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Abstract: The coaxial cylindrical reactor with a rotary nozzle is proposed to be used as the plasma
torch of the plasma cleaning machine. The phase-shifted full bridge series resonance circuit is used as
the power circuit topology. Because the voltage source load resonance circuit technology is mature,
the cycle and difficulty of research and development on this basis are relatively small, and the
corresponding control strategy and algorithm are relatively easy to achieve. At the same time, the
voltage source circuit is smaller than the current source circuit, in line with the development trend of
plasma cleaning equipment. In this paper, based on the phase shift full bridge series resonant circuit,
the control strategy is compared and analyzed. Considering the response speed, control precision and
efficiency, a PSPWM-PFM (Phase Shift Pulse Width Modulation- Pulse Frequency Modulation) hybrid
modulation control strategy is proposed, which makes the system not only have a fast response speed
but can also construct a soft switch and has a high efficiency. A maximum power tracking algorithm
based on a fuzzy PFM was proposed to solve the problem that the plasma power supply deviated
from the resonant frequency point easily due to environmental perturbation, and thus deviated from
the maximum power point.

Keywords: plasma cleaning; fuzzy control; power tracking; resonant switching power supply; pulse
frequency modulation

1. Introduction

The traditional cleaning methods mainly include mechanical cleaning, chemical clean-
ing, and ultrasonic cleaning. Mechanical cleaning is used for power tools or related
equipment to remove rust, paint, and oxides on the surface of the object. The advantages
are a simple operation and low technical requirements but can easily damage the object,
for a complex shaped product is helpless, and the process to produce noise pollution, is
not conducive to the operator and the health of the residents in the surrounding plants.
Chemical cleaning uses chemicals to react with dirt or residue on the surface of the object,
so as to achieve the purpose of cleaning. Chemical cleaning efficiency is high, can calmly
deal with the appearance of complex products, and there is no noise pollution, but the
disadvantages are the consumption of a large number of chemical reagents, it is easy to
cause environmental pollution, and also may cause damage to the product itself, for some
difficult to use wet cleaning products are powerless. Ultrasonic cleaning is to soak the
product in the liquid, and make the liquid produce high frequency oscillation, generate
shock waves, and remove the dirt on the surface of the object. This method has high pollu-
tion removal efficiency, but the disadvantage is that it also needs dry treatment, and the
cleaning time should not be too long, otherwise it is easy to damage the cleaned object [1].
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With the rapid development of industrial products, the continuous improvement of
product quality, environmental protection awareness, and green energy saving awareness
continues to be popular, and plasma cleaning will be widely used in the manufacturing
industry. Plasma can be obtained by arc discharge, glow discharge, flame, laser or shock
wave, etc., while the plasma used for cleaning belongs to low temperature plasma and is
usually obtained by high-frequency and high-voltage breakdown gas. Depending on the
cleaning object, different kinds of gas can be used, or the process can be completed in a
vacuum environment. Although plasma cleaning has many of the advantages mentioned
above, the current plasma power supply on the market has poor adaptability to generator
load and cannot drive a variety of loads. There is a large loss of power from the supply
system, a low power factor, the control ability of the plasma current variation is poor, and
the system dynamic response is poor. Furthermore, the plasma power supply for an analog
chip control power supply, single function, cannot meet the requirements of the application
market control. Therefore, the power supply for plasma cleaning and its control strategy
are studied in this paper [2–4].

2. Plasma Cleaning Power Supply Design

The nozzle of the plasma cleaning machine produces plasma by the electrical break-
down of gas. For the plasma resonant power supply, the plasma torch is equivalent to
a large capacitive load. If the pre-stage power supply is not properly compensated, the
power factor will be too low affecting the efficiency, and the quality factor of the system
will not be well controlled, while a small quality factor will cause a poor selectivity of the
output power in frequency modulation [5].

Compensation for the capacitive load can be achieved by adding inductance to the
primary side to form series resonance. In the case of a non-uniform electric field, the
breakdown of 1 mm of compressed air needed for the breakdown voltage of about 3 kV,
causes a lot of leakage inductance in the transformer. Now that the leakage inductance of
the transformer is inevitable, simply using the series resonance with the load capacitance,
can play a role of power factor compensation, and have a good quality factor. At the same
time, it also avoids the volume increase caused by additional inductance.

The full-bridge inverter circuit is generally used to form high frequency and high
voltage with a positive and negative polarity on the plasma torch. Although the traditional
non-phase shifting control is simple, it is not convenient to construct a soft switch, and the
switching loss is large. By adopting a phase shift full bridge control mode, the soft switch
can be easily constructed, and the efficiency can be improved. Therefore, the phase-shifting
full bridge is adopted as the control mode of the main circuit in this system [6].

The system architecture of the resonant power supply for plasma cleaning is shown
in Figure 1, which mainly includes four parts: the power module, the control module, the
auxiliary power module, and the human–computer interaction module.

The power module includes the front rectifier filter module, the phase shift full bridge
circuit, and the high-frequency resonant transformer. The rectifier filter module is respon-
sible for the power grid 220 V AC through the diode rectifier bridge and filter circuit
to get smooth DC. The phase-shifting full-bridge circuit is responsible for inverting the
DC obtained in the previous stage into a high-frequency AC square wave, acting on the
high-frequency resonant transformer [7]. The high-frequency resonant transformer boosts
the low-voltage AC square wave of the primary winding to the high-voltage AC square
wave of more than 3000 volts of the secondary winding, and acts on the load discharge gun
head, so that the gas of the gun head is continuously decomposed and generates plasma,
which acts on the cleaning object.

The control module consists of signal detection and the conditioning circuit, the main
control STM32 chip, and the phase shift full bridge driver circuit. The signal detection
circuit is responsible for obtaining circuit voltage, current, and temperature information,
and these analog signals through the conditioning circuit modulation output to the master
chip. The master chip converts these analog signals into digital signals in the program
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and calculates them to obtain the working condition of the plasma cleaning power supply
system and controls the corresponding driving circuit accordingly to ensure the safe and
stable work of the system.
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Figure 1. Structure of resonant power supply system for plasma cleaning.

The auxiliary power module is a multi-output quasi-resonant flyback circuit with
UCC28610 as the control core, which supplies power to the circuits of different voltage
levels such as the master chip, the signal conditioning circuit, and the drive circuit.

The human–computer interaction module is responsible for real-time communication
with the main control chip to obtain the operation information of the plasma cleaning power
supply system and display it through the control panel. Users can understand the real-time
working conditions of the system through the panel and set the operation parameters
through the operation control panel. The control panel will send these instructions to the
main control chip, and then execute the corresponding control instructions.

This paper will analyze and design the resonant power supply system for plasma
cleaning according to the system architecture mentioned above, and its main indicators are
shown in Table 1.

Table 1. Performance index of resonant power supply system for plasma cleaning.

Performance Indicators Performance Parameters Parameters Unit

Input voltage range 198~242 V
Input current range 2.8~5 A

Input voltage frequency 50/60 Hz
Output voltage range −3.2~3.2 kV

Output power 500~1000 W
Work efficiency ≥90 %

Figure 2 is the cross section of the resonant power supply plasma torch for plasma
cleaning. By applying positive and negative pulses of high frequency and high voltage to
the plasma torch, the working gas is continuously decomposed, and a filamentary plasma
column is generated between the electrodes, which is blown away from the plasma torch
under the action of gas pressure, thus generating plasma [8].

Plasma torch load is imposed by the working gas, nitrogen, argon, or compressed
air. Nitrogen and argon gas on the material surface modification effect is better, but they
are expensive, not suitable for mass production, and generally used in places that have
requirements of specific requirements. Compressed air has a low cost and only needs a
compressor to be achieved; therefore, it has been widely used in industry [9]. No matter
what kind of gas is used, the gun head is equivalent to the capacitive load, so an equivalent
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capacitance can be used to replace it in the circuit analysis, and the main circuit diagram of
the system can be expressed, as shown in Figure 3. Wherein, LPLK is the primary leakage
inductance of the transformer, LSLK is the secondary leakage inductance of the transformer,
Lg is the inductance of plasma torch, R is the line resistance, and Cg is the equivalent
capacitance of the nozzle air gap.
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The main control chip of the resonant power supply for plasma cleaning is STM32F103.

3. Resonant Power Supply Control Method for Plasma Cleaning

This section proposes a PSPWM-PFM hybrid modulation control mode, aiming to
combine the characteristics of PSPWM and PFM control modes, so that the system can
adjust the output power quickly and accurately, and ensure that the system has a wide
enough power tuning range. It can also adjust the working frequency of the system to
prevent the system from deviating from the resonant frequency point due to changes in
the external environment such as air pressure, temperature, or load, and maintain a higher
output efficiency.
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Figure 4 shows the PSPWM-PFM mixed modulation closed-loop control diagram
of the system. Firstly, the output voltage signal U and current signal I of the system
are sampled. The voltage signal is obtained from the secondary winding of the power
transformer and sampled by the secondary voltage detection circuit. The current signal is
sampled by a secondary current detection circuit. After the signal is sampled and calculated
by the master chip, the actual output power P of the system is obtained. The functions of
over voltage protection (OVP), over current protection (OCP), and over power protection
(OPP) are also set for the sampled and calculated signals. The actual output power P is
compared with the user’s set power PSET, and the power deviation E is obtained. After
the PID modulation of bias E and mixed modulation of PSPWM-PFM, the driving signal
with variable pulse width and period is obtained, and then the corresponding IGBT tube
in the phase-shifting full-bridge circuit is driven to achieve the modulation of the output
power [10,11].
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The program of the mixed modulation part of the main control chip is executed accord-
ing to the flow chart shown in Figure 5. After the system is powered on, soft start is carried
out first. After arcing successfully, the system allocates an initial duty cycle and frequency
to the driver according to the set power. Then the operation according to the deviation
between the actual power value and the set power value is selected. If the deviation is
greater than 100 W, the system adopts PSPWM modulation. The adjustment time of the
system is reduced by using the characteristics of PSPWM rapid power adjustment, so as to
ensure that the system has a larger power adjustment range. If the deviation is less than
or equal to 100 W, the system adopts fuzzy PFM modulation and carries out maximum
power tracking to ensure that the system works at the maximum power point under the
current duty cycle, namely the resonant frequency point, to ensure that the system has a
high-power factor and work efficiency.

There are many ways to judge whether the system works near the resonant frequency
point. One is to use the zero-crossing detection circuit to detect the zero-crossing of the
secondary current of the transformer, and to ensure that the output current and voltage are
in the same phase through the phase-locked loop, so as to ensure that the system works
in the resonant state. However, for the plasma with a nonlinear working state, its load is
always in a dynamic equilibrium state with large fluctuation, which is easy to cause the
false zero-crossing detection and make the calculation result wrong [12].

Another simple and effective method is to continuously disturb the working frequency
of the system, and record the corresponding working voltage and current, so as to find
the working frequency corresponding to the maximum output power of the resonant
power supply system for plasma cleaning. According to the simulation results, when the
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system works near the resonant frequency, the active power output reaches the maximum
value [13]. Its control flow chart is shown in Figure 6.
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The actual output power PCUR is calculated according to the sampled output voltage
and current, and the power change value E is obtained by comparing it with the power
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at the last moment. Based on this, the disturbance step length α is calculated. Firstly,
judge whether the current actual power PCUR increases or decreases compared with the
last power PLAST. If it increases, the direction of disturbance is correct, and keep the
direction of disturbance; otherwise, the disturbance will reverse. The increase or decrease
of the frequency is determined according to the relationship between the current frequency
FCUR and the frequency FLAST at the last time. Finally, judge whether the adjusted dead
zone, duty cycle and frequency exceed the limit value. If not, the system will execute
the adjusted frequency and update the power PLAST and frequency FLAST for the next
calculation; otherwise, the frequency before the adjustment will be executed [14].

Although the PFM perturbation method has the advantages of being simple and
efficient, it is difficult to achieve accurate and efficient power tracking for such a nonlinear
time-varying system as a plasma discharge power supply. However, the fuzzy controller
does not need an accurate mathematical model for the controlled object, so it is very suitable
for this system. Therefore, the maximum power tracking algorithm based on fuzzy PFM
is adopted in this paper to ensure that the system works near the resonant frequency
point [15].

Figure 7 shows the working principle of the fuzzy controller. The system errors E
and EC are obtained by the quantitative calculation of input and feedback, which are used
as the input of the fuzzy controller. Control variables were fuzzified, fuzzy domains and
corresponding membership functions were determined, and E and EC were obtained. Then,
according to the pre-established fuzzy control rules, the decision is made, and the fuzzy
output C is obtained. The fuzzy output C is de-fuzzified to obtain the actual control quantity
C, which is sent to the control mechanism to complete the whole control process [16].
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The control variables of the algorithm are system output power and frequency, respec-
tively. The input e and ec of the fuzzy controller are their corresponding changes, namely:

e = P(k) − P(k − 1) (1)

ec = F(k) − F(k − 1) (2)

The output parameter c is the disturbance amount to the driving signal frequency of
the full-bridge switch tube, namely:

c = ∆FD (3)

The fuzzy theory domain of input e, ec, and output c is set as E = EC = C = [−1, −0.8,
. . . , 0.8, 1], with a total of 11 grades. The value of parameter variation and control quantity
can be expressed by fuzzy subsets. The fuzzy subsets of power variable e and output
control variable c are represented by seven fuzzy languages: “positive big (PB), positive
median (PM), positive small (PS), zero (ZE), negative small (NS), negative medium (NM),
and negative big (NB)”. EC, the fuzzy subset of frequency variation, is expressed by six
fuzzy languages: “PB, PM, PS, NS, NM, NB”. The relationship between each input quantity
and each fuzzy subset is represented by membership function. Membership curves of E,
EC, and C are shown in Figure 8.
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After the fuzzy processing is completed, the corresponding fuzzy control rules can be
formulated. They are formulated according to human experience. The design idea is: when
the power change is positive, the disturbance direction is proved to be correct, and the
direction of output control quantity and frequency change quantity should be consistent,
otherwise, the reverse operation should be carried out. The control quantity is consistent
with the power change quantity, that is, when the system is close to the maximum power
point, the power change quantity is small, and the disturbance quantity should be kept
small, otherwise the control quantity should be kept large. The fuzzy control rules are
shown in Table 2 and Figure 9, and the corresponding 3D surface of the fuzzy control rules
is shown in Figure 8 [17].
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Table 2. Fuzzy control rules.

EC
E

NB NM NS ZE PS PM PB

NB PB PM PS ZE NS NM NB
NM PB PM PS ZE NS NM NB
NS PB PM PS ZE NS NM NB
PS NB NM NS ZE PS PM PB
PM NB NM NS ZE PS PM PB
PB NB NM NS ZE PS PM PB
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After the above steps, the output quantity C needs to be de-fuzzified and converted
into the actual control quantity, so as to realize the modulation of the driving frequency. In
this paper, the gravity center method is adopted to solve the ambiguity, and its formula is:

c =

n
∑

i=1
µ(Ui)Ui

n
∑

i=1
µ(Ui)

(4)

where, c is the output of the fuzzy controller, Ui is the center value of the output cor-
responding to the membership function interval, and µ(Ui) is the membership degree
corresponding to Ui [18].

A model is built in Simulink to simulate the above hybrid modulation algorithm and
the maximum power tracking algorithm based on fuzzy PFM, as shown in Figure 10. The
upper part of the figure consists of the main circuit of the phase-shifted full bridge and its
load. In order to simulate the mutation of the load caused by perturbation, capacitors C1
and C2 are connected in parallel or in series at the equivalent load. They are controlled by
pulse signals G1 and G2 and switch transistors Q5 and Q6, respectively, so as to introduce
perturbation at specific time points. The lower part is a hybrid modulation algorithm,
including a frequency estimator, a PSPWM controller, a fuzzy PFM controller, and a drive
signal generator.
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Figure 11 shows the internal structure of a frequency estimator. This circuit is used to
obtain the working frequency of PWM. Firstly, the single PWM (Pulse Width Modulation)
waveform is integrated, and then the peak point is sampled by the delay circuit and
comparison function. Finally, the working frequency of the corresponding time point is
derived by the duty cycle.
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Figure 12 shows the internal structure of a PSPWM controller. The module detects the
frequency and power error of the system in real time. Once the power error is above 100 W,
or the frequency deviates to the upper and lower limits during frequency modulation,
namely 2.5 Hz and 6.5 kHz, the module starts to work and realizes power control by
adjusting the phase shift angle [19].
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The internal structure of the fuzzy PFM controller is shown in Figure 13. Firstly,
the power and frequency of the system are sampled and preprocessed, and the variation
value is obtained and input into the fuzzy controller. The output value, as the variation
of frequency, is added to the initial frequency and sent to the PFM modulator. When the
power error is less than 100 W, or the phase shift angle deviates to 20◦ or 70◦, the module
starts to work to realize the maximum power tracking under the current duty cycle of the
system, prevents the system from deviating from the resonant frequency due to external
perturbation, and ensures the working efficiency of the system.
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Figure 13. Internal structure of a fuzzy PFM controller.

Figure 14 shows the internal structure of the driver signal generator. The module uses
an integrator and flip comparator to convert the adjustable digital input signal into an
adjustable triangular wave signal, and then compares the triangular wave with the duty
cycle signal to generate a pulse waveform with an adjustable frequency. A delay device is
used to generate a four-channel PWM waveform with a phase shift angle, which is used to
drive the full-bridge circuit [20].
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Figure 14. Internal structure of the driver wave generator.

Adjust the equivalent load of the system, set the resonance frequency of the system
as 42.54 kHz, the initial operating frequency as 35 kHz, the initial phase shift angle as 45◦,
the duty cycle as 0.4, and the output power as 1000 W to simulate the system. Figure 15
shows the output power, phase shift angle, and operating frequency. As can be seen from
the figure, after 0.05 s, the output power of the system is stable at about 1000 W, the phase
shift angle is stable at 53◦, and the working frequency is stable at about 40 kHz. It can be
seen that the hybrid modulation algorithm has the advantages of a fast adjustment speed,
a high-adjustment precision, and is operable.
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Set the initial operating frequency of the system as 40 kHz, the initial phase shift angle 
as 55°, the duty cycle as 0.4, and the target output power as 1000 W. At 0.05s, the parallel 
capacitor C1 perturbation is introduced, and its capacitance value is 25 nF, that is, the 
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Figure 16. Anti-perturbation waveform of load capacitance surge. 

Figure 15. Simulation waveform of hybrid modulation algorithm.

Set the initial operating frequency of the system as 40 kHz, the initial phase shift
angle as 55◦, the duty cycle as 0.4, and the target output power as 1000 W. At 0.05 s, the
parallel capacitor C1 perturbation is introduced, and its capacitance value is 25 nF, that is,
the equivalent load capacitance of the system increases from 35 nF to 60 nF at 0.05 s, and
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the anti-perturbation performance of the system is simulated. Figure 16 shows the output
power, phase shift angle, and operating frequency.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 25 
 

O
ut

pu
t p

ow
er

 / 
W

Ph
as

e-
sh

ift
in

g 
A

ng
le

 / 
°

W
or

ki
ng

 fr
eq

ue
nc

y 
/ k

H
z

Time / s
 

Figure 15. Simulation waveform of hybrid modulation algorithm. 

Set the initial operating frequency of the system as 40 kHz, the initial phase shift angle 
as 55°, the duty cycle as 0.4, and the target output power as 1000 W. At 0.05s, the parallel 
capacitor C1 perturbation is introduced, and its capacitance value is 25 nF, that is, the 
equivalent load capacitance of the system increases from 35 nF to 60 nF at 0.05 s, and the 
anti-perturbation performance of the system is simulated. Figure 16 shows the output 
power, phase shift angle, and operating frequency. 

O
ut

pu
t p

ow
er

 / 
W

Ph
as

e-
sh

ift
in

g 
A

ng
le

 / 
°

W
or

ki
ng

 fr
eq

ue
nc

y 
/ k

H
z

Time / s
 

Figure 16. Anti-perturbation waveform of load capacitance surge. Figure 16. Anti-perturbation waveform of load capacitance surge.

As seen in Figure 16, at 0.05 s the load capacitance spurts resulting in the system and
the resonance frequency of the power of the output power falling sharply. The error of the
algorithm to detect the output power is very big and tries to improve the power output by
rapidly reducing the phase-shifting angle. When the phase-shifting angle adjustment to the
lower limit of 20◦ still cannot meet the needs of power set, the maximum power tracking
algorithm based on fuzzy PFM starts to work. During the period of 0.05 s to 0.25 s, the
operating frequency of the system decreases, and the resonant frequency point is constantly
approached, so that the output power increases. During the period from 0.25 s to 0.46 s,
the working frequency continues to decrease and approach the resonant frequency, so as
to maintain the maximum efficiency of the plasma power supply, but the output power
should be stable at 1000 W and cannot continue to rise. At this time, PSPWM takes effect,
making the working frequency track the resonant frequency point while the output power
remains stable. Finally, after 0.46 s, the output power, phase shift angle, and operating
frequency of the system stabilize at about 1000 W, 60◦, and 32 kHz, respectively.

Under the same conditions, the C2 perturbation of the series capacitor is introduced
at 0.05 s with a capacity of 46 nF, that is, the equivalent load capacitance of the system
drops from 35 nF to 19.88 nF at 0.05 s. The anti-perturbation performance of the system is
simulated, and the simulation results are shown in Figure 17.

As can be seen from Figure 17, at 0.05 s, the sudden change of load leads to a sharp
decline in system output power, and the phase shift angle is rapidly adjusted to the lower
limit of 20◦, but the actual output power is still too small. The maximum power tracking
algorithm based on fuzzy PFM takes effect at this time. From 0.05 s to 0.3 s, in this period
of time the working frequency continues to rise close to the resonant frequency point, and
the output power increases to about 1000 W. During the period from 0.3 s to 0.35 s, the
working frequency continues to rise, but the output power should be stable at 1000 W. At
this time, PSPWM takes effect and keeps the output power stable by increasing the phase
shift angle to offset the influence of frequency increase on the output power. Finally, after
0.35 s, the output power, phase shift angle, and operating frequency of the system stabilize
at about 1000 W, 42◦, and 55 kHz, respectively.



Appl. Sci. 2022, 12, 4681 14 of 23

To sum up, the PSPWM-PFM hybrid modulation algorithm has the characteristics of a
fast response speed and a high adjustment accuracy, while the maximum power tracking
algorithm based on fuzzy PFM enables the system to have the ability of self-correction
when disturbed, so that the system keeps working near the resonant frequency point with
high efficiency. Therefore, the application of this algorithm in the field of resonant power
supply for plasma cleaning is feasible.
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4. Analysis of Test Results

Based on the hardware circuit design and control strategy analysis in the previous
sections, the prototype is developed, and the corresponding experimental platform is built.
The key circuit point waveform of the prototype was tested, and the power regulation
experiment was conducted to verify the relationship between the output active power,
phase shift angle, and working frequency. The performance of three different modulation
methods were compared and tested to verify the advantages of the hybrid modulation
algorithm in the comprehensive efficiency, and the cleaning effect of the plasma cleaning
machine was tested. At the same time, the influence of various factors on the cleaning effect
of plasma cleaner is verified.

Figure 18 shows the main circuit board of the resonant power supply system for
plasma cleaning, which is designed according to the idea of modularization, including the
rectifier filter circuit, the auxiliary power supply, the driving circuit, and the phase shift full
bridge circuit of the front stage. The auxiliary power supply adopts a plug-in board mode,
which makes full use of the longitudinal space and reduces the area of the prototype.

Figure 19 shows the experimental platform of the resonant power supply system
for plasma cleaning. The experimental instruments mainly include an air compressor, a
four-channel oscilloscope, a programmable AC power supply, a contact angle measuring
instrument, a multimeter, an ultra-high voltage probe, a differential probe, and a current
probe, etc. Using a rotating jet plasma head, the discharge situation of the plasma jet during
operation is shown in Figure 20.
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In order to verify whether the theoretical analysis and simulation of the relationship
between output active power, phase shift angle, and frequency are correct, the operating
frequencies of the system are set to fixed values, respectively: 20 kHz, 25 kHz, 30 kHz,
35 kHz, 40 kHz, 45 kHz, and 50 kHz. Meanwhile, the phase shift angle from 10◦ to 130◦

every 10◦ was adjusted, and the output power of the plasma prototype when working
at different frequencies and phase shift angles was recorded. The test results are shown
in Table 3. For data lower than 500 W, due to an unstable plasma arc, the table does not
record data exceeding 1000 W are not recorded in the table because overload protection
is triggered.

Table 3. Power regulation test data table.

Phase-Shifting Angle (◦)
Output Power (W)

20 kHz 25 kHz 30 kHz 35 kHz 40 kHz 45 kHz 50 kHz

10 958 - 964 922 861 798 723
20 950 990 952 919 851 781 718
30 937 979 931 900 823 756 707
40 918 958 895 882 814 740 696
50 886 935 871 860 796 720 678
60 877 893 853 840 775 700 660
70 837 869 830 825 755 673 627
80 820 850 810 790 725 640 605
90 785 810 773 770 678 605 565

100 720 755 705 740 636 560 530
110 653 690 640 625 605 510 490
120 578 625 560 580 545 - -
130 500 545 490 540 - - -

The data in the table are sorted into curves as shown in Figure 21, and the following
conclusions can be drawn from the analysis:

(1) At the same working frequency, the larger the phase shift angle of the system is, the
lower the output power is; the smaller the phase shift angle of the system is, the
higher the output power is.

(2) The four curves of 20 kHz, 25 kHz, 30 kHz, and 35 kHz are relatively dense, that is,
the resonant frequency of the system jitter in the range of 20 kHz–35 kHz.

(3) At the same phase shift angle, the closer the operating frequency of the system is to
the resonant frequency, the higher the output power of the system will be; otherwise,
the lower the output power will be.

(4) Pure PFM regulation, that is, in the fixed phase shift angle frequency modulation
mode, the power range is narrow, not more than 300 W, which is the shortcoming
of pure PFM modulation mode; similarly, pure PWM adjustment, that is, in the
fixed frequency adjustment phase shift angle, the power range can not fully meet
the requirements.

(5) The curve is steeper when the phase shift angle is larger, and is slower when the
phase shift angle is smaller. That is, the larger the phase shift angle is, the greater the
influence of the phase shift angle on the output power is; otherwise, the smaller the
influence is, which is consistent with the simulation results. Other factors contributing
to this phenomenon are as follows: the smaller the phase shift angle is, the phase shift
full bridge will gradually separate from the soft switch and become the hard switch,
leading to the increase in switching loss of the power tube, thus offsetting part of the
increased output power. Therefore, in order to maintain a high output efficiency, it is
not advisable to adjust the phase shift angle too small in actual modulation.
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In order to verify the PSPWM-PFM hybrid modulation algorithm, compared with the
pure PWM modulation or PFM modulation, the comprehensive efficiency is higher, and
the power matching accuracy is also higher. Test the resonant power supply system for
plasma cleaning, respectively, input power and output power in PSPWM-PFM, PWM and
PFM modulation modes, and record the relevant experimental data, as shown in Table 4.

Table 4. Algorithm performance test data table.

Setting
Power (W)

PSPWM-PFM PWM PFM

Input
Power (W)

Output
Power (W)

Input
Power (W)

Output
Power (W)

Input
Power (W)

Output
Power (W)

500 573.5 476.6 - - 681.4 579.9
550 600.5 498.2 - - 686.2 583.3
600 653.8 547.3 744.6 588.8 662.3 569.1
650 713.1 613.3 805.6 663.9 669.8 572.0
700 758.2 663.4 834.8 696.6 674.1 587.8

750 803.2 706.8 875.2 746.6 698.3 615.2
800 828.6 736.6 888.8 781.6 766.1 671.9
850 865.1 792.4 964.2 823.3 774.4 705.5
900 905.8 829.7 1021.9 893.1 791.9 729.3
950 923.9 859.7 1073.52 954.9 828.3 769.5

1000 968.1 926.4 - - 837.3 780.4

In Table 4, there are three groups of experimental data that are not recorded, namely:
when the power is set to 500 W, the experimental data are difficult to record because the
PWM algorithm fails to start the arc; when the power is set as 550 W, the experimental data
cannot be recorded because of the unstable arc of the PWM algorithm; when the power
is set to 1000 W, the experimental data will not be recorded because the PWM algorithm
triggers over power protection.

Based on the input power and output power data recorded in Table 4, you can calculate
the efficiency curves of the three modulation modes at each set power, as shown in Figure 22.
As can be seen from the figure, the efficiency of the PWM modulation mode is the worst
among the three, and the lowest efficiency is less than 80%, especially in low power and
high-power operation. This is because the PWM cannot adjust the frequency and it is
easy to deviate from the resonant frequency point of the system, so that the system has
too much reactive power, resulting in a low efficiency. The PFM modulation mode and
the hybrid modulation mode have their own advantages and disadvantages in each set
power, but at low power operation the PFM modulation mode has better efficiency than
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the hybrid modulation mode because of its frequency modulation characteristics. Among
them, the PFM modulation efficiency is above 85%, and the mixed modulation efficiency is
above 83%, which meet the requirements. Regardless of the modulation mode, the overall
efficiency of the system tends to increase as the set power increases.
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Similarly, according to the recorded experimental data, power matching curves of
three modulation modes can be calculated under each set power. Power matching refers to
the ratio between the actual output power and the users set power. The closer the value
is to 100%, the higher the matching degree is, and the lower the actual output power is.
The higher the actual output power is, the higher the actual output power is, as shown in
Figure 23. The power matching degree of the PWM modulation mode is the best among
the three. This is because the output power is most relevant to the duty cycle. The PFM
modulation mode is the worst among the three, especially at low power and high power.
This is because the correlation between output power and working frequency is low, and
the modulation effect is not obvious. Once the equipment needs a low-power or high-power
operation, it will be very difficult.
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Although PFM and PWM modulations are superior to hybrid modulation in a certain
aspect such as low power operation, the PFM algorithm is more efficient. The PWM
algorithm has a higher power matching accuracy in each power. However, considering
efficiency, power matching accuracy, and working power range, the hybrid modulation
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algorithm is obviously superior to the other two modulation methods. Therefore, it is
appropriate and efficient to select the hybrid modulation algorithm as the control mode of
the resonant power supply system for plasma cleaning.

The cover plate of a glass mobile phone was taken as the test object, and the contact
angle measuring instrument was used to fix the acting distance at 1.5 cm. The air pressure
was 0.15 MPa, the neutral gas temperature was 85 ◦C, the working frequency was 25 kHz,
the processing speed was 100 mm/s, the resonant inductance was 34 mH, and the working
gas was compressed air. The contact angle before and after the cover plate was cleaned at
different powers and was measured, as shown in Figure 23. The contact angle here refers
to the angle formed when the liquid phase is sandwiched between the two tangents of the
gas–liquid interface and the solid–liquid interface. As shown in Figure 24, the contact angle
decreases gradually with the increase in the set power, indicating that the hydrophilicity
of the material is greatly improved, and the cleaning effect of the resonant power supply
system for plasma cleaning meets the requirements.

In order to further study the influence of working distance on cleaning effect, the
power was set to 500 W~1000 W, and the working distance was set to 0.5 cm~2.5 cm,
respectively. The change of contact angle before and after cleaning of the mobile phone
cover plate is measured and recorded, as shown in Table 5.

Table 5. Data table of plasma cleaning mobile phone cover plate.

Setting
Power (W)

Contact Angle Change Angle (◦)

0.5 cm 1 cm 1.5 cm 2 cm 2.5 cm

500 87.14 78.14 68.92 58.62 39.47
600 92.93 86.74 71.52 63.14 60.59
700 95.83 93.69 77.76 73.28 67.24
800 98.65 96.75 85.13 80.48 73.57
900 103.76 99.94 91.28 85.74 78.18

1000 104.83 101.46 94.08 88.65 82.72

The data in Table 5 are arranged into curves as shown in Figure 25. The analysis shows
that the change angle of the contact angle is positively correlated with the set power, that
is, the higher the set power, the better the cleaning effect. This negatively correlated with
the acting distance, that is, the larger the acting distance, the worse the cleaning effect.
However, the contact angle of the mobile phone cover plate after cleaning has a lower
limit, that is, there is a minimum contact angle, its value is about 12◦, that is, the maximum
change angle of the contact angle is about 105◦. When the contact angle of the mobile
phone cover is close to the maximum value, no matter how the set power increases and
how the acting distance decreases, the change of the contact angle will not increase, that is,
the contact angle will not decrease after cleaning.

The working distance was set to a fixed value of 1.5 cm, and the power was set to
500 W~1000 W, respectively. Under the same test conditions, two materials, glass and
aluminum, were tested. The change data of the material contact angle before and after
cleaning are shown in Table 6.

The data in Table 6 are arranged into the curve shown in Figure 26, and the analysis
shows that the properties of the acting materials have a significant impact on the cleaning
effect. In the same case, under the action of plasma, glass material is obviously more easily
activated than aluminum material, the surface free energy is more easily improved, and
the flatness changes more, that is, it is easier to be modified.
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Table 6. Data sheet of glass and aluminum materials for plasma cleaning.

Setting Power (W)
Contact Angle Change Angle (◦)

Glass Aluminum

500 72.38 32.66
600 78.68 41.84
700 83.83 53.37
800 91.55 60.44
900 94.37 67.51

1000 95.35 71.17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 25 
 

500 600 700 800 900 1000
30

40

50

60

70

80

90

100

Co
nt

ac
t A

ng
le

 c
ha

ng
e 

A
ng

le
 / 

°

Setting power / W

 Glass
 Aluminum

 
Figure 26. Contact angle curves of glass and aluminum. 

5. Conclusions 
In this section, based on the previous sections, a resonant power prototype for plasma 

cleaning is developed, and an experimental platform is set up to carry out relevant verifi-
cation experiments: 
(1) By comparing and analyzing the advantages and disadvantages of traditional control 

methods, the control strategy of the PSPWM-PFM hybrid modulation is developed 
according to the closed-loop program control diagram of the system. The control 
method not only has the advantages of PSPWM quick tuning and a wide tuning 
range, but also has the advantages of PFM to adjust the frequency, prevent the system 
from deviating from the resonant frequency point, and maintain a high efficiency. 

(2) In order to prevent the system from deviating from the resonant frequency and keep 
the active power output near the maximum value under the current duty ratio, a 
maximum power tracking algorithm based on fuzzy PFM was developed, and the 
membership function and fuzzy rules in the fuzzy controller were designed. A 
simulation model is built to verify the hybrid modulation algorithm and the 
maximum power tracking algorithm based on fuzzy PFM. Simulation results show 
that the hybrid modulation algorithm has a fast response speed and a high control 
precision. The fuzzy PFM maximum power tracking algorithm has a strong anti-
perturbation performance and a good tracking performance. 

(3) The power adjustment experiment of the hybrid modulation algorithm is carried out 
to verify the relationship between the output active power, phase shift angle, and the 
frequency mentioned above. The hybrid modulation, PWM modulation, and PFM 
modulation algorithms are compared from three aspects of efficiency, power tuning 
range, and power matching accuracy. It is proved that the hybrid modulation 
algorithm is feasible and efficient. Its output efficiency is 83.0~95.7%, the power 
tuning range is 500 W~1000 W, and the output power accuracy is 90~94%. 

(4) A plasma cleaning prototype is developed and tested on the experimental platform. 
The test results meet the design requirements. Among them, the key circuit 
waveform and control signal precision test results are consistent with the expected. 
The efficiency of the whole machine ranges from 83% to 95.7%. It performs better at 
high power above 850 W, and the efficiency is above 90%. The power range is 500 
W~1000 W, which solves the problem of arc starting difficulty at low power and 
overload protection easily triggered at high power. The output power matching 

Figure 26. Contact angle curves of glass and aluminum.

5. Conclusions

In this section, based on the previous sections, a resonant power prototype for plasma
cleaning is developed, and an experimental platform is set up to carry out relevant verifica-
tion experiments:

(1) By comparing and analyzing the advantages and disadvantages of traditional control
methods, the control strategy of the PSPWM-PFM hybrid modulation is developed
according to the closed-loop program control diagram of the system. The control
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method not only has the advantages of PSPWM quick tuning and a wide tuning range,
but also has the advantages of PFM to adjust the frequency, prevent the system from
deviating from the resonant frequency point, and maintain a high efficiency.

(2) In order to prevent the system from deviating from the resonant frequency and
keep the active power output near the maximum value under the current duty ratio,
a maximum power tracking algorithm based on fuzzy PFM was developed, and
the membership function and fuzzy rules in the fuzzy controller were designed. A
simulation model is built to verify the hybrid modulation algorithm and the maximum
power tracking algorithm based on fuzzy PFM. Simulation results show that the
hybrid modulation algorithm has a fast response speed and a high control precision.
The fuzzy PFM maximum power tracking algorithm has a strong anti-perturbation
performance and a good tracking performance.

(3) The power adjustment experiment of the hybrid modulation algorithm is carried out
to verify the relationship between the output active power, phase shift angle, and
the frequency mentioned above. The hybrid modulation, PWM modulation, and
PFM modulation algorithms are compared from three aspects of efficiency, power
tuning range, and power matching accuracy. It is proved that the hybrid modulation
algorithm is feasible and efficient. Its output efficiency is 83.0~95.7%, the power
tuning range is 500 W~1000 W, and the output power accuracy is 90~94%.

(4) A plasma cleaning prototype is developed and tested on the experimental platform.
The test results meet the design requirements. Among them, the key circuit waveform
and control signal precision test results are consistent with the expected. The efficiency
of the whole machine ranges from 83% to 95.7%. It performs better at high power
above 850 W, and the efficiency is above 90%. The power range is 500 W~1000 W,
which solves the problem of arc starting difficulty at low power and overload protec-
tion easily triggered at high power. The output power matching accuracy is 90~94%,
has an excellent performance, and is suitable for a variety of applications.
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