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Abstract: Laser powder bed fusion (LPBF) provides a rapid and cost-effective solution for fabricating
metallic parts with near full density and high precision, strength, and stiffness directly from metallic
powders. In LPBF, process variables are widely recognised as fundamental factors that have important
effect on the quality of the built parts. However, activity of designing process variables for LPBF, i.e.,
process planning for LPBF, still heavily depends on knowledge from domain experts. This necessitates
a knowledge base that enables the capture, representation, inference, and reuse of existing knowledge.
In this paper, a description logic (DL) based ontology for knowledge representation in process
planning for LPBF is presented. Firstly, a set of top-level DL entities and specific DL entities and
semantic web rule language (SWRL) rules for part orientation, support generation, model slicing, and
path planning are created to construct the ontology. The application of the ontology is then illustrated
via process planning on an LPBF part. Finally, the benefits of the ontology are demonstrated through a
few examples. The demonstration results show that the ontology has rigorous computer-interpretable
semantics, which provides a semantic enrichment model for LPBF process planning knowledge and
enables automatic consistency checking of the ontology, knowledge reasoning on the ontology, and
semantic query from the ontology. This would lay solid foundation for development of a process
planning tool with autonomous decision-making capability.

Keywords: laser powder bed fusion; process planning; process variable; knowledge representation;
description logic; ontology

1. Introduction

Laser powder bed fusion (LPBF) is an additive manufacturing (AM) process that
uses a laser beam to selectively melt metallic powders together to additively manufacture
metal parts [1]. The schematic of this process is depicted in Figure 1. An LPBF machine
mainly includes a powder bed, a powder delivery apparatus, a build platform, a recoater
blade, a rotating mirror, and a laser beam source. The process of using an LPBF machine to
fabricate a three-dimensional (3D) part generally consists of the following steps:

• A layer of powder material with specified thickness is spread over the build platform
from the powder delivery apparatus by the recoater blade;

• A moving laser beam with certain power selectively scans the layer of powder material
with certain speed to create a layer of the 3D part;

• The build platform steps down by one layer thickness and a new layer of powder
material is distributed evenly across the build platform;

• The second and third steps are repeated until the 3D part is fully built.
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LPBF has advantages in providing high flexibility for geometric design and achieving
geometric complexity without additional cost, which are the common advantages of AM
technologies over traditional manufacturing technologies. More importantly, LPBF enables
rapid fabrication of different metallic parts in a mixed batch with near full density and high
precision, strength, and stiffness directly from metallic powders at no extra cost [2]. This
feature makes it an attractive technology for producing functional components in a number
of key industrial sectors, such as the aerospace, automotive, and biomedical sectors [3].

Figure 1. Schematic diagram of the LPBF process.

In general, the process of using LPBF to realise a part meeting certain quality re-
quirements includes a set of activities, where process planning is an important one. In
conventional manufacturing, process planning is an activity of determining appropriate
sequence of operations and process variables for converting a workpiece from an engi-
neering drawing to its final form. In LPBF, the engineering drawing is replaced by a 3D
model. The aim of process planning remains the same, namely to determine appropriate
sequence of LPBF operations or process variables to enable efficient and accurate build of
an LPBF part from its 3D model. In process planning for LPBF, the process variables to
be designed include build orientation, support structure, slices, laser scanning path, and
process parameters. These variables are widely recognised as fundamental factors that
have important influence on the quality of the built part [4–8]. However, process planning
for LPBF is still considered as a challenging activity [9,10] because of the following reasons.
Firstly, the physical and chemical processes of LPBF are complex. The lack of a complete
understanding of these underlying processes brings great difficulty to the development of
optimal process planning methods to build high-quality components [2]. Secondly, most
of the existing process planning methods for LPBF focus on specific variables, materials,
or structures rather than general strategies. They are difficult to be transferred directly to
a build with new variables, materials, or structures. Thirdly, most of the current process
planning tools for LPBF are configured by users manually without a standard procedure.
There is not yet a tool with autonomous decision-making capability [4–8]. These limitations
necessitate a process planning knowledge base that enables the capture, representation,
inference, and reuse of existing knowledge about the LPBF process.

In this paper, a description logic (DL) based ontology for knowledge representation in
process planning for LPBF is constructed. DLs, a family of formal knowledge representa-
tion languages, are well-known for providing rigorous logic-based semantics to support
knowledge reasoning [11]. Ontology, a shared, explicit, and formalised specification of
concepts, relations, instances, and axioms in an application domain, provides effective
means to capture, represent, and reuse domain knowledge [12]. A DL-based ontology is an
ontology using a DL as representation language. The most prominent feature of DL-based
ontologies is that they can achieve semantic representation and exchange and knowledge
discovery and reuse. Although application of DL-based ontologies is rooted in the field
of semantic web, it has been extended to many other fields during the past three decades.
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In the field of advanced manufacturing, DL-based ontologies have been used to improve
the interoperability of industrial information systems [13], achieve knowledge reuse and
discovery in product lifecycle management [14], exchange computer-aided design model
data [15], and implement intelligent design of tolerance specifications [16]. Through a
DL-based ontology, the knowledge in process planning for LPBF can be formalised in DL
and semantic web rule language (SWRL) [17] and represented and stored in web ontology
language (OWL) [18]. As three benefits of the constructed DL-based ontology, consistency
checking, knowledge reasoning, and semantic query can be performed via DL, DL and
SWRL, and DL, sparql protocol and rdf query language (SPARQL) [19], and semantic
query-enhanced web rule language (SQWRL) [20], respectively.

The remainder of the paper is organised as follows: an overview of related work is
provided in Section 2. The details of the constructed DL-based ontology are explained
in Section 3. Section 4 documents an application of the ontology and illustrations of the
benefits of the ontology. Section 5 ends the paper with a conclusion.

2. Related Work

An ideal model for AM knowledge representation is preferably a standardised model
for practical applications [21]. During the past few decades, many standardised models
for data representation in AM have been developed [22], but there has not yet been a
standardised model for knowledge representation in AM. To fill this gap, many models
have been presented within academia, which can be divided into the following categories
based on the knowledge representation methods used in them:

• Graph model [23]: this model was presented to formulate the design guidelines for
AM. In the model, a set of design guidelines for AM are first defined in a graph form
based on relevant literature. Then, the 3D model of a component is decomposed into
a group of constitutive features. These features and the relationships between them
are identified and represented using graphs. After that, the defined design guidelines
are leveraged to revise the offending features to alleviate the manufacturability issue.
Finally, the best design for component build is obtained via repeating the first three
steps iteratively. The approach can be used by those designers who find it difficult to
integrate all the constraints into a unified AM design process. However, it improves
the AM design only on the basis of manufacturability. Mechanical strength is not
considered in the improvement.

• Finite state automata model [24]: this model was constructed to represent AM design
knowledge to support personalised AM. In the model, a formal design process structure
combining design for personalisation and design for AM is first established. Then, the
artifact-user interactions are formally represented using a finite state automata based on
the established structure. Through applying the affordance, effectivity, and preference
properties, the artifact properties related to behaviours and preferences of users are
systemically linked to design requirements of AM artifacts. The finite state automata
model provides a set of formal representations that capture design requirements to
improve personalisation level of AM while maintaining the freedom of AM design.
However, it can only be applied to the stages of conceptual design and preliminary
design and has not yet been included for consideration of process planning.

• Network model [25]: this model was developed to simulate AM processes. In the
model, the system of direct material deposition process is taken as an illustrative case
study. Networks are first used to visualise the general view of the system functions and
the causal relationships between system variables. Then, a set of causal graphs between
governing dimensionless products are defined to simplify the causal graphs between
system variables. Through the simplification, the causal relationships between system
variables are directly extracted before carrying out experiments. The network model
provides a feasible way to simulate the direct material deposition process. However,
it still needs to be further extended when it is utilised to simulate other AM processes.
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• Function modelling language model [26]: this model was established to structurally
represent the process-related data and knowledge in LPBF using a function modelling
language and align them with specific sub-processes of powder bed fusion. It classifies
an LPBF product realisation process into six activities, which are product modelling,
product model tessellation, process planning, monitoring and control, post process, and
quality inspection. On the basis of such classification, the activities process planning
and monitoring and control and the data and knowledge associated with them are
modelled. The function modelling language model provides a way to understand the
organisation of LPBF product realisation process activities and sub-activities and the
data flows among them. It also provides a common terminology and new process
knowledge for LPBF data management. However, the model is just a conceptual model
of the activities. The modelling of specific data and knowledge in each activity is
not included.

• Worksheet model [27]: this model was presented to simplify the guidelines of design
for AM for novice and intermittent users. In the model, the existing guidelines of AM
design are firstly summarised from a certain number of representative research articles.
Based on the summarisation, a one-page visual worksheet of the guidelines of design
for AM is developed. The effectiveness of the worksheet is demonstrated via several test
experiments. The worksheet model can help designers evaluate the potential quality of a
component manufactured by AM processes and indirectly recommend feasible methods
to redesign it. Its direct benefit is to filter out bad designs before manufacturing, which
reduces the time spent on manufacturing and redesign. However, the model is based on
the samples provided by a single source, which could limit its potential performance.

• Formal rule model [28]: this model was constructed to represent the design rules
with modularity for AM. In the model, the fundamental relations among geometry,
process, and material are first decomposed into reusable modules. Then, the modules
are described using if-then rules. On the basis of the rules, parts are specialised to
represent the process-related parameters for different AM processes. The formal rule
model provides consistent and repeatable interpretations of an AM design guideline
in different design and process conditions. It can also be used to explain the design
principles that are independent of process to those users who are not familiar with
AM technologies. Since the core of the model is to reconfigure the existing design
rules, rather than to develop new rules, the basic AM principles can be preserved,
and meanwhile the customisation and explicit representation of AM design rules can
be implemented.

• Bayesian network model [29]: this model was established to fill the knowledge gap
between designers and AM technologies. It is hierarchically organised and consists of
an overview layer and a detailed information layer. Different types of nodes and their
causal relationships in each layer are characterised by Bayesian networks. A knowl-
edge management system for supporting AM was then developed. This system can
help designers understand the capabilities of AM processes and form appropriate
design solutions at the design stage, which reduces the uncertainty of AM processes to
some extent.

• Category theory model [30]: this model was developed to formalise general knowledge
in design and process control for powder bed fusion. In the model, a collection of
guidelines and rules for these two activities are encapsulated and represented using
categorical structures. The category theory model provides a framework to captured,
accessed, and interrogated the structured knowledge. However, it has not yet included
the representation of specific data in the two activities.

A summarisation of the models above at the aspects of published year, representation
method, represented specific AM knowledge, and targeted AM process is provided in
Table 1. In addition to these models, the use of ontologies in AM knowledge representation
has been gained importance and popularity within academia during the past two decades.
Many ontologies [31–52] have been presented in this period. A summarisation of these
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ontologies at the aspects of published year, representation languages, represented specific
AM knowledge, and targeted AM process is provided in Table 2.

Table 1. Overview of existing models for AM knowledge representation.

Ref. Year Representation Method Specific AM Knowledge That Is Represented in the Constructed Model Process

[23] 2015 Graphs Design guidelines for AM AM
[24] 2015 Finite state automata AM design knowledge for supporting personalised AM AM
[25] 2016 Networks Process functions and causal relationships between process variables DMD
[26] 2017 FML Process-related data and knowledge in LPBF LPBF
[27] 2017 Worksheet Guidelines of design for AM for novice and intermittent users AM
[28] 2017 Formal rules Design rules with modularity for AM AM
[29] 2018 Bayesian networks Knolwedge in design for AM AM
[30] 2018 Category theory General knowledge in design and process control for PBF PBF

Notes: DMD stands for direct material deposition; FML stands for function modelling language; PBF stands for
powder bed fusion.

Table 2. Overview of existing ontologies for AM knowledge representation.

Ref. Year Languages Specific AM Knowledge That Is Represented in the Constructed Ontology Process

[31] 2007 DL Design requirements, process plans, and rules that map requirements to plans AM
[32] 2008 DL Design requirements, process plans, and rules that map requirements to plans AM
[33] 2010 DL Design features and rules for selecting manufacturing variables AM
[34] 2014 OWL Knowledge in development for AM processes LPBF
[35] 2015 OWL, SWRL Most applicable concepts of AM relevant to process planning applications AM
[36] 2016 OWL Laser and thermal metamodels for LPBF LPBF
[37] 2016 OWL Information correlating material, design, and manufacturing operations AM
[38] 2016 OWL Model fidelity in LPBF LPBF
[39] 2017 OWL, SWRL Knowledge in design for AM AM
[40] 2018 OWL Design features, manufacturing features, and process parameters AM
[41] 2018 OWL Information about innovative uses of AM technologies AM
[42] 2018 —— Knowledge in process planning for AM AM
[43] 2019 OWL, SWRL Knowledge in design for AM AM
[44] 2019 OWL, SWRL Data and knowledge in AM value chain AM
[45] 2019 OWL Knowledge in AM product lifecycle AM
[46] 2020 —— Metamodels and planning rules in process planning for wire arc AM WAAM
[47] 2021 OWL, SWRL Knowledge for LPBF design rule construction LPBF
[48] 2021 —— Causal relations between AM parameters and quality assurance requirements LPBF
[49] 2021 OWL Process parameters, physical models, thermal models, and build qualities LPBF
[50] 2021 OWL Information about the capabilities of LCM process, printers and materials LCM
[51] 2021 OWL, SWRL Knowledge for cost estimation in AM AM
[52] 2021 OWL, SWRL Knowledge for identifying and prioritising data analytics opportunities in AM LPBF

Notes: LCM stands for lithography-based ceramic manufacturing; WAAM stands for wire arc additive manufacturing.

As can be seen from Tables 1 and 2, each model/ontology has its specific usage in
AM knowledge representation. Some models/ontologies are targeted at general AM pro-
cesses, while each of other models/ontologies is constructed for one specific AM process,
including direct material deposition, LPBF, powder bed fusion, lithography-based ceramic
manufacturing, or wire arc additive manufacturing. It can also be seen from the two tables
that the models and ontologies related to knowledge representation in process planning
for LPBF include the function modelling language model [26], category theory model [30],
and ontologies in [31–33,35,37,39,40,42,43,47–49]. However, research gap is evident due
to the following reasons: both the function modelling language model [26] and category
theory model [30] are conceptual models and do not involve the modelling of specific data
and knowledge in process planning for LPBF; the ontologies in [31–33,35,37,39,40,42,43]
are targeted at general AM processes and are difficult to be applied to process planning
for LPBF directly (need further modifications and extensions); although the ontologies
in [47–49] were all developed for the LPBF process, their main purpose is not to represent
the knowledge at the process planning stage. To fill the research gap, a DL-based ontol-
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ogy dedicated to knowledge representation in process planning for LPBF is presented in
this paper.

3. DL-Based Ontology

A DL-based ontology generally consists of a DL terminology box (TBox), a DL assertion
box (ABox), and a set of SWRL rules. The DL TBox is a collection of concepts, relations,
and definitions of concepts (terminological axioms). A set of concept assertions, relation
assertions, and instance assertions (assertional axioms) constitute the DL ABox. The
SWRL rules are used to describe the knowledge that cannot be described by DL. In this
section, a DL-based ontology for representation of the LPBF process planning knowledge is
developed using Protégé [53] according to standard terminologies for LPBF (ISO/ASTM
52900, 2021), LPBF process planning guidelines (ISO/ASTM 52911-1, 2019; ISO/ASTM
52911-2, 2019), database of LPBF materials [54], database of LPBF machines [54], and
existing related research results [4–8]. The schematic diagram of this ontology is shown in
Figure 2. Benefiting from the advantages of the developed ontology, the semantics of LPBF
process planning data are enriched greatly, and consistency checking, knowledge reasoning,
and semantic query, which are not available in current process planning tools for LPBF, can
be performed via DL, DL, and SWRL, and DL, SPARQL, and SQWRL, respectively.

In the following subsections, the details of the ontology will be described in a top-
down manner. For the sake of clarity, the following labelling convention will be adopted:
all entity names are in italics (e.g., LpbfMachine, isBasedOn, eosintM270); the first letters
of all DL concept (OWL class) names are in capitalised case (e.g., Lpbf, ProcessPlanning);
all DL relation (OWL property) names have a prefix of ‘has’ or ‘is’ (e.g., hasEnergySource,
isApplicableFor); the first letters of all DL instance (OWL individual) names are in lower
case (e.g., ti6Al4V, alSi10Mg).

Figure 2. Schematic diagram of the development process of the DL-based ontology.

3.1. Top-Level Entities

LPBF is an AM process whose energy source is a laser beam, build material is a powder
material, build platform is a powder bed, and build mechanism is melting. Process planning
for LPBF is a product realisation activity that aims to design appropriate process variables
to build a part that can satisfy certain build and quality requirements. The main inputs of
this activity include a 3D model, an LPBF material, an LPBF machine, and build and quality
requirements. The outputs of the activity are a set of process variables, which include
build orientation, support structure, slices, laser scanning path, and process parameters.
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Process planning consists of four successive tasks that of part orientation, that of support
generation, that of model slicing, and that of path planning [55].

Based on the description above, twenty-eight top-level concepts were created and
depicted in Figure 3. Among them, Lpbf, LpbfPart, LpbfMaterial, LpbfMachine, ProcessPlanning,
PartOrientation, SupportGeneration, ModelSlicing, and PathPlanning are composite concepts
(concepts that need to be defined by other concepts), while the remaining concepts are
atomic concepts (concepts that cannot be defined by other concepts). The DL definitions of
the nine composite concepts are given by the following terminological axioms:

Figure 3. Graphical representation of top-level concepts and their hierarchies.

Lpb f ≡ AmProcess u ∃hasEnergySource.LaserBeam u ∃hasBuildMaterial.PowderMaterial

u ∃hasBuildPlat f orm.PowderBed u ∃hasBuildMechanism.Melting
(1)

Lpb f Part ≡ AmPart u ∃isManu f acturedUsing.Lpb f (2)

Lpb f Material ≡ PowderMaterial u ∃isApplicableFor.Lpb f (3)

Lpb f Machine ≡ AmMachine u ∃isBasedOn.Lpb f (4)

ProcessPlanning ≡ RealisationActivity u ∃hasAimO f Designing.ProcessVariable (5)

PartOrientation ≡ ProcessPlanning u ∃hasAimO f Designing.BuildOrientation (6)

SupportGeneration ≡ ProcessPlanning u ∃hasAimO f Designing.SupportStructure (7)

ModelSlicing ≡ ProcessPlanning u ∃hasAimO f Designing.Slice (8)
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PathPlanning ≡ ProcessPlanning u ∃hasAimO f Designing.LaserScanningPath

u ∃hasAimO f Designing.ProcessParameter
(9)

where ≡ is the concept definition symbol in DLs which is used to define a concept, ∃ is
the existential restriction symbol in DLs which is used to denote that there are one or
more instances of a concept that have a specific relation, u is the concept conjunction
symbol in DLs which is used to obtain the intersection of instances of two concepts, and
hasEnergySource, hasBuildMaterial, hasBuildPlatform, hasBuildMechanism, hasAimOfDesigning,
isManufacturedUsing, isApplicableFor, and isBasedOn are object relations whose domain,
range, and meaning are listed in Table 3.

Table 3. Domain, range, and meaning of eight top-level object relations.

Object Relation Domain Range Meaning

hasEnergySource AmProcess LaserBeam An AM process that has energy source of
hasBuildMaterial AmProcess PowderMaterial An AM process that has build material of
hasBuildPlatform AmProcess PowderBed An AM process that has build platform of
hasBuildMechanism AmProcess Melting An AM process that has build mechanism of
hasAimOfDesigning RealisationActivity ProcessVariable A realisation activity that has aim of designing
isManufacturedUsing AmPart Lpbf An AM part that is manufactured using
isApplicableFor PowderMaterial Lpbf A powder material that is applicable for
isBasedOn AmMachine Lpbf An AM machine that is based on

The build and quality requirements are specified by process planners based on cer-
tain indicators. Indicators for describing the build requirements of an LPBF part mainly
include support volume, build time, and build cost, while indicators for specifying the
quality requirements of an LPBF part mainly contain dimensional error, geometric error,
volumetric error, surface roughness, density, hardness, yield strength, tensile strength,
elongation, residual stress, and fatigue strength. In the process of planning for LPBF,
the values of these indicators for an LPBF part to be built are usually predicted via
certain prediction models. To describe indicator values, fourteen top-level data rela-
tions named hasSupportVolume-mm3, hasBuildTime-h, hasBuildCost-GBP, hasDimensionalError-
mm, hasGeometricError-mm, hasVolumetricError-mm3, hasSurfaceRoughness-µm, hasDensity-
g/cm3, hasHardness-HV, hasYieldStrength-MPa, hasTensileStrength-MPa, hasElongation-Pct,
hasResidualStress-MPa, and hasFatigueStrength-MPa were created. The domain and range of
each data relation are respectively LpbfPart and xsd:double. This means that an LPBF part
has predicted indicator value of xsd:double.

The widely known LPBF materials include Ti6Al4V, AlSi10Mg, stainless steel, and tool
steel. Recently, several other types of LPBF materials, such as tungsten, zinc alloy, magne-
sium alloy, and metal matrix composite, have been developed [56]. Therefore, eight asser-
tional axioms were created as follows: LpbfMaterial(ti6Al4V); LpbfMaterial(alSi10Mg); Lpbf-
Material(stainlessSteel); LpbfMaterial(toolSteel); LpbfMaterial(tungsten); LpbfMaterial(zincAlloy);
LpbfMaterial(magnesiumAlloy); LpbfMaterial(metalMatrixComposite). According to the Senvol
Database [54], there have been two hundred and thirty-six LPBF machines available in the
market to date. The names of these LPBF machines were used to instantiate the concept
LpbfMachine to create two hundred and thirty-six assertional axioms. For example, in the
database, EOSINT M270 is an LPBF machine. An assertional axiom LpbfMachine(eosintM270)
was created to make this assertion.

3.2. Entities for Part Orientation

Part orientation is a process planning task that aims to design a build orientation that
best meets the build and quality requirements to build a part [4]. The main inputs of this
task include a 3D model of a part to be built and specific build and quality requirements on
the part. Its output is a 3D model in a build orientation. The 3D model is the results of the
design activity and generally encoded in a specific format [22], such as the STL (standard
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tessellation language) format, 3MF (3D manufacturing file) format, and AMF (additive
manufacturing file) format.

Existing methods for part orientation can be classified into search-based methods
and rule-based methods [4]. Search-based methods take the part orientation problem as a
multi-objective optimisation problem. They usually adopts specific search algorithms, such
as the random search algorithm [57], genetic algorithm [58], particle swarm algorithm [59],
and iterative tabu search algorithm [60], to search an orientation that can optimise multiple
objectives at the same time from infinite possible orientations. In search-based methods, a
build orientation is generally expressed via an angle pair (α, β), where the build orientation
lines up along the +z axis after rotating the 3D model α (0 ≤ α ≤ 360) degrees around
the x axis and β (0 ≤ β ≤ 360) degrees around the y axis. Search-based methods usually
have relatively high accuracy and relatively low efficiency. They are generally applied to
free-form surface models.

Rule-based methods take the part orientation problem as a multi-objective decision-
making problem. It first generates a certain number of alternative orientations from infinite
possible orientations via performing shape feature recognition [61,62] or triangular facet
clustering [63–65] on the 3D model and carrying out rule-based reasoning according to the
recognition or clustering results. Then, a multi-objective decision-making method is used
to select an orientation from the alternative orientations that can satisfy multiple objectives
at the same time. In rule-based methods, a build orientation is generally represented by a
unit vector (x, y, z). Rule-based methods are relatively efficient, since they do not spend
time on many meaningless calculations. However, they are difficult to achieve desired
accuracy on free-form surface models. They are more suitable for regular surface models.

Based on the analysis above, it is recommended to use a rule-based method for part
orientation when the input 3D model is a regular surface model and to use a search-based
method on a free-form surface model.

To represent the knowledge in part orientation, seven concepts named Objective,
Method, SearchBasedMethod, RuleBasedMethod, AnglePair, UnitVector, and Form, sixteen
relations listed in Table 4, four instances named methodInRef57, methodInRef58, method-
InRef59, and methodInRef60 (instances of SearchBasedMethod), and five instances named
methodInRef61, methodInRef62, methodInRef63, methodInRef64, and methodInRef65 (instances
of RuleBasedMethod) were created. Based on these entities, an ontological view of part
orientation for LPBF is delineated in Figure 4, and two SWRL rules for recommending a
part orientation method for an input 3D model were developed as follows:

PartOrientation(?x1) ∧ 3dModel(?x2) ∧ SearchBasedMethod(?x3) ∧ hasInput(?x1, ?x2) ∧
hasGeometricForm(?x2, f reeForm) → hasRecommendedMethod(?x1, ?x3)

(10)

PartOrientation(?x1) ∧ 3dModel(?x2) ∧ RuleBasedMethod(?x3) ∧ hasInput(?x1, ?x2) ∧
hasGeometricForm(?x2, regularForm) → hasRecommendedMethod(?x1, ?x3)

(11)

where the statements on the left and right of→ are respectively the antecedent and conse-
quent of an SWRL rule, antecedent→ consequent denotes that if the antecedent holds then
the consequent holds, Ci(?xj) (Ci is a DL concept) or Ri(?xj, ?xk) (Ri is a DL relation) is an
atom in an SWRL rule which is used to describe a condition, ∧ is the atom conjunction
symbol in an SWRL rule which denotes ‘and’, each variable is marked using a question
mark as its prefix, and freeForm and regularForm are instances of Form.

3.3. Entities for Support Generation

Support generation is a process planning task that aims to generate the minimum
amount of support structure that best meets the build and quality requirements to build a
part [5]. The main inputs of this task include a 3D model in a build orientation for a part to
be built and specific build and quality requirements on the part. Its output is a 3D model
with support structure in a build orientation.
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Table 4. Domain, range, and meaning of sixteen relations in part orientation.

Data Relation Domain Range Meaning

hasInput ProcessPlanning owl:Thing A process planning task that has input of
hasOutput ProcessPlanning owl:Thing A process planning task that has output of
hasSearchAlgorithm SearchBasedMethod xsd:string A search based method that has search algorithm of
hasGenerationApproach RuleBasedMethod xsd:string A rule-based method that has generation approach of
hasSelectionApproach RuleBasedMethod xsd:string A rule-based method that has selection approach of
hasObjective ProcessPlanning Objective A process planning task that has objective of
hasEncodedFormat 3dModel xsd:string A 3D model that has encoded format of

Slice xsd:string A slice that has encoded format of
hasAngleAlpha-deg AnglePair xsd:double An angle pair that has rotation angle α of
hasAngleBeta-deg AnglePair xsd:double An angle pair that has rotation angle β of
hasCoordinateX UnitVector xsd:double A unit vector that has x coordinate of
hasCoordinateY UnitVector xsd:double A unit vector that has y coordinate of
hasCoordinateZ UnitVector xsd:double A unit vector that has z coordinate of
hasGeometricForm 3dModel Form A 3D model that has geometric form of
hasRecommendedMethod PartOrientation Method An orientation task that has recommended method of
hasOrientation 3dModel BO A 3D model that has build orientation of
isDescribedBy BuildOrientation AnglePair A build orientation that is described by an angle pair of

BuildOrientation UnitVector A build orientation that is described by a unit vector of

Note: BO stands for BuildOrientation.

Figure 4. An ontological view of part orientation for LPBF.

To generate the support structure for a 3D model in a given build orientation, the
first step is to detect the overhang area on the model that needs to be supported. In
existing support generation methods, this detection is generally carried out using the
angles between the normal vectors of triangular facets and the build orientation. When
the angle corresponding to a triangular facet is greater than a certain value, the area
corresponding to the triangular facet is considered to be the overhang area that needs to be
supported [5].

After detecting the supported overhang area, a specific shape of support structure
will be generated for it. So far, a number of different shapes of support structures for
AM part build have been developed [5]. The support structures suitable for LPBF part
build mainly include lattice support structure [66], cellular support structure [67], unit
cell support structure [68], pin support structure [69], Y support structure [69], IY support
structure [69], and tree support structure [70]. In practice, which shape of support structure
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to use is usually determined by the used process planning tool, since each process planning
tool provides its specific shapes of support structures.

Support generation is usually coupled with optimising the selected shape of support
structure to minimise its total volume and improve part quality. To date, many optimisation
methods have ben presented within academia. For example, a lattice support structure
optimisation method based on Taguchi experiment was presented in [71]; a lattice support
structure optimisation framework based on genetic algorithm was established in [72];
in [59], a topology optimisation method was used to optimise lattice support structure to
prevent residual stress induced build failure; in [73], the topology of lattice support structure
is optimised to maximise its thermal conductivity and to mitigate the effect of thermal stress
on the dimensional and geometric accuracy of an LPBF part; a method for optimising the
topology of lattice support structure is presented in [74]; a hybrid optimisation framework
for topology, build orientation, and support structure is established in [75]. These methods
provide practical tools for optimisation of the support structure of an LPBF part. They can
be selected according to specific optimisation objects and objectives.

To represent the knowledge in support generation, a concept named SupportedArea,
five relations listed in Table 5, and seven instances named latticeStructure, cellularStructure,
unitCellStructure, pinStructure, yStructure, iyStructure, and treeStructure (instances of Sup-
portStructure) were created. Using these entities, an ontological view of support generation
for LPBF is delineated in Figure 5.

Table 5. Domain, range, and meaning of five relations in support generation.

Data Relation Domain Range Meaning

hasSupportedArea 3dModel SupportedArea A 3D model that has supported area of
hasDetectionMethod SupportedArea xsd:string A supported area that has detection method of
hasSupport 3dModel SupportStructure A 3D model that has support structure of
hasGenerationTool SupportGeneration xsd:string A support generation task having generation tool of
hasOptimisationMethod SupportStructure xsd:string A support structure having optimisation method of

Figure 5. An ontological view of support generation for LPBF.

3.4. Entities for Model Slicing

Model slicing is a process planning task that aims to truncate the build model (i.e.,
a 3D model with support structure) into a set of thin slices that best meet the build and
quality requirements to build a part [6]. The main inputs of this task include an LPBF
machine, a 3D model with support structure in a build orientation for a part to be built,
and specific build and quality requirements on the part. Its outputs are a set of thin slices.
A slice corresponds to a layer of the part to be built. The main attributes of a slice are its
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contour and thickness. This thickness is usually called layer thickness, which is one of the
critical LPBF process parameters. The output slice information is generally encoded in a
proprietary format [22], such as the CLI (common layer interface), SLC (stereo lithography
contour), and HPGL (Hewlett-Packard graphics language) format.

The simplest model slicing strategy is uniform slicing in single direction, which
truncates the build model into a set of slices with equal thickness along the direction
perpendicular to the build orientation. It is the first model slicing strategy in AM and is the
most widely used strategy in industry [6]. The biggest advantage of the uniform slicing in
single direction is that it is simple, efficient, and robust. However, this strategy would lead
to a loss of control over the part accuracy, since it neglects the actual geometry of the build
model [55].

In the past few years, a number of improvement strategies were developed [76–78],
where representative ones are uniform slicing in multiple directions, variable slicing in
single direction, and variable slicing in multiple directions. Each strategy has its specific
characteristics. Generally, a slicing strategy is selected based on actual objectives [6]:

• if the objectives of model slicing are normal accuracy and high efficiency, then uniform
slicing in single direction (ussd) is recommended;

• if the objectives of model slicing are normal accuracy, reduced support, and alleviated
anisotropy, then uniform slicing in multiple directions (usmd) is recommended;

• if the objective of model slicing is high accuracy, then variable slicing in single direction
(vssd) is recommended;

• if the objectives of model slicing are high accuracy, free of support, and alleviated
anisotropy, then variable slicing in multiple directions (vsmd) is recommended.

To represent the knowledge in model slicing, two concepts named SliceContour and
SlicingStrategy, three relations listed in Table 6, and four instances named ussd, usmd,
vssd, and vsmd (instances of SlicingStrategy) were created. Based on these entities, an
ontological view of model slicing for LPBF is delineated in Figure 6, and four SWRL rules
for recommending a model slicing strategy were developed as follows:

ModelSlicing(?x1) ∧ hasObjective(?x1, normalAccuracy) ∧ hasObjective(?x1, highE f f iciency) →
hasRecommendedStrategy(?x1, ussd)

(12)

ModelSlicing(?x1) ∧ hasObjective(?x1, normalAccuracy) ∧ hasObjective(?x1, reducedSupport) ∧
hasObjective(?x1, alleviatedAnisotropy) → hasRecommendedStrategy(?x1, usmd)

(13)

ModelSlicing(?x1) ∧ hasObjective(?x1, highAccuracy) → hasRecommendedStrategy(?x1, vssd) (14)

ModelSlicing(?x1) ∧ hasObjective(?x1, highAccuracy) ∧ hasObjective(?x1, f reeO f Support) ∧
hasObjective(?x1, alleviatedAnisotropy) → hasRecommendedStrategy(?x1, vsmd)

(15)

where normalAccuracy, highEfficiency, reducedSupport, alleviatedAnisotropy, highAccuracy, and
freeOfSupport are instances of Objective.

Table 6. Domain, range, and meaning of three relations in model slicing.

Data Relation Domain Range Meaning

hasContour Slice SliceContour A slice that has contour of
hasThickness-mm Slice xsd:double A slice that has thickness of
hasRecommendedStrategy ModelSlicing SlicingStrategy A model slicing task that has recommended strategy of

3.5. Entities for Path Planning

Path planning is a process planning task that aims to design a laser scanning path and
a set of process parameters that best meets the build and quality requirements to build a
part [6,7]. The main inputs of this task include an LPBF material, an LPBF machine, a set
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of slices for a part to be built, and specific build and quality requirements on the part. Its
outputs are a laser scanning path and a set of process parameters.

Figure 6. An ontological view of model slicing for LPBF.

An important step in path planning is to select or develop a proper laser scanning
path. This step is affected by the adopted model slicing strategy. If a planar slicing strategy
is adopted, alternative path patterns mainly include raster, zigzag, multi-direction, grid,
spiral, contour, and hybrid paths. Each path has its specific strengths and shortcomings. In
general, the path patterns are selected according to specific objectives [6]:

• If the objective of path planning is high build efficiency, then raster path is recommended;
• If the objectives of path planning are high build efficiency and high mechanical perfor-

mance, then zigzag path or grid path is recommended;
• If the objectives of path planning are high geometric accuracy and high mechanical

performance, then multi-direction path or contour path is recommended;
• If the objectives of path planning are high geometric accuracy, less path passes, less

path elements, and high mechanical performance, then spiral path is recommended;
• If the objectives of path planning are high build efficiency and high geometric accuracy,

then hybrid path is recommended.

Another important step in path planning is to design a set of optimal process parame-
ters. According to the study in [79], controllable process parameters include layer thickness,
laser power, scanning speed, hatch spacing, recoating time, recoating speed, dosing per
layer, bulk temperature, oxygen level, chamber pressure, gas flow speed, and ambient
temperature. Among them, layer thickness, laser power, scanning speed, and hatch spacing
are four critical process parameters. The volumetric energy density calculated from them is
an important indicator to measure the effect of process parameters on part quality [80]. For
design of process parameters, most of existing methods first generate a set of combinations
of process parameters, then predict certain part quality indicators under each combina-
tion, and finally determine the optimal process parameters on the basis of the prediction
results [8].

To represent the knowledge in path planning, an object relation named hasRecommend-
edPath, thirteen data relations named hasLayerThickness-mm, hasLaserPower-W,
hasScanningSpeed-mm/s, hasHatchSpacing-mm, hasLaserSpotDiameter-mm, hasRecoatingTime-s,
hasRecoatingSpeed-mm/s, hasDosingPerLayer-Pct, hasBulkTemperature-DegC, hasOxygenLevel-
Pct, hasChamberPressure-kPa, hasGasFlowSpeed-m3/s, and hasAmbientTemperature-DegC, and
seven instances named rasterPath, zigzagPath, multiDirectionPath, gridPath, spiralPath, con-
tourPath, and hybridPath (instances of LaserScanningPath) were created. The domain and
range of the object relation are respectively PathPlanning and ScanningPath. This means
that a path planning task has designed laser scanning path of (a specific scanning path).
The domain and range of each data relation are respectively PathPlanning and xsd:double.
This means that a path planning task has designed process parameter value of xsd:double.
Based on the crated entities, an ontological view of path planning for LPBF is delineated in
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Figure 7, and seven SWRL rules for recommending a laser scanning path were developed
as follows:

PathPlanning(?x1) ∧ hasObjective(?x1, highBuildE f f iciency) →
hasRecommendedPath(?x1, rasterPath)

(16)

PathPlanning(?x1) ∧ hasObjective(?x1, highBuildE f f iciency) ∧
hasObjective(?x1, highMechanicalPer f ormance) → hasRecommendedPath(?x1, zigzagPath)

(17)

PathPlanning(?x1) ∧ hasObjective(?x1, highGeometricAccuracy) ∧
hasObjective(?x1, highMechanicalPer f ormance) → hasRecommendedPath(?x1, multiDirectionPath)

(18)

PathPlanning(?x1) ∧ hasObjective(?x1, highBuildE f f iciency) ∧
hasObjective(?x1, highMechanicalPer f ormance) → hasRecommendedPath(?x1, gridPath)

(19)

PathPlanning(?x1) ∧ hasObjective(?x1, highGeometricAccuracy) ∧
hasObjective(?x1, lessPathPasses) ∧ hasObjective(?x1, lessPathElements) ∧
hasObjective(?x1, highMechanicalPer f ormance) → hasRecommendedPath(?x1, spiralPath)

(20)

PathPlanning(?x1) ∧ hasObjective(?x1, highGeometricAccuracy) ∧
hasObjective(?x1, highMechanicalPer f ormance) → hasRecommendedPath(?x1, contourPath)

(21)

PathPlanning(?x1) ∧ hasObjective(?x1, highBuildE f f iciency) ∧
hasObjective(?x1, highGeometricAccuracy) → hasRecommendedPath(?x1, hybridPath)

(22)

where highBuildEfficiency, highMechanicalPerformance, highGeometricAccuracy, lessPathPasses,
and lessPathElements are instances of Objective.

Figure 7. An ontological view of path planning for LPBF.

4. Application and Illustrations
4.1. Application of the Ontology

Process planning on an LPBF part is carried out to illustrate the application of the
developed DL-based ontology. The 3D model of the part is encoded in the STL format and
shown in Figure 8. This model is a regular form model, which was developed in [61]. It has
1181 vertices, 2426 triangular facets, total surface area of 9137.33 mm2, and total volume
of 9603.15 mm3. The bounding box of the model has a length of 74.09 mm, a width of
33.75 mm, and a height of 34.34 mm. It is assumed that the part will be built using the LPBF
material Ti6Al4V and the LPBF machine EOSINT M270. Before starting the actual part
build, four process planning tasks on the part, part orientation, support generation, model
slicing, and path planning, are needed to be completed successively. The objectives of part
orientation are small support volume, short build time, low build cost, small volumetric
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error, and low surface roughness. The used support generation tool is Meshmixer. The
objectives of model slicing are normal accuracy and high efficiency. The objective of path
planning is high build efficiency.

Figure 8. 3D model, optimal build orientation, and support structure of an LPBF part.

The first task to be completed is part orientation. Based on the information above,
two concept assertions 3dModel(modelOfPart1) and PartOrientation(poForPart1) and thirteen
relation assertions for modelOfPart1 and poForPart1 shown in Figure 9 were first created.
Then, five relation assertions for recommending a part orientation method, which are
also shown in Figure 9, were generated after performing OWL/SWRL reasoning using
the Drools reasoning engine. According to the reasoning results, the rule-based methods
in [61–65] are recommended to perform part orientation. Here the rule-based method
in [65] was used and the determined optimal build orientation under the five objectives is
depicted in Figure 8. Based on this, two concept assertions BuildOrientation(oboForPart1)
and UnitVector(unitVector1), a new relation assertion for poForPart1, and five relation asser-
tions for modelOfPart1, oboForPart1, and unitVector1 shown in Figure 10 were generated in
the ontology.

Figure 9. Assertions and reasoning results of part orientation for the LPBF part.
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Figure 10. Results of part orientation for the LPBF part in the ontology.

The second task to be completed is support generation. In this task, a concept assertion
SupportGeneration(sgForPart1) and seven relation assertions shown in Figure 11 were first
created. Then, support generation was carried out using Meshmixer and the generated
support structure is depicted in Figure 8. Based on this, two new relation assertions for
modelOfPart1 shown in Figure 11 were generated in the ontology.

Figure 11. Results of support generation for the LPBF part in the ontology.

The third task to be completed is model slicing. Firstly, a concept assertion Model-
Slicing(msForPart1) and nine relation assertions shown in Figure 12 were created. Then,
a relation assertion for recommending a model slicing strategy, which is also shown in
Figure 12, was generated after performing OWL/SWRL reasoning using the Drools reason-
ing engine. According to the reasoning results, ussd (uniform slicing in single direction)
can be selected to slice the build model with a thickness of 0.03 mm. Based on this, a new
relation assertion for msForPart1 and three relation assertions for slicesOfPart1 shown in
Figure 12 were generated in the ontology.

The last task to be completed is path planning. Firstly, a concept assertion PathPlan-
ning(ppForPart1) and nine relation assertions shown in Figure 13 were created. Then, a
relation assertion for recommending a laser scanning path, which is also shown in Figure 13,
was generated after performing OWL/SWRL reasoning using the Drools reasoning engine.
According to the reasoning results, raster path is selected to build the part under the fol-
lowing process parameters: layer thickness is 0.03 mm; laser power is 150 W; scanning
speed is 1250 mm/s; hatch spacing is 0.07 mm; recoating time is 20 s; each of the remaining
controllable process parameters takes its default value. Based on this, five new relation
assertions for ppForPart1 shown in Figure 13 were generated in the ontology.

Based on all designed process variables above, the total support volume, total build
time, total build cost, total volumetric error, and average surface roughness of the LPBF part
were predicted using the prediction models in [81]: total support volume is 4587.15 mm3;
total build time is 7.75 h; total build cost is 360.37 GBP; total volumetric error is 78.85 mm3;
average surface roughness is 10.61 µm. Based on this, five new relation assertions for part1
shown in Figure 13 were generated in the ontology.
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Figure 12. Results of model slicing for the LPBF part in the ontology.

Figure 13. Results of path planning for the LPBF part in the ontology.

4.2. Illustrations of the Benefits

OWL DL can provide the strongest expressive capability under the premise of computa-
tional completeness and computational decidability, which enables reasoning mechanisms
like consistency checking of the OWL DL ontology, knowledge reasoning on the ontology
and semantic query from the ontology.

Consistency checking is performed to determine whether an instantiation of a concept
satisfies the definition of the concept or would create an inconsistency. Using the HermiT
reasoner in Protégé, the consistency of the developed ontology for LPBF process planning
can be checked automatically. For example, if surfaceRoughness is further asserted as an
instance of BuildRequirement in the ontology, then an inconsistency will be detected auto-
matically, as shown in Figure 14, because BuildRequirement has been defined to be disjoint
with QualityRequirement and the instance surfaceRoughness does not satisfy this definition.
Once there are no inconsistencies in the developed ontology, knowledge reasoning can be
performed on it.
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Figure 14. Example of consistency checking of the ontology.

Knowledge reasoning is carried out to reach new conclusions in a context based on
the explicit knowledge in this context. In a DL-based ontology with SWRL rules, new
knowledge can be inferred via either a DL reasoner or an SWRL reasoner. For example,
the previous subsection has described the details of using the Drools reasoner (an SWRL
reasoner integrated in Protégé) to reason out a recommended part orientation method,
a recommended model slicing strategy, and a recommended laser scanning path in the
developed ontology for LPBF process planning. After performing knowledge reasoning on
the ontology, its an enriched version will become available for semantic query.

Semantic query is performed to search specific knowledge from an ontology. Three
commonly used semantic query techniques for an OWL DL ontology with SWRL rules
are DL query, SPARQL query, and SQWRL query, which respectively uses the reasoning
mechanism of DL, SPARQL, and SQWRL to implement semantic query. For example,
assume the following terminological axioms are defined in the developed ontology:

SelectiveLaserSintering ≡ AmProcess u ∃hasEnergySource.LaserBeam

u ∃hasBuildMaterial.PowderMaterial

u ∃hasBuildPlat f orm.PowderBed

u ∃hasBuildMechanism.Sintering

(23)

SelectiveHeatSintering ≡ AmProcess u ∃hasEnergySource.ThermalEnergy

u ∃hasBuildMaterial.PowderMaterial

u ∃hasBuildPlat f orm.PowderBed

u ∃hasBuildMechanism.Sintering

(24)

ElectronBeamMelting ≡ AmProcess u ∃hasEnergySource.ElectronBeam

u ∃hasBuildMaterial.PowderMaterial

u ∃hasBuildPlat f orm.PowderBed

u ∃hasBuildMechanism.Melting

(25)

There is an AM process whose build material is a powder material, build platform is a
powder bed, and build mechanism is sintering or melting. Someone needs to determine
which specific AM processes it might belong to. If a common text search is adopted,
no results will be obtained. However, if a DL query is carried out, the situation will be
completely different. As shown in Figure 15, the description of the AM process is taken as
the input of a DL query, and it can be inferred from the query results that the process might
belong to selective laser sintering, selective heat sintering, electron beam melting, or LPBF.
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Figure 15. Example of a DL query from the ontology.

5. Conclusions

In this paper, a DL-based ontology with SWRL rules for knowledge representation
in process planning for LPBF is developed. Firstly, a set of top-level DL concepts, DL
relations, DL instances, and DL axioms are created to represent the knowledge in general
process planning activity. Then, specific DL concepts, DL relations, DL instances, and
SWRL rules are respectively developed to describe the knowledge in part orientation,
support generation, model slicing, and path planning. After that, the application of the
developed ontology is demonstrated via process planning on an LPBF part. Finally, the
benefits of the ontology are outlined and illustrated using examples. The illustration results
show that the ontology has rigorous computer-interpretable semantics, which would lay
solid basis for development of an LPBF process planning tool with autonomous decision-
making capability.

Each of existing LPBF process planning tool has its specific knowledge representation
method. Although ontology-based method has advantages in automatic consistency check-
ing, knowledge reasoning, and semantic query and is gaining importance and popularity
in AM knowledge representation, it should not be considered as a complete replacement of
the methods used in existing tools, but more as an alternative method to improve them in
some aspects. At present, existing ontologies for knowledge representation in LPBF are
not yet mature. More powerful ontologies and related tools that can realise autonomous
decision-making need to be further investigated.

Future work will aim especially at improving the developed DL-based ontology to
overcome a main limitation: knowledge representation in process planning for multi-
part production is not considered. An important feature of LPBF is that it enables rapid
fabrication of multiple different parts in a mixed batch [60]. The developed ontology
focuses on knowledge representation in process planning for production of one single
part, it cannot be applied to the situation where multiple parts in the same build need
to be planned simultaneously. From the perspective of application, it is of necessity and
importance to improve the ontology to handle this situation. Further, the conventional LPBF
process planning pipeline is somewhat complex and a simpler pipeline has been presented
in [82]. It would be interesting to develop a DL-based ontology for this simpler pipeline.
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Abbreviations
ABox Assertion Box
AM Additive Manufacturing
AMF Additive Manufacturing File
CLI Common Layer Interface
DL Description Logic
HPGL Hewlett-Packard Graphics Language
LPBF Laser Powder Bed Fusion
OWL Web Ontology Language
SLC Stereo Lithography Contour
SPARQL Sparql Protocol And Rdf Query Language
SQWRL Semantic Query-enhanced Web Rule Language
STL Standard Tessellation Language
SWRL Semantic Web Rule Language
TBox Terminology Box
3D Three-Dimensional
3MF 3D Manufacturing File
usmd uniform slicing in multiple directions
ussd uniform slicing in single direction
vsmd variable slicing in multiple directions
vssd variable slicing in single direction
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