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Abstract: The determination of meshing force and the load sharing ratio of gear teeth is critical to
predict the dynamic behavior or the load capacity of gear transmissions. In the previous literature, the
dynamic meshing force is usually calculated based on the traditional dynamic model, which ignores
the different effects of the meshing characteristics of each pair of teeth on the dynamic behavior of
the gear system. In this work, a new calculation method of dynamic meshing force is proposed based
on the new dynamic model considering the meshing state of multiple pairs of teeth. The difference
between the traditional calculation method and the new calculation method of dynamic meshing
force is analyzed. Based on the new dynamic model and new calculation method of dynamic meshing
force, the influence of different factors on dynamic response and dynamic meshing force are further
discussed. The results show that, compared with the traditional calculation method, this new method
can be used to effectively calculate the dynamic meshing force and the load sharing ratio of each
pair of teeth with different meshing characteristics. The presented method for the calculation of the
dynamic meshing force and the load sharing ratio provides an important reference for analyzing and
predicting the dynamic behavior or the load capacity of spur gears, especially the high contact ratio
(HCR) gears with contact ratio more than two.

Keywords: gear; nonlinear dynamics; dynamic meshing force; load sharing ratio; dynamic response

1. Introduction

Gear transmissions have extensive applications in various mechanical systems. Due
to the technical advantages and importance of gear transmissions, a lot of researchers
have carried out in-depth exploration in the various fields of gears and obtained very rich
results. For example, Litvin [1–6], Simon [7], Lin [8] and Vivet [9] et al., simulated and
analyzed the meshing characteristics of different types of gear pairs based on the tooth
contact analysis (TCA) method by constructing the tooth surface models. Kubo [10,11],
Kahraman [12–15], Mucchi [16], Fernández [17] and Chen [18] et al., conducted a series of
theoretical and experimental studies on the gear system dynamics. Suh [19], Bouzakis [20],
Pasternak [21] and Gołebski [22–24] et al. have done a lot of valuable work in gear machin-
ing, which provides important methods to improve the performance of gear machining
and production of new types of gears. With the increase of transmission torque and speed,
higher requirements are put forward for the performance of gear transmission systems,
which largely depend on the design level of gears. As we all know, the calculation of load
capacity is a very important work in gear design [25,26], which is closely related to the
meshing state of gear teeth. In the process of gear transmission, the gear teeth of the driven
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wheel bear the meshing force from the teeth of the driving wheel and vice versa. With the
meshing position varying, the meshing force between a pair of teeth will change, resulting
in the change of load sharing ratio among mating gear teeth in simultaneous contact. The
determination of meshing force and the load sharing ratio of gear teeth is critical to predict
the dynamic behavior or the load capacity of gear transmissions. In some literatures, several
calculation models for meshing force and load sharing ratio can be found. Pimsarn and
Kazerounian [27] presented a new method, pseudo-interference stiffness estimation (PISE),
for evaluating the equivalent mesh stiffness and the mesh load in gear system. Fernández
del Rincon et al. [28] developed an advanced model for the analysis of contact forces and
deformations in spur gear transmissions. Li [29] analyzed the effects of misalignment error
of gear shafts on the plane of action, tooth lead crowing and transmitted torque on tooth
meshing stiffness and the load sharing ratio. Ye and Tsai [30] studied the shared loads and
contact stress of a high contact ratio (HCR) spur gear pair with lead crowning and relieved
profiles. Marimuthu and Muthuveerappan [25,31] investigated the load carrying capacity
of asymmetric normal contact ratio (NCR) and HCR spur gears based on load sharing.
Sánchez et al. [32] developed a model of load distribution for external gears based on the
minimum elastic potential energy criterion and further studied the approximate equations
for the meshing stiffness and the load sharing ratio of spur gears including hertzian effects.
These literatures provide important methods for the calculation of meshing force and load
sharing ratio.

In addition to stiffness, the speed and damping will also have an impact on meshing
force and load sharing ratio, due to the dynamic meshing process of a pair of gears.
To construct the dynamic model of a gear system, some scholars have discussed the
dynamic meshing force of mating gears. Chen et al. [33], based on the formula of dynamic
meshing force, deduced the calculation formula of the friction force and then developed
a multi-degree of freedom nonlinear dynamic gear transmission system with friction,
time varying stiffness and dynamic backlash caused by central distance error. Similarly,
Xiang et al. [34] derived the calculation formula of the friction force by analyzing the
expression of the dynamic meshing forces and constructed a six degree of freedom nonlinear
dynamic model of a spur gear pair with time varying stiffness, gear backlash and surface
friction based on the period expansion method. Considering the sliding friction force
under single-tooth and double-tooth meshing regions, Xia et al. [35] further proposed
a nonlinear dynamic model for a spur gear pair. Li et al. [36] established a coupled
tribo-dynamic model based on the effect of both the combined mesh stiffness under the
dynamic meshing forces and the nonlinear backlash. Doan et al. [37] formulated the
equations of motions of a dynamic model, in which the dynamic force between two
teeth was defined, taking into account profile errors, and investigated the effects of basic
gear parameters on gear instantaneous mesh stiffness and dynamic forces. Liu et al. [38]
presented a nonlinear dynamics model of spur gear pair with pitch deviations under multi-
state meshing and analyzed the variation laws of dynamic meshing forces and the influence
of main parameters on nonlinear dynamics of the spur gear pair with pitch deviations.

These literatures also provide important methods and valuable conclusions for calcu-
lating dynamic meshing force and constructing dynamic models of gear systems. However,
in many previous literatures, to simplify the computational model, the dynamic model
of a single pair of teeth was used to characterize the dynamic behavior of all meshing
teeth in the whole meshing cycle. In these models, the comprehensive transmission error,
comprehensive meshing stiffness and comprehensive damping are employed. In fact, in the
process of gear transmission, the dynamic behavior of each pair of teeth may be different
due to the influence of different factors such as tooth surface modification, manufacturing
error, backlash and so on. In some of the above literatures, to deal with the dynamic mesh-
ing forces and friction forces, the meshing states of two pairs of teeth in the double-tooth
meshing region were considered. However, the difference of meshing states of each pair
of teeth was not fully considered, especially the difference of actual meshing positions of
two pairs of teeth caused by transmission error. On this issue, some scholars have carried
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out relevant research work. Amabili et al. [39] extended a pair of teeth in the spur gear
dynamic model to two pairs of teeth and established a nonlinear dynamic model including
meshing stiffness and transmission error of the two pairs of teeth. Shi et al. [40] studied the
gear dynamic model based on gear pair integrated error. The model includes the excitation
function of three pairs of teeth involved in the meshing process, which can effectively reflect
the actual meshing state of each pair of teeth. Previously, the authors [41] have studied the
dynamic model of a gear system considering the meshing state of multiple pairs of teeth.

This paper will further propose a calculation model for calculating the dynamic
meshing force and load sharing ratio for spur gears based on the proposed dynamic model.
In this paper, the differences between the dynamic meshing force and load sharing ratio
based on the traditional dynamic model and the new dynamic model proposed by authors
are considered and the effects of different factors, including different deviations, speeds,
loads and damping ratio, on the dynamic meshing force and load sharing ratio are also
discussed. The new calculation model for the dynamic meshing force proposed in this
paper can lay a foundation for the calculation of dynamic meshing force, load sharing ratio
and load capacity of the gears (especially the HCR gears with contact ratio more than two)
when considering the characteristics of the tooth surface.

2. Dynamic Model Analysis
2.1. Dynamic Model of Spur Gear Pair Considering the Meshing State of Multiple Pairs of Teeth

In this work, the dynamic transmission system consists of a pair of gears installed
on properly aligned shafts. In many previous literatures, the dynamic model of a single
pair of teeth was usually used to describe the dynamic behavior of teeth in the whole
meshing cycle, as shown in Figure 1. Here, θ1 and θ2 are the rotation angles of the driving
and driven wheels, respectively; Rb1 and Rb2 are the radius of the base circle of driving
and driven wheels, respectively; T1 and T2 are torques of driving and driven wheels,
respectively; k(t) is comprehensive meshing stiffness (N/m); cm(t) is comprehensive
damping (N·s/m); e(t) is comprehensive transmission error (comprehensive meshing
error) (m); b(t) is comprehensive backlash (m).
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In the process of gear transmission, the meshing state of each pair of teeth may be
different due to the influence of tooth surface modification, manufacturing error, backlash
and so on. When two or more pairs of teeth participate in meshing at the same time,
the established dynamic model with all teeth being treated as a pair of teeth will not
fully reflect the meshing state of each pair of teeth in the meshing process. Therefore, by
analyzing the dynamic behavior of each pair of teeth involved in meshing, the authors
developed a single degree of freedom nonlinear dynamic model considering the meshing
state of multiple pairs of teeth [41], as shown in Figure 2. Here, we set the j− 1th, jth and
j + 1th pairs of teeth participating in meshing and the meshing stiffness, meshing damping,
meshing error and backlash of each pair of teeth are functions of time. For example, the
meshing stiffness, meshing damping, meshing error and backlash of the jth pair of teeth
are k(j)(t), c(j)(t),e(j)(t) and b(j)(t), respectively.
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(𝑗−1)(𝑡))
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Assuming that three pairs of gear teeth participate in meshing at the same time, the
corresponding dynamic equations can be obtained as follows:

I1
..
θ1 + c(j−1)(t) Rb1

( .
θ1Rb1 −

.
θ2Rb2 −

.
e(j−1)

(t)
)
+ c(j)(t)Rb1

( .
θ1Rb1 −

.
θ2Rb2 −

.
e(j)

(t)
)

+c(j+1)(t)Rb1

( .
θ1Rb1 −

.
θ2Rb2 −

.
e(j+1)

(t)
)
+ k(j−1)(t)Rb1 f (j−1)

(
θ1Rb1 − θ2Rb2 − e(j−1)(t)

)
+k(j)(t)Rb1 f (j)

(
θ1Rb1 − θ2Rb2 − e(j)(t)

)
+ k(j+1)(t)Rb1 f (j+1)

(
θ1Rb1 − θ2Rb2 − e(j+1)(t)

)
= T1

I2
..
θ2 − c(j−1)(t) Rb2

( .
θ1Rb1 −

.
θ2Rb2 −

.
e(j−1)

(t)
)
− c(j)(t)Rb2

( .
θ1Rb1 −

.
θ2Rb2 −

.
e(j)

(t)
)

−c(j+1)(t)Rb2

( .
θ1Rb1 −

.
θ2Rb2 −

.
e(j+1)

(t)
)
− k(j−1)(t)Rb2 f (j−1)

(
θ1Rb1 − θ2Rb2 − e(j−1)(t)

)
−k(j)(t)Rb2 f (j)

(
θ1Rb1 − θ2Rb2 − e(j)(t)

)
− k(j+1)(t)Rb2 f (j+1)

(
θ1Rb1 − θ2Rb2 − e(j+1)(t)

)
= −T2

(1)

Let dynamic transmission error x(t) = θ1Rb1 − θ2Rb2, we can obtain:

me
..
x +

(
c(j−1)(t) +c(j)(t) + c(j+1)(t)

) .
x + k(j−1)(t) f (j−1)

(
x− e(j−1)(t)

)
+ k(j)(t) f (j)

(
x− e(j)(t)

)
+k(j+1)(t) f (j+1)

(
x− e(j+1)(t)

)
− c(j−1)(t)

.
e(j−1)

(t)− c(j)(t)
.
e(j)

(t)− c(j+1)(t)
.
e(j+1)

(t)
= Fm

(2)

where I1 and I2 are rotary inertia of driving and driven wheels, respectively
(
kg·m2); me

is the equivalent mass (kg), me = I1 I2/
(

I1R2
b2 + I2R2

b1

)
; Fm is the equivalent applied load

(N), Fm = T1/Rb1 = T2/Rb2.
Considering the actual meshing state of a pair of gears, the above dynamic equations

can be sorted as follows:
me

..
x + cm(t)

.
x + Wm(t) = Fm (3)

Here, cm(t) is comprehensive meshing damping, which can be described as:

cm(t) =


c(j−1)(t) + c(j)(t) ntz ≤ t < ntz + (th − tz)

c(j)(t) ntz + (th − tz) ≤ t < ntz + tz

c(j)(t) + c(j+1)(t) ntz + tz ≤ t < ntz + th

n = 0, 1, 2, . . . (4)
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where tz is the meshing period (s), which is related to the number of teeth z1 and speed
n1 of driving wheel, namely tz = 60/z1n1; th is the meshing time of a pair of teeth from
engagement to disengagement (s).

Wm(t) is the comprehensive internal incentive and we can write its expression as follows:

Wm(t) =



k(j−1)(t) f (j−1)
(

x− e(j−1)(t)
)
+

k(j)(t) f (j)
(

x− e(j)(t)
)
− c(j−1)(t)

.
e(j−1)

(t)− c(j)(t)
.
e(j)

(t) ntz ≤ t < ntz + (th − tz)

k(j)(t) f (j)
(

x− e(j)(t)
)
− c(j)(t)

.
e(j)

(t) ntz + (th − tz) ≤ t < ntz + tz

k(j)(t) f (j)
(

x− e(j)(t)
)
+ ntz + tz ≤ t < ntz + th

k(j+1)(t) f (j+1)
(

x− e(j+1)(t)
)
− c(j)(t)

.
e(j)

(t)− c(j+1)(t)
.
e(j+1)

(t)

n = 0, 1, 2, . . . (5)

Here, f (j−1)
(

x− e(j−1)(t)
)

, f (j)
(

x− e(j)(t)
)

, f (j+1)
(

x− e(j+1)(t)
)

is the backlash func-
tion of j− 1th, jth and j + 1th pair of teeth, respectively. For example, the expression of the
backlash function of the jth pair of teeth is:

f (j)
(

x− e(j)(t)
)
=


x− e(j)(t)− b(j)(t) x > e(j)(t) + b(j)(t)
0 e(j)(t)− b(j)(t) ≤ x ≤ e(j)(t) + b(j)(t)
x− e(j)(t) + b(j)(t) x < e(j)(t)− b(j)(t)

(6)

2.2. Comparative Analysis of Simulation Results and Experimental Results

Let nominal frequency ωn =
√

km/me(km is the average meshing stiffness), dimension-
less displacement q = x/l (l is the nominal dimension), dimensionless time τ = ωnt, dimen-
sionless frequency Ωh = ω/ωn(ω is meshing frequency), damping ratio ζ = cm(τ)/2meωn.
The Equation (3) can be nondimensionalized as follows:

..
q(τ) + 2ζ

.
q(τ) +

Wm(τ)

km
=

Fm

kml
(7)

where Wm(τ) is dimensionless comprehensive internal incentive.
For the convenience of analysis, it is assumed that the meshing damping of each pair

of teeth is the same and constant. Hence, Equation (7) can be written as:

..
q(τ) + 2ζρ(τ)

.
q(τ) +

Wm(τ)

km
=

Fm

kml
(8)

where

ρ(τ) =


2 wnntz ≤ τ < wn[ntz + (th − tz)]

1 wn[ntz + (th − tz)] ≤ τ < wn(ntz + tz)

2 wn(ntz + tz) ≤ τ < wn(ntz + th)

n = 0, 1, 2, . . . (9)

To verify the correctness of the above dynamic model, the simulation results are ana-
lyzed based on the experimental data in Reference [14]. In this literature, Kahraman et al.,
carried out a series of dynamic experiments based on a pair of gears with basic parameters
as shown in Table 1 and obtained the equivalent root-mean-square amplitude Arms of
dynamic transmission error varying with frequency Ωh under a certain torque. According
to the References [14,15], the expression of Arms can be written as follows:

Arms =

√√√√ 3

∑
r=1

A2
r (10)

where Ar is rth mesh harmonic amplitude of dynamic transmission error, which can be
determined from the resulting Fourier spectra according to

Ar =

√√√√ Ni+BW/2

∑
si=Ni−BW/2

W(rsi) (11)
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Table 1. Basic parameters of gears.

Parameters
Value

Driving/Driven Wheel

Number of teeth 50
Module (mm) 3

Pressure angle (◦) 20
Base diameter [mm] 140.95

Tooth thickness at pitch diameter [mm] 4.64
Outer diameter [mm] 156
Root diameter [mm] 140.68

Face width [mm] 20
Mass [kg] 2.52

Inertia [kg·m2] 0.0074
Young’s modulus [MPa] 206,000

Poisson’s coefficient 0.3
Center distance [mm] 150

Backlash [mm] 0.145
Backlash on line of action [mm] 0.136

Contact ratio [-] 1.7547

Here, W is the one-sided discrete autopower spectra of dynamic transmission error, si
is a shaft order index, Ni is the number of teeth on gear i and BW is the analysis bandwidth
in shaft orders.

Based on the Reference [14], let ζ = 0.02, T = 340N·m, e(τ) = 0, the equivalent
root-mean-square amplitude Arms with frequency Ωh can be obtained. The comparison
between the simulation results and the experimental results is shown in Figure 3. When
Ωh changes from 0.18 to 0.23, the simulation result is compatible with the experimental
result. When Ωh > 0.25, the dynamic model can effectively reflect the change trend of
the equivalent root-mean-square amplitude Arms with frequency Ωh. With Ωh varying
from 0.25 to 0.32, 0.3 to 0.43, 0.37 to 0.83, Arms decreases sharply and then increases
slowly. In the whole region, the value of Arms obtained by the simulation is very close to
that of the experiment, especially in the decline stage. The frequency of each inflection
point (near Ωh = 0.28, 0.38 and 0.6, respectively) reflected by the simulation results and the
experimental results is almost consistent. Additionally, the simulation results can accurately
predict the transition frequencies where the jump of Arms occurs. It can be seen that though
there are some differences between the simulation results and the experimental results
due to the neglect of the influence of some factors such as elastic deformation of shaft and
bearing, lubrication, friction, etc., we can obtain a great similarity between them. Therefore,
the dynamic model established in this paper is reasonable.
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3. Comparative Analysis of Dynamic Meshing Force

The dynamic meshing force is composed of contact force and damping force. For the
traditional single degree of freedom dynamic model, the formula of dynamic meshing force
can be described as:

Fmesh = k(t) f (x(t)− e(t)) + cm(t)
( .
x(t)− .

e(t)
)

(12)

For the new model (the dynamic model considering the meshing state of multiple
pairs of teeth), the formula of dynamic meshing force for NCR gears is:

Fmesh =


F(j−1)

mesh + F(j)
mesh ntz ≤ t < ntz + (th − tz)

F(j)
mesh ntz + (th − tz) ≤ t < ntz + tz

F(j)
mesh + F(j+1)

mesh ntz + tz ≤ t < ntz + th

(13)

where 
F(j−1)

mesh = k(j−1)(t) f
(

x(t)− e(j−1)(t)
)
+ c(j−1)(t)

( .
x(t)− .

e(j−1)
(t)
)

F(j)
mesh = k(j)(t) f

(
x(t)− e(j)(t)

)
+ c(j)(t)

( .
x(t)− .

e(j)
(t)
)

F(j+1)
mesh = k(j+1)(t) f

(
x(t)− e(j+1)(t)

)
+ c(j+1)(t)

( .
x(t)− .

e(j+1)
(t)
) (14)

HCR gears have at least two tooth pairs in contact at all times, i.e., contact ratios of
2.0 or more, which can be obtained mainly by adding the addendum and lowering the
pressure angle. Compared with NCR gears, the machining process of HCR gears may be
more complicated due to the increase of addendum. In addition to traditional machining
methods, some new machining methods [22,24] can also be used to ensure the accuracy of
the tooth profile. Obviously, for HCR gears, the dynamic meshing force involves five pairs
of teeth, i.e., F(j−2)

mesh , F(j−1)
mesh , F(j)

mesh, F(j+1)
mesh , F(j+2)

mesh . Here, we will mainly take NCR gears as the
object for discussion. It can be seen from Formula (12) that e(t) used in the traditional
model is the comprehensive meshing error, which reflects the overall error of the meshing
teeth in the meshing process. In many previous literatures, simple harmonic function is
often used to express the transmission (meshing) error. However, there are many kinds
of deviation parameters in the gear system and the shape and amplitude of transmission
error caused by different deviation parameters are often different. Therefore, the use of
simple harmonic function may not fully express the specific characteristics of transmission
error. In fact, the tooth contact analysis method (TCA) can be used to obtain the meshing
(transmission) error [4] and the solution steps are shown in Figure 4. After constructing
the tooth surface mathematical model considering different deviations (errors), by solving
the tooth surface meshing equation, the meshing error data at each meshing position in
the meshing process can be acquired, and then the single pair of teeth meshing error curve
can be drawn. By successively calculating the meshing error of each pair of meshing teeth,
we can obtain the meshing error curves of all tooth pairs. If the influence of contact ratio
is considered, the comprehensive meshing error curve will be obtained by extracting the
superior envelope of the meshing error curve of the former and the latter pair of teeth in
the double-tooth meshing region.

Here, taking the tooth profile deviation as an example, the difference between compre-
hensive meshing error and tooth meshing error of a single pair will be analyzed. According
to References [16,17], the tooth profile deviation can be described as:

eα(s) = e f (s) + eH(s) =
f f α

2
sin

(
2π fr

s− so

s f − so

)
+ fHα

s− so

s f − so

(
so ≤ s ≤ s f

)
(15)

where f f α and fHα are profile form deviation and profile slope deviation, respectively (mm);
fr is the number of sine periods over the profile evaluation range; s is the involute rolling
path length over the profile evaluation range (mm); so and s f are the minimum and
maximum values of s over the profile evaluation range, respectively.
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Figure 5 shows the single pair of teeth meshing error curve and comprehensive
meshing error curve obtained by the TCA method under different contact ratio ε with
f f α = +0.015 mm, fr = 2. As can be seen from Figure 5, the two error curves are coincident
in the single-tooth meshing region; however, there is difference between them in the
double-tooth meshing region, because the comprehensive meshing error curve only reflects
the meshing state of the tooth pair with the larger meshing error. Moreover, with the
increase of contact ratio, the double-tooth meshing region gradually expands and the
difference between the two curves will become more and more obvious. For example,
Figure 5c,d show the single pair of teeth meshing error and comprehensive meshing error
obtained under different tooth profile deviations when contact ratio ε = 1.92, respectively.
It should be noted that Figure 5d shows another single pair of tooth meshing error curve
obtained by adjusting the tooth profile deviation during the double-tooth meshing region.
By comparing Figure 5c,d, we can observe that although the single pair of teeth meshing
errors in the two cases are obviously different, the corresponding comprehensive meshing
errors curve are the same. It can be predicted that the dynamic performance and dynamic
meshing force obtained by the traditional model (based on comprehensive meshing error)
and the new model (based on a single pair of teeth meshing error) are likely to be different.
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To illustrate the difference of dynamic response and dynamic meshing force obtained
by the two dynamic models, we take the meshing state reflected in Figure 5c,d as an
example for analysis. Let ζ = 0.04, T = 500 N·m, Ωh = 0.6. The single pair of teeth meshing
error and comprehensive meshing error in Figure 5c,d are successively brought into the
corresponding dynamic models and the time-history data of gear dynamic characteristics
can be obtained by solving the dynamic equations. Figure 6 shows the time history diagram
(only the variation of displacement from 80 to 100 meshing cycles is shown for saving
space) and FFT spectrogram obtained by the traditional model and the new model. Here,
in order to clearly show the change of dynamic transmission error in a meshing cycle, select
τ/τz as the abscissa, where τz is dimensionless period. It can be seen from Figure 6 that
the dynamic responses obtained by the new model based on Figure 5c,d are different due
to the difference of meshing state, but corresponding dynamic responses obtained by the
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traditional model are the same. In addition, we can see that there is an obvious difference
between the dynamic responses obtained by the new model and by the traditional model.
Therefore, compared with the traditional dynamic model, the new model can effectively
reflect the influence of different meshing errors on the dynamic performance in the whole
meshing stage.
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By further bringing the solution results of the dynamic equation into Formulas (12)
and (13), the total dynamic meshing force, which is the sum of the dynamic meshing forces
of each pair of meshing teeth participating in meshing during different meshing regions,
varying with the meshing cycle can be obtained, as shown in Figure 7. We can see that, the
overall change trends of dynamic meshing force based on the two models are the same,
but the amplitudes fluctuation of dynamic meshing force between them are quite different,
especially in the double-tooth meshing region. Since the new model adopts the single pair
of teeth meshing error, the meshing force and the load sharing ratio of each pair of teeth
under different meshing errors can be analyzed as shown in Figures 8 and 9. Comparing
Figure 8a,b, it can be seen that the fluctuation trends of the dynamic meshing forces of a
single pair of teeth under the two meshing errors with the meshing cycle are similar, but
their fluctuation amplitudes are obviously different. Figure 9 also reflects the difference of
load sharing ratio under the two meshing errors. We can see that the meshing error of a pair
of teeth may have an important impact on the dynamic meshing force and load distribution
in the meshing process. The above analysis indicates that the calculation method of the
dynamic meshing force based on the new model can be used to calculate the dynamic
meshing force of each pair of teeth considering their meshing errors, which is helpful for
the analysis dynamic behavior or calculation of dynamic load capacity of gears, especially
HCR gears with contact ratio more than two.
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4. Effects of Different Factors on Dynamic Meshing Force

In this part, based on the new model and the corresponding calculation method of the
dynamic meshing force, the influence of different factors on the dynamic response and the
dynamic meshing force will be analyzed.

4.1. Influence of Different Deviations on Dynamic Meshing Force

Here, we still take the tooth profile deviation as an example to analyze the changes
of the dynamic response and the dynamic meshing force under different profile form
deviations and profile slope deviations. Let the profile form deviation f f α1 be 0, 0.005, 0.015,
0.025 mm, respectively, and the corresponding meshing errors can be obtained based on
the meshing error solution algorithm. Substitute them into the dynamic equation and
let ζ = 0.04, T1 = 500 N·m, Ωh = 0.6. By solving the dynamic equations, we can obtain
the time history diagram and the FFT spectrogram when f f α1 is 0, 0.005, 0.015, 0.025 mm,
respectively, as shown in Figure 10. When f f α1 increases from 0 to 0.005 mm, the change of
dynamic response is not obvious. With f f α1 increasing from 0.005, 0.015 to 0.025 mm, the
amplitude of dynamic transmission error (displacement) q and the dominant frequency
increase obviously, which shows that the increase of f f α1 leads to the aggravation of
vibration of the whole system.
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By bringing the solution results of the dynamic equation into the formula of the
dynamic meshing force, the variation of the total dynamic meshing force and the single
pair of teeth meshing force with the meshing cycle can be obtained when f f α1 is equal to
0, 0.005, 0.015, 0.025 mm, respectively, as shown in Figures 11 and 12. As can be seen from
Figure 11, with different f f α1, the total dynamic meshing force will be different due to the
different meshing state of each pair of teeth, which can be seen more clearly from Figure 12.
It shows the change of dynamic meshing force of a single pair of teeth from meshing in to
meshing out. It can be seen that as the profile form deviation f f α1 increases from 0.005, 0.015
to 0.025 mm, the difference between the corresponding dynamic meshing force curve and
the dynamic meshing force curve with f f α1 = 0 mm becomes more and more obvious. It
should be noted that, in the rear double-tooth meshing region, the dynamic meshing force
of the pair of teeth is reduced to 0 when f f α1 is 0.025 mm, which means that the pair of
teeth are in the state of tooth disengagement and the load is completely borne by the other
pair of teeth. To further illustrate the load distribution of a single pair of teeth in a meshing
cycle, the curve of the load sharing ratio varying with the meshing cycle is drawn, as shown
in Figure 13. When f f α1 = 0 mm, in the front and rear double-tooth meshing regions, the
load sharing ratio increases or decreases smoothly with the change of meshing cycle and
the load sharing ratio curves in the two double-tooth meshing regions are symmetrically
distributed relative to the middle single-tooth meshing region. When f f α1 = 0.005 mm,
the load sharing ratio curve fluctuates to a certain extent, the fluctuation state of which
mainly depends on the shape of tooth profile deviation. As f f α1 increases from 0.005, 0.015
to 0.025 mm, the amplitude of the fluctuation of the load sharing ratio curve increases
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gradually. When f f α1 is 0.025 mm, a section of meshing region with the load sharing ratio
equaling to one appears in the front double-tooth meshing region, which indicates that
another pair of teeth are out of meshing at this time and the load is completely borne by
the pair of teeth. It can be seen that the profile form deviation can affect the meshing state
of gear teeth, resulting in the change of dynamic transmission performance and dynamic
meshing force to a certain extent. Moreover, if the profile form deviation is too large, the
phenomenon of tooth disengagement will occur, which should be paid attention to in gear
design and processing.
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In order to analyze the influence of profile slope deviation on dynamic response and
dynamic meshing force, we select f f α1 = 0.015 mm and let fHα1 be −0.010, 0, 0.01 mm
and 0.020 mm, respectively. Similarly, after calculating the meshing error, the correspond-
ing time history diagram and FFT spectrogram can be obtained when fHα1 varies from
−0.010, 0, 0.010 to 0.020 mm, as shown in Figure 14. We can see from Figure 14a that, when
fHα1 is different, the curve of displacement q with the meshing cycle will deviate to a
certain extent, but the overall fluctuation trend of each curve is similar. In Figure 14b, as
fHα1 increases from −0.010, 0, 0.010 to 0.020 mm, the amplitude of the dominant frequency
increases to some extent. However, when fHα1 continues to increase, the amplitude of the
dominant frequency does not increase significantly. It can be seen that the vibration and
noise can be reduced by properly adjusting profile slope deviation.
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By bringing the solution results of the dynamic equation into the formula of the
dynamic meshing force, the variation of the total dynamic meshing force and the single
pair of teeth meshing force with the meshing cycle can be obtained when fHα1 is equal to
−0.010, 0, 0.010, 0.020 mm, respectively, as shown in Figures 15 and 16. From Figure 15,
we can observe that, with different fHα1, the total dynamic meshing force will be different
due to the different meshing state of each pair of teeth. With the increase of fHα1 from 0 to
0.010, 0.020 mm, the fluctuation amplitude of the total dynamic meshing force increases
accordingly, and the fluctuation curve gradually moves to the left. When fHα1 changes from
0 to−0.010 mm, the amplitude of the total dynamic meshing force will also increase, but the
fluctuation curve moves to the right. As can be seen from Figure 16, as fHα1 increases from
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0 to 0.010, 0.020 mm, the dynamic meshing force of a single pair of teeth increases in the
front double-tooth meshing region and decreases in the rear double-tooth meshing region.
Moreover, when fHα1 = 0.020 mm, the dynamic meshing force of a single pair of teeth
decreases to 0 near τ/τz = 99.4, that is, the pair of teeth are in the state of disengagement
at this time. When fHα1 changes from 0 to −0.010 mm, the single tooth dynamic meshing
force gradually decreases, and increases in the rear double-tooth meshing region. However,
when fHα1 is equal to a different value, the fluctuations of the corresponding dynamic
meshing force of a single pair of teeth are very similar. Figure 17 shows the curve of the load
sharing ratio varying with the meshing cycle. In the whole double-tooth meshing region,
especially in the meshing in and meshing out positions, the load sharing ratio curves under
different fHα1 have a certain offset, which is different from that reflected in Figure 13.
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It can be seen that both the profile form deviation and the profile slope deviation will
have a certain effect on the dynamic characteristics and dynamic meshing force, but their
effects are different. Therefore, in order to accurately analyze the dynamic response and
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dynamic meshing force under different deviations, the characteristics of meshing errors
caused by these deviations need to be considered.

4.2. Influence of Different Speeds on Dynamic Meshing Force

Let f f α1 = 0.015 mm, ζ = 0.04, T1 = 500 N·m. Based on the calculated meshing errors,
we can obtain the corresponding time history diagram and FFT spectrogram by solving
the dynamic equation when Ωh is 0.3, 0.6, 0.9, respectively, as shown in Figure 18. As can
be seen from Figure 18a, as Ωh increases from 0.3, 0.6 to 0.9, the fluctuation amplitude
of displacement q changes to a certain extent and its harmonic order gradually decreases.
From Figure 18b, when Ωh = 0.3 the harmonic components are rich, mainly composed of
the first four harmonics, because when the speed is low, the stiffness excitation is dominant,
which will cause certain fluctuations in the process of alternating meshing of single and
double teeth. When Ωh increases from 0.3 to 0.6, the amplitude of the first (fundamental
harmonic) and second harmonics increases to a certain extent, but the amplitude of the other
harmonics decreases, especially the amplitude of the third and fourth harmonics. When
Ωh increases to 0.9, the amplitude of the first harmonic increases greatly, while the second
harmonic decreases greatly (it should be noted that the frequency of the first harmonic
changes due to the change of Ωh, as shown in Figure 18b), that is, at this time, the vibration
and noise of the system is mainly determined by the amplitude of the first harmonic.
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By bringing the solution results of the dynamic equation into the formula of the
dynamic meshing force, the variation of the total dynamic meshing force and the single
pair of teeth meshing force with the meshing cycle can be obtained when Ωh is equal to
0.3, 0.6, 0.9, respectively, as shown in Figures 19 and 20. We can see that, the corresponding
fluctuation curves of the total dynamic meshing force and the single pair of teeth meshing
force are different when Ωh equals a different value. With the increase of Ωh, the dynamic
meshing force curve of a single pair of teeth will become more gentle, but its minimum
value gradually approaches 0 near τ/τz = 99.5, which means that when the speed reaches
a certain value, the teeth may disengage from meshing. Similarly, as can be seen from
Figure 21, with the increase of Ωh, the fluctuation of the load sharing ratio curve of a single
pair of teeth will become more gentle, but the maximum value of the load distribution ratio
increases gradually close to one or the minimum value decreases gradually close to zero.
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4.3. Influence of Different Loads on Dynamic Meshing Force

Let f f α1 = 0.015 mm, ζ = 0.04, Ωh = 0.6. Based on the calculated meshing errors, we
can obtain the corresponding time history diagram and FFT spectrogram by solving the
dynamic equation when T1 is 200, 500, 800 N·m, respectively, as shown in Figure 22. As can
be seen from Figure 22a, when T1 changes from 200, 500 to 800 N·m, the displacement curve
shifts upward to a large extent and its waveform also changes, the fluctuation amplitude of
which increases from 0.9 to 1.4. In Figure 22b, when T1 = 200 N·m, the system vibration
is dominated by the first harmonic and the amplitude of the second harmonic is very
small. As T1 increases from 200, 500 to 800 N·m, the excitation effect of tooth stiffness
gradually increases, the amplitude of the first harmonic decreases accordingly and the
amplitude of the second harmonic will continue to increase. When T1 equals 800 N·m, the
amplitude of the second harmonic exceeds the amplitude of the first harmonic, that is,
when the torque increases to a certain extent, the system vibration can be dominated by the
second harmonic.
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By bringing the solution results of the dynamic equation into the formula of the
dynamic meshing force, the variation of the total dynamic meshing force and the single
pair of teeth meshing force with the meshing cycle can be obtained when T1 is equal to
200, 500, 800 N·m, respectively, as shown in Figures 23 and 24. With the increase of T1, the
amplitude and average value of the total dynamic meshing force and the single pair of teeth
meshing force both increase significantly. We can also see from Figure 24 that, due to small
load, the gear teeth begin to disengage near τ/τz = 99.4 when T1 = 200 N·m. Figure 25
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shows that, with the increase of T1, the load sharing ratio curve gradually becomes flat, the
amplitude of which gradually decreases, and the load distribution ratio curve during the
whole meshing cycle will gradually become symmetrical. This means that the influence of
the tooth profile deviation will gradually decrease and the load distribution on the teeth
pair will gradually stabilize with T1 increasing.
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4.4. Influence of Different Damping Ratios on Dynamic Meshing Force

Let f f α1 = 0.015 mm, T1 = 500 N·m, Ωh = 0.6. Based on the calculated meshing
errors, we can obtain the corresponding time history diagram and FFT spectrogram by
solving the dynamic equation when ζ is 0.01, 0.04, 0.07, respectively, as shown in Figure 26.
As can be seen from Figure 26a, with ζ changing from 0.01, 0.04 to 0.07, the fluctuation
amplitude of displacement q gradually decreases. It is mainly due to the decrease of the
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amplitude of the second harmonic, which can be more clearly shown in Figure 26b. With ζ
varying from 0.01 to 0.07, the amplitude of the first harmonic increases by 0.001, while the
amplitude of the second harmonic decreases by 0.007.
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By bringing the solution results of the dynamic equation into the formula of the
dynamic meshing force, the variation of the total dynamic meshing force and the single
pair of teeth meshing force with the meshing cycle can be obtained when ζ is equal to
0.01, 0.04, 0.07, respectively, as shown in Figures 27 and 28. As ζ changes from 0.01, 0.04 to
0.07, the amplitude of the total dynamic meshing force and the single pair of teeth meshing
force gradually decreases. Figure 29 shows that, with the increase of ζ, the load sharing
ratio curve gradually becomes flat and its amplitude gradually decreases. However, the
magnitudes of these changes are relatively small.

From the above analysis, it can be seen that ζ has little effect on the dynamic meshing
force. However, appropriately increasing ζ will help to reduce the vibration of the system
and improve the stability of the system. Figure 30 shows the simulation results of Arms
varying with Ωh when ζ is 0.01, 0.04 and 0.07, respectively. We can observe that, as ζ
changes from 0.01, 0.04 to 0.07, the amplitude of Arms at the same decreases gradually,
that is, the system becomes more and more stable. However, compared with the case of
ζ = 0.04 and ζ = 0.07, there are abundant jumping phenomena and the amplitude of Arms
at the resonance frequency is much larger when ζ = 0.01. Due to the jumping phenomena,
there are two branches at the resonance frequency, which means that there are two values
at the same Ωh due to the different initial conditions. As described above, Figures 27 and 28
show the total dynamic response and the single pair of teeth dynamic meshing force at
the lower branch when Ωh = 0.6, respectively. Accordingly, the dynamic response and the
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total dynamic meshing force at the upper branch can also be obtained when Ωh = 0.6, as
shown in Figures 31 and 32, respectively. Comparing Figures 26 and 27, we can see that the
amplitude of dynamic transmission error in Figure 31 and the total dynamic meshing force
in Figure 32 have increased sharply. Moreover, the shape of the total dynamic meshing
force curve has also changed greatly in the whole meshing process, especially in some
meshing regions, where the dynamic meshing force is reduced to zero (i.e., contact loss). It
can be seen from the above analysis, when ζ is too small, the system will become unstable,
which may lead to increased vibration and a sharp increase in dynamic meshing force.

Appl. Sci. 2022, 12, 4690 22 of 28 
 

 
(a) 

 
(b) 

Figure 26. The dynamics characteristics with different 𝜁 :̅ (a) time history diagram; (b) FFT spec-

trogram. 

By bringing the solution results of the dynamic equation into the formula of the 

dynamic meshing force, the variation of the total dynamic meshing force and the single 

pair of teeth meshing force with the meshing cycle can be obtained when 𝜁  ̅ is equal to 

0.01, 0.04, 0.07,  respectively, as shown in Figures 27 and 28. As 𝜁̅  changes from 

0.01, 0.04 to 0.07, the amplitude of the total dynamic meshing force and the single pair 

of teeth meshing force gradually decreases. Figure 29 shows that, with the increase of 𝜁 ,̅ 

the load sharing ratio curve gradually becomes flat and its amplitude gradually de-

creases. However, the magnitudes of these changes are relatively small. 

 

Figure 27. Total dynamic mesh force under different 𝜁 .̅ Figure 27. Total dynamic mesh force under different ζ.

Appl. Sci. 2022, 12, 4690 23 of 28 
 

 

Figure 28. Dynamic mesh force of a single pair of teeth under different 𝜁 .̅ 

 

Figure 29. Load sharing ratio of a single pair of teeth under different 𝜁 .̅ 

From the above analysis, it can be seen that 𝜁  ̅ has little effect on the dynamic meshing 

force. However, appropriately increasing 𝜁  ̅ will help to reduce the vibration of the system 

and improve the stability of the system. Figure 30 shows the simulation results of 𝐴𝑟𝑚𝑠 var-

ying with 𝛺ℎ  when 𝜁̅  is 0.01, 0.04  and 0.07 , respectively. We can observe that, as 𝜁  ̅

changes from 0.01, 0.04 to 0.07, the amplitude of 𝐴𝑟𝑚𝑠 at the same 𝛺ℎ decreases gradual-

ly, that is, the system becomes more and more stable. However, compared with the case of 

𝜁̅ = 0.04 and 𝜁̅ = 0.07, there are abundant jumping phenomena and the amplitude of 𝐴𝑟𝑚𝑠 

at the resonance frequency is much larger when 𝜁̅ = 0.01. Due to the jumping phenomena, 

there are two branches at the resonance frequency, which means that there are two values at 

the same 𝛺ℎ due to the different initial conditions. As described above, Figures 27 and 28 

show the total dynamic response and the single pair of teeth dynamic meshing force at the 

lower branch when 𝛺ℎ = 0.6, respectively. Accordingly, the dynamic response and the total 

dynamic meshing force at the upper branch can also be obtained when 𝛺ℎ = 0.6, as shown 

in Figures 31 and 32, respectively. Comparing Figures 26 and 27, we can see that the ampli-

tude of dynamic transmission error in Figure 31 and the total dynamic meshing force in Fig-

ure 32 have increased sharply. Moreover, the shape of the total dynamic meshing force curve 

has also changed greatly in the whole meshing process, especially in some meshing regions, 

where the dynamic meshing force is reduced to zero (i.e., contact loss). It can be seen from 

the above analysis, when 𝜁  ̅ is too small, the system will become unstable, which may lead to 

increased vibration and a sharp increase in dynamic meshing force. 

Figure 28. Dynamic mesh force of a single pair of teeth under different ζ.

Appl. Sci. 2022, 12, 4690 23 of 28 
 

 

Figure 28. Dynamic mesh force of a single pair of teeth under different 𝜁 .̅ 

 

Figure 29. Load sharing ratio of a single pair of teeth under different 𝜁 .̅ 

From the above analysis, it can be seen that 𝜁  ̅ has little effect on the dynamic meshing 

force. However, appropriately increasing 𝜁  ̅ will help to reduce the vibration of the system 

and improve the stability of the system. Figure 30 shows the simulation results of 𝐴𝑟𝑚𝑠 var-

ying with 𝛺ℎ  when 𝜁̅  is 0.01, 0.04  and 0.07 , respectively. We can observe that, as 𝜁  ̅

changes from 0.01, 0.04 to 0.07, the amplitude of 𝐴𝑟𝑚𝑠 at the same 𝛺ℎ decreases gradual-

ly, that is, the system becomes more and more stable. However, compared with the case of 

𝜁̅ = 0.04 and 𝜁̅ = 0.07, there are abundant jumping phenomena and the amplitude of 𝐴𝑟𝑚𝑠 

at the resonance frequency is much larger when 𝜁̅ = 0.01. Due to the jumping phenomena, 

there are two branches at the resonance frequency, which means that there are two values at 

the same 𝛺ℎ due to the different initial conditions. As described above, Figures 27 and 28 

show the total dynamic response and the single pair of teeth dynamic meshing force at the 

lower branch when 𝛺ℎ = 0.6, respectively. Accordingly, the dynamic response and the total 

dynamic meshing force at the upper branch can also be obtained when 𝛺ℎ = 0.6, as shown 

in Figures 31 and 32, respectively. Comparing Figures 26 and 27, we can see that the ampli-

tude of dynamic transmission error in Figure 31 and the total dynamic meshing force in Fig-

ure 32 have increased sharply. Moreover, the shape of the total dynamic meshing force curve 

has also changed greatly in the whole meshing process, especially in some meshing regions, 

where the dynamic meshing force is reduced to zero (i.e., contact loss). It can be seen from 

the above analysis, when 𝜁  ̅ is too small, the system will become unstable, which may lead to 

increased vibration and a sharp increase in dynamic meshing force. 

Figure 29. Load sharing ratio of a single pair of teeth under different ζ.



Appl. Sci. 2022, 12, 4690 22 of 26Appl. Sci. 2022, 12, 4690 24 of 28 
 

 

Figure 30. Curves of dimensionless 𝐴𝑟𝑚𝑠 with dimensionless frequency 𝛺ℎ. 

  

(a) (b) 

Figure 31. The dynamics characteristics for the upper branch when 𝜁̅ = 0.01: (a) time history dia-

gram; (b) FFT spectrogram. 

 

Figure 32. Dynamic mesh force for the upper branch when 𝜁̅ = 0.01. 

Based on the above analysis, the effects of different parameters on the dynamic re-

sponse and dynamic meshing force of the gear system can be summarized that with the 

increase of 𝑓𝑓𝛼1, the vibration amplitude of the system will gradually increase. Moreover, 

when 𝑓𝑓𝛼1 is large, the change of vibration amplitude will be more obvious. Compared 

with 𝑓𝑓𝛼1, the change of 𝑓𝐻𝛼1 has little effect on the dynamic response of the system, but 

the corresponding dynamic response of the system is still quite different when 𝑓𝐻𝛼1 is 

positive and negative, respectively. In addition, 𝑓𝑓𝛼1 and 𝑓𝐻𝛼1 have different effects on 

Figure 30. Curves of dimensionless Arms with dimensionless frequency Ωh.

Appl. Sci. 2022, 12, 4690 24 of 28 
 

 

Figure 30. Curves of dimensionless 𝐴𝑟𝑚𝑠 with dimensionless frequency 𝛺ℎ. 

  

(a) (b) 

Figure 31. The dynamics characteristics for the upper branch when 𝜁̅ = 0.01: (a) time history dia-

gram; (b) FFT spectrogram. 

 

Figure 32. Dynamic mesh force for the upper branch when 𝜁̅ = 0.01. 

Based on the above analysis, the effects of different parameters on the dynamic re-

sponse and dynamic meshing force of the gear system can be summarized that with the 

increase of 𝑓𝑓𝛼1, the vibration amplitude of the system will gradually increase. Moreover, 

when 𝑓𝑓𝛼1 is large, the change of vibration amplitude will be more obvious. Compared 

with 𝑓𝑓𝛼1, the change of 𝑓𝐻𝛼1 has little effect on the dynamic response of the system, but 

the corresponding dynamic response of the system is still quite different when 𝑓𝐻𝛼1 is 

positive and negative, respectively. In addition, 𝑓𝑓𝛼1 and 𝑓𝐻𝛼1 have different effects on 

Figure 31. The dynamics characteristics for the upper branch when ζ = 0.01: (a) time history diagram;
(b) FFT spectrogram.

Appl. Sci. 2022, 12, 4690 24 of 28 
 

 

Figure 30. Curves of dimensionless 𝐴𝑟𝑚𝑠 with dimensionless frequency 𝛺ℎ. 

  

(a) (b) 

Figure 31. The dynamics characteristics for the upper branch when 𝜁̅ = 0.01: (a) time history dia-

gram; (b) FFT spectrogram. 

 

Figure 32. Dynamic mesh force for the upper branch when 𝜁̅ = 0.01. 

Based on the above analysis, the effects of different parameters on the dynamic re-

sponse and dynamic meshing force of the gear system can be summarized that with the 

increase of 𝑓𝑓𝛼1, the vibration amplitude of the system will gradually increase. Moreover, 

when 𝑓𝑓𝛼1 is large, the change of vibration amplitude will be more obvious. Compared 

with 𝑓𝑓𝛼1, the change of 𝑓𝐻𝛼1 has little effect on the dynamic response of the system, but 

the corresponding dynamic response of the system is still quite different when 𝑓𝐻𝛼1 is 

positive and negative, respectively. In addition, 𝑓𝑓𝛼1 and 𝑓𝐻𝛼1 have different effects on 

Figure 32. Dynamic mesh force for the upper branch when ζ = 0.01.

Based on the above analysis, the effects of different parameters on the dynamic
response and dynamic meshing force of the gear system can be summarized that with the
increase of f f α1, the vibration amplitude of the system will gradually increase. Moreover,
when f f α1 is large, the change of vibration amplitude will be more obvious. Compared
with f f α1, the change of fHα1 has little effect on the dynamic response of the system, but
the corresponding dynamic response of the system is still quite different when fHα1 is
positive and negative, respectively. In addition, f f α1 and fHα1 have different effects on the
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dynamic meshing force and load distribution coefficient, but when f f α1 and fHα1 change
to a certain value, the gear teeth will both be out of meshing. When Ωh is small, due to
the effect of stiffness excitation, there are some fluctuations in dynamic transmission error
and dynamic meshing force. With the increase of Ωh, the amplitude of the first harmonic
increases and gradually dominates, while the fluctuation of dynamic meshing force and
load sharing ratio becomes more gentle and their amplitudes increase to a certain extent.
When T1 is too small, the teeth may disengage during meshing. With the increase of T1,
the amplitude of dynamic transmission error gradually increases and the second harmonic
gradually dominates. Accordingly, the dynamic meshing force will increase accordingly,
and the fluctuation level of the load distribution coefficient will gradually reduce with
the decrease of the influence of the tooth profile deviation. The damping ratio has little
effect on the dynamic transmission error and dynamic meshing force. With the increase
of damping, the amplitude of dynamic transmission error and dynamic meshing force
decrease to a certain extent. Accordingly, the fluctuation of the load sharing ratio also
becomes smooth. However, when ζ is too small, the system will become unstable, which
may lead to increased vibration and a sharp increase on the dynamic meshing force.

5. Conclusions

This paper puts forward a calculation method of the dynamic meshing force of a
single pair of gear teeth by constructing the nonlinear dynamic model of spur gear pair
considering the meshing state of multiple pairs of teeth based on the actual meshing
characteristics of gear teeth. The new method can be used to effectively calculate the
dynamic meshing force and load sharing ratio of each pair of teeth with different meshing
characteristics, especially various tooth surface characteristics and deviations.

Considering the tooth profile deviation, based on the established dynamic model and
the calculation formula of dynamic meshing force, the effects of different parameters on the
dynamic response and the dynamic meshing force of the system are analyzed. The results
show that these parameters all have effects on the dynamic characteristics and dynamic
meshing force, but their effects are different. Therefore, in order to accurately analyze
the dynamic response and dynamic meshing force under different meshing conditions,
especially the dynamic meshing force of a single pair of teeth, the influence of these
parameters needs to be fully considered, which is very important to predict the load
capacity and carry out the parameter optimization for gear system. In addition, the method
presented in this paper also lays a foundation for analyzing and predicting the dynamic
behavior or the load capacity of HCR gears. In this paper, only the influences of tooth
profile deviations on the dynamic response and dynamic meshing force of gear system are
discussed. Considering that HCR gears are more sensitive to the tooth meshing state, the
influence of more tooth surface and deviation parameters, such as tooth profile modification,
pitch deviation, installation deviation, etc., on the dynamic response and dynamic meshing
force of HCR gears will be studied, which is also the focus of our next work.
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Nomenclature

Ar rth mesh harmonic amplitude of dynamic transmission error
Arms equivalent root-mean-square amplitude of dynamic transmission error
b(t) comprehensive backlash
b(j−1)(t), b(j)(t), b(j+1)(t) backlash of j− 1th, jth and j + 1th pair of teeth
cm(t) comprehensive damping
c(j−1)(t), c(j)(t), c(j+1)(t) damping of j− 1th, jth and j + 1th pair of teeth
e(t) comprehensive meshing error
e(j−1)(t), e(j)(t), e(j+1)(t) meshing error of j− 1th, jth and j + 1th pair of teeth
f f α1 profile form deviation of driving wheel
fHα1 profile slope deviation of driving wheel
fr1 number of sine periods over the profile evaluation range of driving wheel
Fm equivalent applied load
Fmesh total dynamic meshing force

F(j−1)
mesh , F(j)

mesh, F(j+1)
mesh dynamic meshing force of j− 1th, jth and j + 1th pair of teeth

I1, I2 rotary inertia of driving and driven wheels
km average meshing stiffness
k(t) comprehensive meshing stiffness
k(j−1)(t), k(j)(t), k(j+1)(t) meshing stiffness of j− 1th, jth and j + 1th pair of teeth
l nominal dimension
me equivalent mass
Ni the number of teeth on gear i
q dimensionless transmission error
Rb1, Rb2 radius of the base circle of driving and driven wheels
si shaft order index
ε contact ratio
tz meshing period
th meshing time of a pair of teeth from engagement to disengagement
T1, T2 torque of driving and driven wheels
ωn nominal frequency
ω meshing frequency
W one-sided discrete autopower spectra
Wm(t) comprehensive internal incentive
Wm(τ) dimensionless comprehensive internal incentive
θ1, θ2 rotation angle of the driving and driven wheels
τ dimensionless time
Ωh dimensionless frequency
ζ damping ratio
ζ damping ratio of a single pair of teeth
ρ function of the number of meshing pairs
BW analysis bandwidth
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