φ9 + sin 2φ9 − sin 4φ9), d12 =

1
3
(− sin φ9 + sin 2φ9 + 2 sin 4φ9).

Figure 7 shows a data flow diagram corresponding to the calculation of the output
vector y9, where d13 = d14 = sin 3φ9.

Appl. Sci. 2022, 12, 4700 17 of 21

x0

x1

x2

x3

x4

x5

x6

x7

x8

d5

d6

d7

d8

d9

d10

d11

d12

d13

d14

-0.5

-0.5

y0

y1

y2

y3

y4

y5

y6

y7

y8

Figure 7. Data–flow diagram of the RDFT algorithm for N = 9.

When the vector z9 = aa + ib9 of complex coefficients of DFT for the real input vector
x9 is needed, it can be easily obtained from the output vector y9 of RDFT, according to (16)

a9 =



a0
a1
a2
a3
a4
a5
a6
a7
a8


=



y0
y1
y2
y3
y4
y4
y3
y2
y1


b7 =



b0
b1
b2
b3
b4
b5
b6
b7
b8


=



0
−y8
−y7
−y6
−y5
y5
y6
y7
y8


(84)

The algorithm of the RDFT for N = 9, presented in Figure 7, can be described by the
following matrix–vector procedure, in which the matrix R9 has been factorized:

y9 = C9×11C̃11×15D15Ã15×11A11×9Â9x9 (85)

where

Â9 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 1 0 0 −1 0 0
0 0 1 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 −1


(86)

Appl. Sci. 2022, 12, 4700 18 of 21

A11×9 =



0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0
0 1 0 0 −1 0 0 0 0
0 0 1 0 −1 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 1
0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 −1 −1
0 0 0 0 0 −1 0 −1 0
0 0 0 0 0 0 1 0 0



(87)

Ã15×11 =



0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0



(88)

D15 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −0.5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −0.5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 d5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 d6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 d8 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d9 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 d10 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d11 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 d12 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 d13 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d14



(89)

C̃11×15 =



0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(90)

Appl. Sci. 2022, 12, 4700 19 of 21

C9×11 =



0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0
0 0 1 −1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 1 0 −1 0
0 0 0 0 0 0 1 0 −1 −1 0


(91)

According to this algorithm, we need only 36 additions and 10 multiplications (and
2 shifts) of real numbers to calculate the output vector y9.

10. Discussion

Table 1 compares the number of multiplications (×) and additions (+) of real numbers
necessary to determine the DFTs for real data vectors according to the proposed algo-
rithms and Winograd’s algorithms designed specifically for small data lengths N. We
compare our solutions with the corresponding Winograd’s algorithms because although
these solutions are quite old they are the best in terms of multiplicative complexity. It
should be remembered that the hardware multiplier is a very resource-intensive unit. The
multiplier is the most resource-intensive and energy-consuming arithmetic unit, occupying
a large area of the chip and dissipating a lot of power. Therefore, the use of complex and
resource-intensive FPGAs containing a large number of multipliers without a special need
is impractical. They use more power, take up more PCB space, and generate more heat
than simpler chips. Thus, using less sophisticated chips and lower thermal management
overheads translates into reduced processor size, weight, power consumption, and cost, as
well as increased reliability as an added benefit.

The advantage of the presented Winograd-type algorithms in comparison with the
Cooley–Tukey algorithms is that the critical path in the graph of any of the obtained
algorithms contains only one multiplication. If there is more than one multiplication
in the critical path of the algorithm, then this will create additional problems for the
implementation of computations. As a result of multiplying two n-bit operands, a 2n-bit
product is obtained. The need for repeated multiplication requires an additional amount of
manipulations with the operands and therefore requires more time and effort than when
we are dealing with only a single multiplication.

Table 1. Comparison of the number of arithmetic operations for the proposed algorithms and
Winograd’s algorithms described in [1].

N Proposed Solution Winograd’s Small-Lengths DFTs
× + × +

3 2 4 2 6
4 0 6 0 8
5 5 13 5 17
6 4 14 - -
7 8 30 8 36
8 2 20 2 26
9 10 36 10 44

It is easy to observe that the numbers of necessary multiplications are the same for
the proposed algorithms as in Winograd’s algorithms, but the number of needed additions
is smaller in the case of the solutions presented in the article. It must be said that the
difference in the number of addition operations for the compared solutions is minimal and
is not the main trump card of our paper. Our main goal was to reveal those aspects and
features of the organization of calculations of small-size real-valued DFTs that were not
disclosed in the available literature.

Appl. Sci. 2022, 12, 4700 20 of 21

11. Conclusions

The paper presents a complete set of algorithms for real short-length RDFTs for N
from 3 to 9. The corresponding signal flow graphs are also presented. The structure
of each such graph, if necessary, can be directly mapped to the VLSI structure. The
described algorithms are written in matrix–vector notation, where RDFT matrices are
factorized and the factors are sparse matrices. This factorization reduces the number of
arithmetic operations. Although the presented algorithms do not have a repeating structure
for different lengths of input vectors, in some cases they may be more applicable and
convenient in terms of implementation. One way or another, the solutions proposed by
us are original and may be helpful. It should be emphasized that the diversity of existing
approaches to the optimization of calculations cannot serve as an argument for stopping the
search for new solutions, which may be more effective from the point of view of previously
neglected criteria. Therefore, any rational approach to solving the current problem has the
right to exist because each new look and each new solution of a known issue, which was
previously solved by another method, stimulates the development of theory and practice,
expands and deepens our knowledge in the relevant field of science or technology and, at
least from this point of view, is helpful.

Author Contributions: Conceptualization, A.C.; methodology, A.C. and D.M.-M.; formal analysis,
D.M.-M.; writing—original draft preparation, D.M.-M.; writing—review and editing, D.M.-M.; visu-
alization, D.M.-M.; supervision, A.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DFT discrete Fourier transform
FFT fast Fourier transform
RDFT real discrete Fourier transform
FPGA field programmable gate array
PCB printed circuit board
VLSI very large-scale integration

References
1. Blahut, R.E. Fast Algorithms for Signal Processing; Cambridge University Press: New York, NY, USA, 2010.
2. Pratt, W.K. Digital Image Processing; John Wiley and Sons, Inc.: New York, NY, USA, 1991.
3. McClellan, J.H.; Rader, C.M. Number Theory in Digital Signal Processing; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1979.
4. Nussbaumer, H.J. Fast Fourier Transform and Convolution Algorithms; Springer: Berlin/Heidelberg, Germany, 1982.
5. Burrus, S.; Parks, T.W.; Potts, J.F. DFT/FFT and Convolution: Algorithms and Implementation; John Wiley & Sons: New York, NY,

USA, 1985.
6. Garg, H.K. Digital Signal Processing Algorithms: Number Theory, Convolution, Fast Fourier Transforms, and Applications; CRC Press:

Boca Raton, FL, USA, 1998.
7. Bi, G.; Zeng, Y. Transforms and Fast Algorithms for Signal Analysis and Representations; Birkhäuser: Basel, Switzerland, 2004.
8. Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301.

[CrossRef]
9. Gold, B.; Rader, C.M. Digital Processing of Signals; McGraw-Hill: New York, NY, USA, 1969.
10. Rabiner, L.R.; Gold, B. Theory and Application of Digital Signal Processing; Prentice Hall: Englewood Cliff, NJ, USA, 1975.
11. Bogner, R.E.; Constantinides, A.G. Introduction to Digital Filtering; John Wiley & Sons: New York, NY, USA, 1975.

http://doi.org/10.1090/S0025-5718-1965-0178586-1

Appl. Sci. 2022, 12, 4700 21 of 21

12. Voronenko, Y.; Püschel, M. Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Real DFTs. IEEE Trans. Signal
Process. 2009, 57, 205–222. [CrossRef]

13. Martens, J.-B. Discrete Fourier transform algorithms for real valued sequences. IEEE Trans. ASSP 1984, 32, 390–396. [CrossRef]
14. Hu, N.-C.; Ersoy, O.K. Fast computation of real discrete Fourier transform for any number of data points. IEEE Trans. Circuits

Syst. 1991, 38, 1280–1292. [CrossRef]
15. Murakami, H. Real-valued decimation-in-time and decimation-in-frequency algorithms. IEEE Trans. Circuits Syst. II Analog. Digit.

Signal Process. 1994, 41, 808–816. [CrossRef]
16. Murakami, H. Real-valued fast discrete Fourier transform and cyclic convolution algorithms of highly composite even length. In

Proceedings of the 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings,
Atlanta, GA, USA, 9 May 1996; Volume 3, pp. 1311–1314.

17. Sorensen, H.V.; Jones, D.L.; Heideman, M.T.; Burrus, C.S. A split-radix real-valued fast Fourier transform. In Proceedings of the
3rd European Signal Processing Conference, The Hague, The Netherlands, 2–5 September 1986; pp. 287–290.

18. Sorensen, H.V.; Jones, D.L.; Heideman, M.T.; Burrus, C.S. Realvalued fast Fourier transform algorithms. IEEE Trans. ASSP 1987,
35, 849–863. [CrossRef]

19. Uniyal, P.R. Transforming real-valued sequences: Fast Fourier versus fast Hartley transform algorithms. IEEE Trans. Signal
Process. 1994, 42, 3249–3254. [CrossRef]

20. Vernet, J.L. Real signals fast Fourier transform: Storage capacity and step number reduction by means of an odd discrete Fourier
transform. Proc. IEEE 1971, 59, 1531–1532. [CrossRef]

21. Heideman, M.T.; Burrus, C.S.; Johnson, H.W. Prime factor FFT algorithms for real-valued series. In Proceedings of the
ICASSP’84—IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego, CA, USA, 19–21 March 1984;
pp. 28A.7.1–28A.7.4.

22. Bergland, G.D. A fast Fourier transform algorithm for real-valued series. Commun. ACM 1968, 11, 703–710. [CrossRef]
23. Bergland, G.D. A radix-eight fast Fourier transform subroutine for real-valued series. IEEE Trans. Audio Electroacoust. 1969, 17,

138–144. [CrossRef]
24. Kumaresan, R.; Gupta, P.K. A prime factor FFT algorithm with real valued arithmetic. Proc. IEEE 1985, 73, 1241–1243. [CrossRef]
25. Ersoy, O.K. Real discrete Fourier transform. IEEE Tran. Acoust. Speech Signal Process. 1985, 33, 880–882. [CrossRef]
26. Ersoy, O.K.; Hu, N.C. Fast algorithms for the real discrete Fourier transform. In Proceedings of the ICASSP-88, International

Conference on Acoustics, Speech, and Signal Processing, New York, NY, USA, 11–14 April 1988; Volume 3, pp. 1902–1905.
27. Sundararajan, D.; Ahmad, M.O.; Swamy, M.N.S. Fast computation of the discrete Fourier transform of real data. IEEE Trans.

Signal Process. 1997, 45, 2010–2022. [CrossRef]
28. Parsons, T.W. A Winograd-Fourier transform algorithm for real valued data. IEEE Trans. Acoust. Speech Signal Process. 1979, 27,

398–402 [CrossRef]
29. Sekhar, B.R.; Prabhu, K.M.M. Radix-2 decimation in frequency algorithm for the computation of the real-valued FFT. IEEE Trans.

Signal Process. 1999, 47, 1181–1184. [CrossRef]
30. Yin, X.; Yu, F.; Ma, Z. Resource-efficient pipelined architectures for radix-2 real-valued FFT with real datapaths. IEEE Trans.

Circuits Syst. II Express Briefs 2016, 63, 803–807. [CrossRef]
31. Chi, H.-F.; Lai, Z.-H. A cost-effective memory-based real-valued FFT and Hermitian symmetric IFFT processor for DMT-based

wire-line transmission systems. In Proceedings of the 2005 IEEE International Symposium on Circuits and Systems (ISCAS),
Kobe, Japan, 23–26 May 2005; Volume 6, pp. 6006–6009.

32. Garrido, M.; Parhi, K.K.; Grajal, J. A pipelined FFT architecture for real-valued signals. IEEE Trans. Circuits Syst. I Reg. Pap. 2009,
56, 2634–2643. [CrossRef]

33. Ayinala, M.; Parhi, K.K. Parallel-pipelined radix-22 FFT architecture for real valued signals. In Proceedings of the 2010 Conference
Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November
2010; pp. 1274–1278.

34. Ayinala, M.; Lao, Y.; Parhi, K.K. An in-place FFT architecture for real-valued signals. IEEE Trans. Circuits Syst. II Exp. Briefs 2013,
60, 652–656. [CrossRef]

35. Ayinala, M.; Parhi, K.K. FFT architectures for real-valued signals based on radix- 23 and radix-24 algorithms. IEEE Trans. Circuits
Syst. I Reg. Pap. 2013, 60, 2422–2430. [CrossRef]

36. Salehi, S.A.; Amirfattahi, R.; Parhi, K.K. Pipelined architectures for real-valued FFT and Hermitian-symmetric IFFT with real
datapaths. IEEE Trans. Circuits Syst. II Exp. Briefs 2013, 60, 507–511. [CrossRef]

37. Lao, Y.; Parhi, K.K. Canonic composite length real-valued FFT. J. Signal Process. Syst. 2018, 90, 1401–1414. [CrossRef]
38. Zode, P.; Thor, A.; Deshmukh, A.Y. Folded FFT architecture for real-valued signals based on radix-23 algorithm. In Proceedings of

the 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 6–8 March 2014; pp. 1–4.
39. Mao, X.B.; Ma, Z.G.; Yu, F.; Xing, Q.J. A continuous-flow memory-based architecture for real-valued FFT. IEEE Trans. Circuits Syst.

II Express Briefs 2017, 64, 1352–1356. [CrossRef]
40. Yuan, M.; Ma, Z.; Yu, F.; Xing, Q. A novel address scheme for continuous-flow parallel memory-based real-valued FFT processor.

Electronics 2019, 8, 1042. [CrossRef]
41. Wiechno, T.; Yatsymirskyy, M. Two-stage fast Fourier and Hartley transform of real data sequence. Prz. Elektrotech. 2010, 86, 41–43.

http://dx.doi.org/10.1109/TSP.2008.2006152
http://dx.doi.org/10.1109/TASSP.1984.1164310
http://dx.doi.org/10.1109/31.99157
http://dx.doi.org/10.1109/82.338622
http://dx.doi.org/10.1109/TASSP.1987.1165220
http://dx.doi.org/10.1109/78.330387
http://dx.doi.org/10.1109/PROC.1971.8471
http://dx.doi.org/10.1145/364096.364118
http://dx.doi.org/10.1109/TAU.1969.1162043
http://dx.doi.org/10.1109/PROC.1985.13271
http://dx.doi.org/10.1109/TASSP.1985.1164632
http://dx.doi.org/10.1109/78.611197
http://dx.doi.org/10.1109/TASSP.1979.1163263
http://dx.doi.org/10.1109/78.752621
http://dx.doi.org/10.1109/TCSII.2016.2530862
http://dx.doi.org/10.1109/TCSI.2009.2017125
http://dx.doi.org/10.1109/TCSII.2013.2273841
http://dx.doi.org/10.1109/TCSI.2013.2246251
http://dx.doi.org/10.1109/TCSII.2013.2268411
http://dx.doi.org/10.1007/s11265-017-1296-9
http://dx.doi.org/10.1109/TCSII.2017.2683642
http://dx.doi.org/10.3390/electronics8091042

	Introduction
	Mathematical Background
	RDFT Algorithm for N=3
	RDFT Algorithm for N=4
	RDFT Algorithm for N=5
	RDFT Algorithm for N=6
	RDFT Algorithm for N=7
	RDFT Algorithm for N=8
	RDFT Algorithm for N=9
	Discussion
	Conclusions
	References

