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Abstract: Groundwater flow modeling in a small-scale area requires practical techniques to obtain
high accuracy results. The effectiveness of the model calibration is the most challenging for simulating
the hydraulic head. In pursuit of this, we proposed an optimized groundwater flow calibration
method based on the pilot point emplacement technique for a 3D small-scale area in this work.
Subsequently, two emplacement structures were tested during the experimentation, the regular
pilot point placement, and the middle head measurement down gradient (MHMDG) placement
with two different densities. The parameter estimation (PEST) numerical code applying the kriging
interpolation was used to estimate the hydraulic conductivity field by MODFLOW. Moreover, geo-
logical SGrid models were chosen for the conceptual model. Thirty-seven observation wells were
used for experimental simulations to test the proposed method in a heterogeneous confined aquifer.
The result shows that the small-scale modeling was complicated, and the studying area presented
a significant heterogeneity in horizontal hydraulic conductivity. The middle head measurement
down gradient (MHMDG) pilot point case with the larger density gave the best R-squared 0.901 and
minimum residual error of 0.0053 m compared to 0.880 and 0.078 m, respectively, for the regular
placement. The calibration accuracy depended on the frequency and the emplacement of the pilot
point. Therefore, the initial value should be technically selected to minimize the computation burden.
The proposed techniques help to improve the groundwater flow model calibration based on the pilot
point methodology for groundwater resources management.

Keywords: pilot point; groundwater flow; groundwater modeling; calibration; MODFLOW; parame-
ter estimation; inverse modeling

1. Introduction

Groundwater flow modeling is the mathematical simulation of the actual condition
of an aquifer considering all related hydrogeological parameters [1]. It remains one of the
most effective decision-making tools for water resources management. It can be categorized
from various techniques, such as calculating the hydraulic head, mapping the potential
recharge zone for water supply management [2], calculating the water budget, or mapping
the hydraulic change by estimating the hydraulic storage using GIS or mapping satellite
data [3]. Theoretically, a satisfying model presents an exclusively less residual error. This
accuracy concern could be approached through the calibration process [4].

In general, model calibration entails modifying model input data to make the model
more accurately reflect observed heads and flows. The input parameters could be hy-
drological, or soil features essential to understanding the relationship between soil and
groundwater [5]. Using nonlinear regression statistical techniques, parameters can be
calibrated manually or automatically. The manual calibration helps to minimize the resid-
ual between the observed value of the hydraulic head and the numerically calculated
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value; however, the process is relatively laborious. Compared to manual calibration, the
automatic calibration is fast and trustworthy despite unrealistic output probability. In
the past, several automated calibration methods have been proposed, such as the global
optimization method [6], the Bayesian-based calibration method that adopts a Gaussian
process error model [7], and the pilot point calibration method.

Doherty, J. [8] introduced an automatic calibration technique using pilot points to
estimate the hydraulic conductivity field on a heterogeneous model. In nonlinear geostatis-
tical calibration, the pilot point approach is often utilized to fit the aquifer response better.
Regularization, in addition to the calibration methodology, was also conducted a few years
later to obtain the uniqueness of the output solution [9]. This previous work was performed
using an arbitrary uniform emplacement of the pilot point and explored the method’s
effectiveness in a complex and straightforward hydrogeological structure. Recently Kapoor
et al. [10] conducted experimental work using pilot point automatic calibration in a large
model to investigate the effect of the pilot point placement. The parameterization, em-
placement, and density are the key points of the inverse modeling using the pilot point
method [11].

The initiation of automatic calibration became popular after creating the numerical
calibration code; it was intended to calibrate hydraulic properties [12]. Parameter estimation
(PEST) is the most famous mathematical model that uses the Gauss- Levenberg-Marquardt
algorithm to minimize the objective function and seek the lowest error variance [13]. It has
been used to calibrate a three-dimensional morphodynamical model, surface groundwater
interaction simulation, and groundwater salinization assessment model [14] and combined
with another model, such as the hydro-geophysical model [15]. In addition, Baalousha
et al. [16] used the pilot point for model calibration of regional groundwater flow that
investigated the effectiveness of the pilot point method. In contrast, Tziatzios et al. [17]
applied the pilot point method to overcome the data scarcity in groundwater modeling.
However, the pilot point placement remains problematic in the small-scale area because
calibration relies on the value of the hydraulic conductivity field of each cell, and there
are no set guidelines for how these points should be placed. The calibration is essential to
obtain an accurate, valuable model for making a decision and the posterior study, such as
the groundwater contaminant transport simulation or water supply management.

Therefore, in this study, we use the PEST numerical code to investigate the effect of
the down gradient pilot point placement method compared to the commonly used uniform
pilot point placement for calibration of the small-scale groundwater flow model. The
main objective of this study is to assess the optimization of the pilot point emplacement
method for automatic calibration to simulate an authentic groundwater flow model based
on the MODFLOW. The GOCAD model data structure was used for creating a three-
dimensional model used as the basis for numerical simulations [18]. This study addresses
the following three subtopics; (1) the process of converting the SGrid geological model from
GOCAD to a MODFLOW conceptual model that represents the compatibility of various
structures and their implementation; (2) simulation of groundwater flow with the specific
hydraulic parameterizations of the study area using the MODFLOW 2005 numerical code
as illustrated in detail in Harbaugh, A.W. [19]; and (3) calibration of the groundwater
flow model based on the proposed pilot point method involving the performance of
inverse modeling using the kriging interpolation and parameter estimate simulation with a
sensibility analysis using the PEST package.

2. Materials and Methods
2.1. Study Area

The site selected for this study is an urban site of a former ferroalloy factory built
in September 1958 and standby all factory operation in 2006. Hexavalent Chromium
pollutes the soil and groundwater in the surrounding area with a maximum concentration
of about 1000 mg/L. In Figure 1, the study area extension forms 450 m by 270 m long.
Groundwater flow modeling is needed to be able to conduct a further numerical simulation
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of groundwater contaminant transport. The geological borehole data from the geological
investigation shows that the area comprises miscellaneous fill, silty clay, medium silty
gravel, weathered mudstone, and moderately weathered mudstone. The miscellaneous
fill is highly porous, while the silty clay layer is relatively water-resisting with poor water
permeability. The gravel layer is the principal confined aquifer with medium porosity,
and the base is composed of the less permeable mudstone layer. The groundwater flow
direction is northwest to southeast.
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Figure 1. Location map of the study area.

2.2. Datasets

The simulation data are composed of various interdependent data for each simulation
step. The three-dimensional geological model data originated from exploration data,
especially from 8 cross-sections and 37 additional boreholes data where the aquifer’s top
and bottom elevations were used for this research (Table 1). The hydrogeological parameter
data (initial hydraulic conductivity, specific storage, specific yield, and porosity) were
obtained from the pumping test experiment. The laboratory testing of soil and water
samples from the study area was conducted conjointly by another research group. Several
methods could be used to obtain an initial hydraulic conductivity for pumping test data,
such as the graphical method [20] or the type curve method [21]. The observation data
comprises 37 observation wells dispersed into the model area; the hydraulic head from the
study area observation value was obtained from the borehole survey screen localized at the
44 m elevation conducted during a previous hydrogeological investigation.

Table 1. Utilized data for this work.

Modeling Phases Geological Modeling Conceptual Modeling Groundwater Flow
Simulation

Data 8 cross-sections, 37 borehole data
Surface data, GIS data (.shp)

topographic data,
borehole data

Observation wells data,
laboratory experiment results,

pumping test results

2.3. Preprocessing
2.3.1. Geological Modeling

The three-dimensional geological model reproduces subsurface formations and their
accompanying features. Several previous researches have been illustrated for three-
dimensional geological modeling [22]. The experimental simulations have been conducted
to approach the testing of the conversion of the three-dimension SGrid model designed
from GOCAD into a processing model such as Flac3d [18], and Groundwater modeling
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system (GMS) transferred as a semi-regular grid using the ASCII format [23] or TIN for-
mat [24]. These studies show the feasibility of the transfer from the three-dimensional
SGrid model into the three-dimensional hydrogeological model. The geological model
was obtained from a GOCAD software design based on a cross-section interpolated into
the TIN format [25]. The 3D SGrid model was transferred to the visual MODFLOW by
conserving the structure in point structure necessary for constructing the surface of the 3D
grid of the hydrogeological model.

2.3.2. Conceptual Modeling

The resolution of the partial differential equation requires a specific numerical method
such as the finite difference used by MODFLOW, the finite element used by the FEFLOW,
the Voronoy grid, the unstructured grid, and the arbitrary irregular polygon solution based
on the Multipoint approximation flux (MPFA) [26]. The finite difference method is the most
effective and stable for numerical groundwater flow [27]. A finite-difference grid is used
for the present study as a solution system for the conceptual model. The grid elevation is
defined from surface data interpolated using the point data elevation. The exemplary data
elevation determines and reinforces a varying layer elevation (Figure 2). Surfaces could
be obtained from data objects imported from Golden Surfer Software (.GRD, ESRI.ASI,
DEM) [28] or from surfaces created through interpolating XYZ points of excel file from the
Gocad geological model and borehole data (Figure 2a). MODFLOW fits their grid according
to the horizon or the surface elevation (Figure 2b). The conceptualization includes the grid
refinement as well as model parameterization. Several alternative models are considered
for groundwater model conceptualization when using MODFLOW [29]. Therefore, the
uncertainty caused by the conceptualization affecting the groundwater flow simulation is
non-negligible and worth assessing [30].
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Figure 2. Conceptual modeling design: (a) borehole and cross-sections elevation point; (b) surface
obtained from interpolation of the point data; (c) Solid geostratigraphical model obtained from the
surface (z exaggeration = 10 times).

2.3.3. Model Parameterization

Parameterization in the context of numerical prediction is a method of assigning the
hydrogeological parameters of the model to represent the actual condition of the aquifer [31].
It significantly influences the model’s outcome and could be a source of uncertainty when
input data is inaccurate or not specific to the model area. Parameterization is a crucial step
in groundwater flow simulation. It forms the basis of the hydrogeological setting. The area
of interest is a small-scale area of 450 m by 270 m large discretized into a regular grid of
54 rows by 84 columns to keep the cell size at 5 m. Hydraulic conductivity (K) range from
4.71 × 10−5 to 5.625 × 10−5 m/day for the aquifer and 7.19 × 10−8 to 8.25 × 10−8 m/day
for the aquitard. The area is subject to replenishment from pluviometry over 2483 mm per
year. The infiltration coefficient is about 0.1 making its input of 248.3 mm/year uniform
over the whole area and the evapotranspiration of 128 mm/year.
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The present study area presents the same pattern as Meijia Zhu in 2019, suggesting
that lateral recharge is negligible compared to the surface recharge from the precipitation
with the influence of extraction downstream [32,33]. The study area is influenced by a
large river one kilometer downstream, while the groundwater follows the SE-NW direction
toward the river. The east and west side of the model is a no-flow boundary. The north and
south are a constant head boundary (Figure 3). According to a prior hydrogeological survey
report, the specific storage is 4.9 × 10−5 m−1, and the specific yield is 0.13–0.40. The high
fluctuation area of the hydraulic head is fixed as a constant head along the south and north
boundary condition. The median value of the boundary conditions is interpolated. The
visual MODFLOW offers the opportunities to interpolate different values in every part of a
linear boundary condition. The northwest part of the model represents the downgradient,
and the southeast forms the up gradient. The permeability coefficients in the X and Y
directions are the same, and the permeability coefficient in the Z direction is taken as
10 percent of the horizontal permeability coefficient [34].
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2.4. Groundwater Flow Simulation

Groundwater models, also known as groundwater flow simulation models, are used
to forecast the consequences of hydrological changes on the behavior of the aquifer [4].
Aspects of groundwater quality are included in specific groundwater models in other
studies [35]. Groundwater models are employed in a variety of urban water management
programs. Some groundwater models attempt to forecast the chemical’s fate and movement
in natural, urban, and speculative scenarios [36]. Three-dimensional groundwater flow is
based on the governing equation of groundwater based on Darcy’s law represented by the
partial differential equation written in Sepulveda 2015 [37] as Equation (1).
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where x, y, and z are the permeability direction on horizontal dimension, t is the time, h is
the hydraulic head, K represents the hydraulic conductivity, W is the sink term, and Sc is
the storage.

Hydraulic heads for one stress period were simulated by the interface of the Layer-
Property Flow package (LPF) on a steady-state condition. The unsteady state simulation
based on MODFLOW USGS has been investigated [38]. The model hydraulic properties
were assigned using the zonation, in our case, the downgradient, and the upgradient by
the graphic user interface (GUI). Manual calibration was carried out to approach the model
output results. Accordingly, manual calibration was conducted to obtain the same trend of
errors; it could considerably reduce the problem of local minima and approach the sought
calibration parameters values. Afterwards, the mechanic calibration using the pilot point
methodology could be processed. The non-linearity of the hydraulic conductivity during
the computation iteration is the main challenge in calibrating the groundwater flow model
in a heterogeneous medium. Whereas the standard simulation with manual calibration,
the main objective is to achieve less or equal to 50% accuracy in minimum residual error.
The statistical criteria are used to evaluate the model accuracy, such as root-mean squared
(RMS) and R-squared. The RMS is traditionally the primary calibration measure for the
groundwater flow model. The square root of the average square of the residual error
represents the difference between the onsite observed value and the numerically simulated
hydraulic head (Equation (2)) [39].

r = h0 − hs, (2)

where r is the residual, h0 is the observed hydraulic head, and hs is the numerically
simulated.

RMS =

√
1
2

n

∑
t=1

(h0 − hs)
2
t , (3)

The groundwater flow and the model comparison are measured from their R-squared
described by Shinichi (2013) [40] (Equation (4)).

R2 =
∑n

i=1( yi − ŷi)
2

∑n
i=1( yi − yi)

2 , (4)

where R2 is the R-squared, ŷ is the predicted value of y, and y is the mean value of y.

2.5. Model Calibration
2.5.1. Pilot Point Placement Design

Pilot Point Placement is the method of technically defining the emplacement of each
pilot point in a groundwater flow model calibration. A pilot point can be placed on top of
observations or between them. Wherever possible, increasing the density of the pilot point
would be advantageous for the model calibration. Specific rules, such as density, dictate the
placement of the pilot point. It should be more significant where there are more observations
or high hydraulic head fluctuation, and the gap in the placement is not tolerated [41]. The
groundwater flow model calibration was conducted using PEST numerical code based on
the inverse modeling with pilot point mode. Inverse modeling could be used to characterize
aquifer and aquitard [11]. The spatial distribution of the hydraulic head was resulted by
running the model simulation using the parameters generated by the PEST. In this study,
The pilot points method combines the zonation that separates the upgradient from the
downgradient [42]. We adopt kriging interpolation to interpolate the assigned value of
the pilot points to each of the model cells as it gives a better trend in subsurface data [43].
An exponential variogram was used for the entire simulation, parallel to the Gaussian.
The simulation provides proper hydraulic conductivity distribution by minimizing the
residual over 10 iterations. The simulation could give an unrealistic value to approximate
the observation; however, the modeler makes the balance. The PEST calibration allows
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regularization opportunities that concede the model to produce a unique solution. The
SVD regularization and Tikhonov regularization are available in the PEST suite or PEST++.

2.5.2. Regular Pilot Point Placement

Regular placement is related to the uniform distribution of pilot point locations to
form a regular grid. The regularity guarantees the existence of a pilot point at a fixed
distance. This pilot point placement structure is known as the ordinary placement for
pilot point model calibration. The entire model is about 121,500 m2; a grid of 60 m ×
60 m and 40 m × 40 m are formed respectively for the low density and high-density pilot
point, giving 35 parameters for the low density and 60 for the high. Pilot points are placed
regularly in the middle of each grid which is diverse from the finite-difference grid, such as
each 3600 m2 have one arbitrary point for the low density and 1600 m2 for the high density
of pilot points (Figure 4a–c).Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 19 
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2.5.3. Middle Head Measurement Down Gradient Pilot Points Placement

MHMDG is a pilot point placement concept that considers the head observation
measurement and the hydraulic gradient. When using the kriging method to assign the
hydraulic conductivity of every cell interpolated from the pilot point, the emplacement
of the pilot point must be carefully considered. The assignment of the pilot point value
is completed using the zonation technique. The area is divided into upgradient and
downgradient zones from the southeast to the northwest. The frequency of the regular
pilot point placement is maintained. However, the pilot points are placed in the middle
of the head observation, and the downgradient part is more considered. The upgradient
position is filled with a spared pilot point to avoid generating a gap in the interpolation
(Figure 4b–d).

2.5.4. Pilot Point Placement Criteria

Placement criteria are the principle by which the pilot point localization is chosen. It
must follow a technical condition to meet the requirement of the adopted methodology.
Although there is no particular rule for the pilot point placement, criteria must be addressed
to fulfill the model calibration target.

As presented in the preceding paragraph, the model is a small-scale area of 450 m ×
270 m. The principle is to cover the entire study area; however, avoiding oversaturation is
controlled. This study is conducted using two different pilot point placements, the regular
placement, the MHMDG placement, and two other parameters density based on several
criteria to achieve a minimum error and maximum accuracy (Figure 4). The number of
35 represents the lower density of the pilot point for calibration, so the distance between
two pilot points is 60 m, as the model is entirely covered and has one pilot point each
3600 m2 and one pilot point every 1600 m2. The pilot points used here are designed in
three-dimensional pilot points placed on the top surface of the aquifer layer.

3. Results
3.1. Pilot Point Placement and Frequency Effect

The pilot point placement is related to the localization of each pilot point, while the
frequency is the amount of the pilot point placed in the area. The effect of these two
structures could be measured by experimental simulation under various circumstances,
including the convergence of the model and the measurement of the RMS. The convergence
accuracy of the hydraulic head simulation reached 95% with 60 parameters, and the
RMS decreased (Table 2). The middle head measurement down gradient placement takes
advantage of the regular placement in terms of estimation accuracy, shown by the Standard
error of estimate respectively 0.053–0.056 and 0.061–0.063.

Table 2. Statistic of the simulation over 35 parameters and 60 parameters in regular and MHMDG
pilot point placement.

Statistics Non Calibrated
35 Points 60 Points

Regular MHMDG Regular MHMDG

Mean r squared 0.396 0.695 0.683 0.886 0.901
RMS (m) 0.69 0.38 0.34 0.37 0.32

Normalized RMS (%) 14.65 8.035 7.2 7.78 6.78
Max residual (m) −1.6 −0.96 0.9 −1 0.9
Min residual (m) 0.078 0.0014 −0.0033 0.011 −0.0053

residual Mean (m) −0.22 0.0063 0.024 −0.0067 0.015
Standard error of

estimation (m) 0.11 0.063 0.056 0.061 0.053

K min 4.71 × 10−5 4.6 × 10−7 1.7643 × 10−7 1.7643 × 10−7 1.2867 × 10−7

K max 4.716 × 10−5 1.037081 2.445149 2.445149 0.2444386
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3.2. Mean Residual Error Analysis

Mean residual error is the difference between the value observed and the arithmetical
mean of the calculated value. It is often applied to evaluate a model or simulation [44].
Based on the number of simulations for each model design, which is ten simulations
for each scenario, the mean residual is obtained and shown in Figure 5. The error bar
represented here is based on the standard deviation of the ten simulation runs, which is
different from the model calibration iteration. The MHMDG placement with 60 pilot points
represents minor variation. The standard deviation represents a minimum value of 0 for
the four types of pilot point placement. The maximum value is 0.59, 0.081, 0.77, and 0.17,
respectively, for the regular placement with 35 number pilot points, regular placement with
60 number pilot points, MHMDG placement with 35 number pilot points, and MHMDG
placement with 60 pilot points.
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3.3. Hydraulic Head

A hydraulic head, also known as a piezometric head, is the measured water level
under natural pressure [45]. The hydraulic head is one of the most critical characteristics
for describing a hydraulic system’s mechanical energy condition. In the Finite-difference
model, the hydraulic head is unique to every model cell as the principal groundwater flow
equation solution. The confined layer, the medium silty gravel layer, is the simulation’s
focus. The interpolated water table and the numerically simulated present a similar global
trend with a slight difference (Figure 6). In this simulation, the hydraulic head of each cell
is obtained by the calculation using the finite-difference solution in steady-state mode. The
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Silty clay and the medium silty gravel represent the saturated zone (Figure 7), while the
confining layers are filled by dry cells.
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3.4. Parameter Sensitivity Analysis

Parameter sensitivity analysis is a critical tool in result data analysis that aims to
evaluate the relative importance of model parameters and identify those with a low and
high impact that should be fixed or increased during analysis to keep a model stable and
accurate [46]. This study applies the sensitivity analysis method described in Al-Muqdadi
et al. [47]. The parameters sensitivity calculation is included in the PEST simulation, and
the value is assigned to each parameter observation. The sensitivity value obtained from
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Equation (5) represents the influence of each parameter in the numerical simulation and
the convergence of the model along the calibration iteration process.

Si =
(

JtQJ
)1/2

ii /m, (5)

where Si is the composite sensitivity for parameter i, J is the Jacobian matrix, Jt is the trans-
pose of the Jacobian matrix, m is the number of observations, and Q is the weight matrix.
A similar sensitivity analysis method has been conducted for a pilot-point emplacement
calibration of the karst model and applied in this main study [16]. The parameter sensitivity
of the four pilot point placement settings was conducted and expressed in Figure 8.
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4. Discussion
4.1. Pilot Point Based Calibration Evaluation

Through the calibration process, the estimation of the parameters gave the maximum
optimized value of the hydraulic conductivity. The result shows a positive difference with
a 0.901 R-squared for the 60 pilot points with MHMDG placement compared to 0.630 for
the non-calibrated model when using the optimized parameters. The MHMDG 60 pilot
points give a better performance than the regular placement of any density of parameters
and minor change in standard deviation. Based on the Taylor theory, a concise statistical
overview of the model result in terms of correlation, root-mean-square difference, and
variance ratio is presented in a Taylor diagram to evaluate the model [48]. The observation
and calculated values comparison show that the MHMDG placement model with 60 pilot
points is the most stable and accurate calibration (Figure 9). Over the fifth iteration,
the value of the parameters meets the stability conditions and the objective function.
The methodology proposed here showed that the pilot-point-based calibration gives a
sound approximate random output of parameters as an outcome and a close correlation
between the observed data and the numerically simulated hydraulic head. The water table
simulated by the MODFLOW model presents a minor variation compared to the water
table interpolated from the observation data (Figure 5).
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The study’s objective is to improve the technics of groundwater flow calibration
based on pilot points placement through a scenario and repeated simulation experiment
realized using the MODFLOW 2005 engine and the PEST suit. The frequency of pilot
points influences the iteration time; the more the pilot-point density increases, the longer
the computation time. However, the accuracy is increased with the density as well. The
modeler must determine a balance during a manual calibration to minimize computing
time and burden. The pilot point calibration method is more effective when combined with
the zonation and placed between the observation wells and the boundary condition. The
model simulation could not tolerate the gap of the pilot point in the model area; it must
be filled with less density. With the MODFLOW 2005 engine and PEST suit, the model’s
three-dimensional and two-dimensional pilot point’s influence is negligible.

In the small-scale area, the kriging interpolation with exponential variogram applied
here for the assignment for the pilot point value is exceptionally suitable as it approximates
the solution with high accuracy. An excessive variogram might impact the iteration and
parameters sensitivity and limit the objective function, which becomes stable and constant
before around 90% of the simulation. In a high water level fluctuation region, a trendier
change of parameters sensibilities occurs but is less sensible in the MHMDG 60 pilot points.
The other placement design’s sensitivity result does not follow any tendency (Figure 8).
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4.2. Comparative Analysis

The pilot point placement results expose the applicability of the pilot point calibration
methodology in the small-scale heterogeneous area focused on the estimation of hydraulic
conductivity field similarly investigated in other literature [10,16,17]. The structural and
stratigraphic traits and trends in these research are identical. Literature [10] emphasizes the
importance of pilot point methodology for estimating transmissivity in limited field data. In
contrast, the others use pilot points in surface groundwater interaction problems regarding
data scarcity and combine the zonation and the pilot point method with exploring the
effect of pilot point location in Karst. In addition, These works of literature emphasize the
validation of the steady-state model conducted using the PEST by the database approach
according to the review of the groundwater flow and calibration evaluation [4]. It has been
illustrated that groundwater model calibration should be evaluated statistically prior to
sufficient observation data.

Moreover, despite several methods associated with groundwater modeling, such as
the artificial neural network (ANN), or the surrogate model using a genetic algorithm,
the MODFLOW model takes advantage of the dynamic response of the aquifer and the
application of automatic calibration [49]. The modeling using an ANN often requires
extra data, such as pumping data and climate data [50]. Therefore, the MODFLOW model
remains the vastly used model chosen for the present problem. These models often present
an uncertainty associated with the model input parameters that could significantly impact
the simulation outcome. It can be evaluated by the sensibility analysis when using the PEST
for automatic calibration while needing specific technics such as full Bayesian technics [51]
or Markov Chain Monte Carlo-based uncertainty analysis method [52]. However, the
findings of this study could aid in focusing on areas of high uncertainty where more
field data is needed to improve model calibration. It also aids in positioning pilot points
for a more reliable calibration. Admittedly, the uncertainty problem could be the future
development of the present situation assessed with machine learning techniques.

5. Conclusions

This paper presents an improved calibration technique for the groundwater flow
model based on the pilot point method under various situations and stress circumstances.
The experimental simulation is conducted using the MODFLOW model and the PEST
calibration numerical code in a small-scale heterogeneous area for an MHMDG design of
the pilot point method on steady-state mode. Our main findings are as follows:

(1) The calibration evaluation compared the simulated hydraulic head to the observed
data. The conceptualization method has a significant impact on the result, especially
the grid structure and elevation, which define the deformation of the grid and the
relief of the surface. The geological structure could be well reflected by the surface
interpolated from a SGrid model elevation point. The accuracy depends on the inter-
polation method, which is the primary source of uncertainty. The kriging interpolation
remains the most effective and accurate for groundwater model conceptualization.

(2) The calibration method based on the pilot point method is effective in the small-
scale area, as proved by this experimental study; however, it massively pivots on the
pilot point emplacement strategy and density. In our application case, the MHMDG
placement method with a large density gives the best R-squared 0.901 compared to
0.880 for the regular placement. The kriging interpolation used in inverse modeling
reflects the value of the hydraulic conductivity of every pilot point. The initial value
of the pilot points impacts the accuracy of the result and the computation time. The
calculation is more complicated in heterogeneous media and generates a computation
burden that affects the model stability.

(3) The choice of the solution model and the engines adapted to the context is critical for
simulation, especially when using the MODFLOW numerical code. It might yield
an excellent calculation outcome of unrealistic value. The MODFLOW 2005 and the
PEST combination are perfect solutions for small-scale areas. The consideration of
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small-scale simulation with regularization is a future topic for another research. It
helps to understand the calibration solution’s uniqueness of using the pilot point
method and zonation focused on the middle head measurement on the downgradient
technics.
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