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Abstract: Statistics affirm that almost half of deaths in traffic accidents were vulnerable road users,
such as pedestrians, cyclists, and motorcyclists. Despite the efforts in technological infrastructure
and traffic policies, the number of victims remains high and beyond expectation. Recent research
establishes that determining the causes of traffic accidents is not an easy task because their occurrence
depends on one or many factors. Traffic accidents can be caused by, for instance, mechanical problems,
adverse weather conditions, mental and physical fatigue, negligence, potholes in the road, among
others. At present, the use of learning-based prediction models as mechanisms to reduce the number
of traffic accidents is a reality. In that way, the success of prediction models depends mainly on
how data from different sources can be integrated and correlated. This study aims to report models,
algorithms, data sources, attributes, data collection services, driving simulators, evaluation metrics,
percentages of data for training/validation/testing, and others. We found that the performance of
a prediction model depends mainly on the quality of its data and a proper data split configuration.
The use of real data predominates over data generated by simulators. This work made it possible to
determine that future research must point to developing traffic accident prediction models that use
deep learning. It must also focus on exploring and using data sources, such as driver data and light
conditions, and solve issues related to this type of solution, such as high dimensionality in data and
information imbalance.

Keywords: machine learning; traffic accident prediction; heterogeneous sources; deep learning;
neural network

1. Introduction

The World Health Organization (WHO), through the Global Status Report on Road
Safety (GSRRS) 2018, affirms that the number of deaths by road traffic-related issues
reached the number of 1.35 million people in 2016 [1]. Meanwhile, the Pan American
Health Organization (PAHO) [2] affirms that traffic accidents were the second cause of
death among young adults (15–29 years old) in 2016. However, the most concerning is
that 47% of all people who died in traffic accidents are vulnerable road users, such as
motorcyclists, cyclists, and pedestrians.

The implementation of technological infrastructure and the adoption of strict traffic
policies have significantly reduced the accident rate. However, the number of victims is
still high and beyond expectations. This situation partly happens because it is complex to
determine the real causes of traffic accidents. In most cases, their occurrence depends on
one or many of the following factors: mechanical problems, adverse weather conditions,
mental and physical fatigue, negligence, potholes in the road, among others.

At present, the use of prediction models as mechanisms to mitigate mortality in traffic
accidents is a reality. The results of these models are helping policymakers, transportation
safety designers, and researchers to identify factors and make recommendations to make
significant achievements in terms of the accident rate [3,4]. Some studies are being funded
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by institutions or companies related to transportation, as in [4–9]. As soon as the prediction
model can correlate information from heterogeneous sources, the model might infer acci-
dents in a better way. However, this solution also brings along some issues to be resolved.
For instance, some of them are the high dimensionality in data caused by information
imbalance or the poor handling of large-scale datasets. In that way, the strategy to improve
the prediction models must be focused on exploring other data sources to correlate them
and finding strategies to resolve the issues related to this solution.

Since the models are generally fed with real data, the authors have resorted to govern-
ment platforms and Internet services to collect data. The information from Internet services
can be integrated into the prediction model to establish real-time information channels
and improve their accuracy. However, this approach is not always feasible because the
values and metrics of the different sources are not entirely comparable. In fact, there is
much diversity in experimental design, acquisition protocol, equipment used, and data
volume. For these reasons, it is important to highlight the current state of the development
of learning-based traffic accident predictions and determine the main research challenges
on this topic.

This paper presents a systematic literature review on learning-based traffic accident
prediction models based on heterogeneous data sources. To elaborate on this review, we
used the general guidelines proposed by Kitchenham’s methodology [10,11]. The research
questions and search strategy focused on identifying the most relevant features that influ-
ence the accuracy and performance of accident prediction models. With this analysis in
place, our purpose is to respond to these concerns: How do human factors influence the
occurrence of traffic accidents? How does the number of features used in a model affect
its performance? How can information from different data sources be correlated? What
are the solutions for the challenges that real-time prediction models face? What type of
algorithms are best suited for traffic accident prediction models? Moreover, can the best
model be determined using only the evaluation metrics? For this purpose, we study the
different platforms, services, and simulators used to collect data related to traffic and driver
behavior. Regarding the survey of traffic accident prediction models, our work includes a
comparative study of models, selection algorithms, evaluation metrics, and the percentage
of data used for training/validation/testing. Furthermore, the performance obtained by
each model is registered, scored, and analyzed. Following this survey, we aim to find open
challenges and research niches in the early prediction of traffic accidents to reduce the
death of drivers and passengers.

This article is organized as follows: Section 2 presents the methodology used to
elaborate this literature review, followed by Section 3, which introduces the answers to all
research questions. Section 4 discusses the most relevant thoughts about learning-based
accident prediction. Finally, the conclusions of this literature review are presented in
Section 5.

2. Materials and Methods

The current study was performed using the guide for systematic reviews proposed by
Kitchenham and others [10,11]. For this study, we have considered the following phases
and activities: Planning the Review (Research Questions), Conducting the Review (Search
Strategy, Study Selection, Study Quality Assessment, and Data Extraction), and Reporting
the Review (Results).

2.1. Planning the Review
Research Questions

In this stage, we present seven research questions developed based on the goals of
our research.

• RQ01. What are the data sources used by learning-based traffic accident prediction models?
• RQ02. Where were the datasets used by the prediction models extracted from?
• RQ03. What shortcomings are present in the prediction models?
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• RQ04. What are the most common algorithms used by the prediction models?
• RQ05. What are the evaluation metrics used by the prediction models?
• RQ06. What is the performance obtained from the prediction models?
• RQ07. What percentages of the data are used by the models for training, validation,

and testing?

2.2. Conducting the Review
2.2.1. Search Strategy

The bibliographic databases and journal platforms used in this review were: Scopus,
ACM Digital Library, IEEExplore, Springer Link, and Google Scholar. According to [12],
Scopus and Web of Science provide a better quality of indexing and bibliographic records,
at least in the computer science field. IEEExplore was picked out because it focuses
exclusively on computer science, engineering, and electronics. ACM covers the area
of computing and information technology. IEEExplore is considered one of the largest
collections worldwide of technical literature. Finally, Springer Link was picked out because
it contains many peer-reviewed journals and provides full-text access.

Based on the research questions presented, we extracted the following keywords: real-
time, traffic accident prediction, learning, heterogeneous, data source, learning technique,
algorithm, and evaluation metric. We added “predicting” and “forecast” to the keyword
list as a synonym for prediction. We also developed a list of search strings combining the
extracted keywords with the operators “AND” and “OR.” We established three search
strings (SS01, SS02, and SS03). SS01 is longer and more specific because it includes all
the keywords and synonyms. SS02 does not include the keyword “real-time” from SS01,
and SS03 that is less specific, does not include the keyword “heterogeneous” from SS02.
This strategy implies that the results returned by each database or platform have duplicate
items. Table 1 presents the search strings developed for this study and the search results.

Table 1. Search Results.

Database Search Engine ID Command Search Search Date Total

Scopus

SS01 ALL(real-time AND “traffic accident*” AND (predicti* OR fore-
cast*) AND learning AND heterogeneous AND “data source*”) 48

SS02 ALL(“traffic accident*” AND (predicti* OR forecast*) AND learn-
ing AND heterogeneous AND “data source*”) 1 April 2021 61

SS03 ALL(“traffic accident*” AND (predicti* OR forecast*) AND learn-
ing AND “data source*”) 154

263

ACM

SS01
[All:real-time] AND [All:“traffic accident*”] AND [[All:predicti*]
OR [All:forecast*]] AND [All:learning] AND [All:heterogeneous]
AND [All:“data source*”]

10

SS02
[All: “traffic accident*”] AND [[All:predicti*] OR [All:forecast*]]
AND [All:learning] AND [All:heterogeneous] AND [All: “data
source*”]

1 April 2021 10

SS03 [All: “traffic accident*”] AND [[All:predicti*] OR [All:forecast*]]
AND [All:learning] AND [All:"data source*"] 13

33
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Table 1. Cont.

Database Search Engine ID Command Search Search Date Total

IEEExplore

SS01

“Full Text & Metadata”:real-time AND “Full Text & Meta-
data”:“traffic accident*” AND (“Full Text & Metadata”:predicti*
OR “Full Text & Metadata”:forecast*) AND “Full Text & Meta-
data”:learning AND “Full Text & Metadata”:heterogeneous AND
“Full Text & Metadata”:“data source*”

122

SS02

“Full Text & Metadata”:“traffic accident*” AND (“Full Text
& Metadata”:predicti* OR “Full Text & Metadata”:forecast*)
AND “Full Text & Metadata”:learning AND “Full Text & Meta-
data”:heterogeneous AND “Full Text & Metadata”:“data source*”

1 April 2021 136

SS03

“Full Text & Metadata”:“traffic accident*” AND (“Full Text
& Metadata”:predicti* OR “Full Text & Metadata”:forecast*)
AND “Full Text & Metadata”:learning AND “Full Text & Meta-
data”:“data source*”

360

618

Springer

SS01 real-time AND “traffic accident*” AND (predicti* OR forecast*)
AND learning AND heterogeneous AND “data source*” 115

SS02 “traffic accident*” AND (predicti* OR forecast*) AND learning
AND heterogeneous AND “data source*” 1 April 2021 145

SS03 “traffic accident*” AND (predicti* OR forecast*) AND learning
AND “data source*” 352

612

Scholar
SS01 real-time AND “traffic accident*” AND (predicti* OR forecast*)

AND learning AND heterogeneous AND “data source*” 1 April 2021 397

397

2.2.2. Study Selection

Some inclusion and exclusion criteria have been established to accomplish the study
selection process.

• Inclusion criteria

– IC01. Published in science, technology, and transportation journals and proceedings;
– IC02. Peer-reviewed research papers;
– IC03. Articles proposing traffic accident prediction models.

• Exclusion criteria

– EC01. Published in health, psychology, or medical journals and proceedings;
– EC02. Literature reviews, mapping studies, chapters in books, theses, technical

reports, research proposals, lectures notes, or handbooks;
– EC03. Published in preprint platforms;
– EC04. Articles without full text;
– EC05. Articles proposing traffic accident detection models.

2.2.3. Study Quality Assessment

In this stage, we defined the assessment questions used in the quality instrument.
Additionally, we established two or three possible answers for each question and their
scores. Thus, the answer “no” with 0 and “yes” is rated with 0.5 or 1.0 depending on the
condition. We present the assessment questions and a short justification for them as follows.

The best way to evaluate a model is through the analysis of its evaluation metrics.
Since some metrics are more robust and useful than others, having many of them helps to
improve the model and its performance.
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AQ01. Does the study present evaluation metrics

If the number of metrics = 1, the value is 0.5;
If the number of metrics > 1, the value is 1.0.

Determining the real causes of traffic accidents is complex because they depend on
many factors. Thus, the success of such a prediction model lies in correlating different
data sources.
AQ02. Does the prediction model correlate information from different data sources?

If the number of data sources = 1, the value is 0.5;
If the number of data sources > 1, the value is 1.0.

Proposing a prediction model by choosing one algorithm and calculating a metric
is somewhat imprecise. This process requires an analysis of the model with several
baseline algorithms to identify the best one based on indicators and metric values.
AQ03. Does the prediction model use different automatic learning algorithms?

If 0 < the number of algorithms ≤ 2, the value is 0.5;
If the number of algorithms > 2, the value is 1.0.

In general, the prediction models have to deal with high dimensionality and imbalance
in information, poor handling of long-scale datasets, or insufficient capacities to
process and analyze information. Our study also needs to know the challenges faced
by traffic accident prediction models.
AQ04. Does the study present challenges that the prediction models must face?

If the study presents any challenge, the value is 1.0.

The correct handling of missing and out-of-range data will prevent the occurrence of a
bias that invalidates the study. The following studies include missing data treatment
in their proposals [13–17].
AQ05. Does the study include missing data treatment?

If the study includes any data missing treatment, the value es 1.0.

We established, as a selection criterion, that only if the sum of all five questions is
greater than or equal to the value defined as the boundary for the first quartile, then
the primary study is accepted; otherwise, it is rejected. This value corresponds to 2.5.
The research community has widely accepted this selection criterion [11,18]. Table A1
presents the quality instrument and its results, and Figure 1 presents the phase of
Conducting the Review. As observed, 1923 articles were found after performing the
search strategy activity. Then, 778 duplicate articles were removed, giving a total of
1145 articles. Once the inclusion and exclusion criteria were applied, 1123 articles were
excluded, giving a total of 22 articles. After performing the snowballing technique,
20 articles were added, giving a total of 42 articles. Finally, eight articles were rejected
because they did not fulfill the quality criterion. Thus, the number of selected primary
studies reached 34 papers. Table 2 presents the primary studies that were selected.

Table 2. Selected primary studies.

ID Authors Title Year Type

PS01 Hossain et al. [4]
A Bayesian network based framework for
real-time crash prediction on the basic free-
way segments of urban expressways

2012 Journal

PS02 Wu et al. [19]
A Bayesian network model for real-time
crash prediction based on selected variables
by random forest

2019 Conference

PS03 Ren et al. [20] A Deep Learning Approach to the Citywide
Traffic Accident Risk Prediction 2018 Conference
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Table 2. Cont.

ID Authors Title Year Type

PS04 Xu et al. [7] A genetic programming model for real-time
crash prediction on freeways 2013 Journal

PS05 Wenqi et al. [21] A model of traffic accident prediction based
on convolutional neural network 2017 Conference

PS06 Xiong et al. [22] A New Framework of Vehicle Collision Pre-
diction by Combining SVM and HMM 2018 Journal

PS07 Lin et al. [9]
A novel variable selection method based on
frequent pattern tree for real-time traffic ac-
cident risk prediction

2015 Journal

PS08 Ozbayoglu et al. [23]
A real-time autonomous highway accident
detection model based on big data process-
ing and computational intelligence

2016 Conference

PS09 Liu et al. [24]
A real-time explainable traffic collision in-
ference framework based on probabilistic
graph theory

2021 Journal

PS10 Effati et al. [25]
A semantic-based classification and regres-
sion tree approach for modelling complex
spatial rules in motor vehicle crashes domain

2015 Journal

PS11 Bao et al. [26]
A spatiotemporal deep learning approach
for citywide short-term crash risk prediction
with multi-source data

2019 Journal

PS12 Moosavi et al. [27] Accident risk prediction based on heteroge-
neous sparse data: New dataset and insights 2019 Conference

PS13 Yan et al. [28]
Crash prediction based on random effect
negative binomial model considering data
heterogeneity

2020 Journal

PS14 Paikari et al. [5] Data integration and clustering for real time
crash prediction 2014 Conference

PS15 Huang et al. [29] Deep dynamic fusion network for traffic ac-
cident forecasting 2019 Conference

PS16 Parra et al. [30]
Evaluating the Performance of Explainable
Machine Learning Models in Traffic Acci-
dents Prediction in California

2020 Conference

PS17 Yuan et al. [31]
Hetero-ConvLSTM: A deep learning ap-
proach to traffic accident prediction on het-
erogeneous spatio-temporal data

2018 Conference

PS18 Huang et al. [32] Highway crash detection and risk estimation
using deep learning 2018 Journal

PS19 Park et al. [33] Highway traffic accident prediction using
VDS big data analysis 2016 Journal

PS20 Chen et al. [34] Learning deep representation from big and het-
erogeneous data for traffic accident inference 2016 Conference

PS21 Golovnin et al. [35] Operational forecasting of road traffic acci-
dents via neural network analysis of big data 2020 Journal

PS22 Wang et al. [36] Predicting Crashes on Expressway Ramps
with Real-Time Traffic and Weather Data 2015 Journal

PS23 Yuan et al. [37] Predicting traffic accidents through hetero-
geneous urban data: A case study 2017 Conference
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Table 2. Cont.

ID Authors Title Year Type

PS24 Effati et al. [38]

Prediction of Crash Severity on Two-Lane,
Two-Way Roads Based on Fuzzy Classifi-
cation and Regression Tree Using Geospa-
tial Analysis

2015 Journal

PS25 Wang et al. [8] Real-time crash prediction for expressway
weaving segments 2015 Journal

PS26 Basso et al. [6] Real-time crash prediction in an urban ex-
pressway using disaggregated data 2018 Journal

PS27 Zhang et al. [39]
RiskCast: Social sensing based traffic risk
forecasting via inductive multi-view learn-
ing

2019 Conference

PS28 Chen et al. [40]
SDCAE: Stack Denoising Convolutional Au-
toencoder Model for Accident Risk Predic-
tion Via Traffic Big Data

2018 Conference

PS29 Zhou et al. [41] Stack ResNet for Short-term Accident Risk
Prediction Leveraging Cross-domain Data 2019 Conference

PS30 Dong et al. [42]
Support vector machine in crash prediction
at the level of traffic analysis zones: Assess-
ing the spatial proximity effects

2015 Journal

PS31 Zhu et al. [43]
TA-STAN: A Deep Spatial-Temporal Atten-
tion Learning Framework for Regional Traf-
fic Accident Risk Prediction

2019 Conference

PS32 Yu et al. [44] Traffic accident prediction based on deep
spatio-temporal analysis 2019 Conference

PS33 Sharma et al. [45] Traffic accident prediction model using sup-
port vector machines with Gaussian kernel 2016 Conference

PS34 Al Mamlook et al. [46]
Utilizing Machine Learning Models to Pre-
dict the Car Crash Injury Severity among
Elderly Drivers

2020 Conference

Figure 1. The review process.



Appl. Sci. 2022, 12, 4529 8 of 27

2.2.4. Data Extraction

We designed four data collection forms to record the selected primary studies’ informa-
tion. The data collection forms proposed for this section are shown in Tables 3, 4, A2 and A3.
The design of them was based on addressing the research questions. Thus, Table A2 was
designed to answer RQ01, Table A3 to answer RQ02, Table 3 to answer RQ04, and Table 4 to
answer RQ05, RQ06, and RQ07. Table A2 includes the primary study ID, the data sources
(vehicle data, driver’s data, weather and light conditions, traffic accidents, traffic flow,
traffic events, road infrastructure, taxi trips, points of interest, and others), two categories
to refer to the data type, and a list of variables of features of each data source. Table A3
includes the primary study ID, the datasets, services, or simulators. Table 3 includes the
primary study ID, the algorithm or algorithms used on the model, and the groups to which
those belong [47,48]. Finally, Table 4 includes the primary study ID, some evaluation
metrics, percentages of data used for training, validation, and testing, and the algorithms
used by models to compare their performance. The generated data will be presented in the
“Results” section and analyzed and interpreted in the “Discussion”.

Table 3. Classification of algorithms by category.

ID

Algorithms

Algorithms/Probability Models Ranking/Variables
Selection Categories

PS01 Bayesian Belief Net Random Multinomial
Logit Classification

PS02 Bayesian Network Random Forest Classification/Ensemble

PS03 Long Short-Term Memory Neural
Network Neural Networks

PS04 Genetic Programming Random Forest Evolutionary Computation/
Ensemble

PS05 Convolutional Neural Network Neural Networks

PS06 Support Vector Machine Classification

PS07 Bayesian Network Frequent Pattern Tree/
Random Forest Classification

PS08 K-Nearest Neighbor/Regression
Tree/Feed Forward Neural Network

Classification/Ensemble/
Neural Networks

PS09 Bayesian Network Classification

PS10 Ontology-based Classification and
Regression Tree Classification/Regression

PS11 Convolutional Long Short-Term
Memory Neural Network Neural Networks

PS12 Deep Neural Network Neural Networks

PS13 Negative Binomial/Random Nega-
tive Binomial Probability Distributions

PS14 Bayesian Network Classification

PS15 Multilayer Perceptron Neural Networks

PS16 Gradient Boosting Ensemble

PS17 Convolutional Long Short-Term
Memory Neural Networks

PS18 Convolutional Neural Network Neural Networks

PS19 K-Means/Logistic Regression Clustering/Classification
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Table 3. Cont.

ID

Algorithms

Algorithms/Probability Models Ranking/Variables
Selection Categories

PS20 Stack Denoise Autoencoder Neural Networks

PS21 Rumelhart Multilayer Perceptron Neural Networks

PS22 Bayesian Logistic Regression Random Forest Classification/Ensemble

PS24 Fuzzy Classification and Regres-
sion Tree Classification/Regression

PS25 Bayesian Logistic Regression Random Forest Classification/Ensemble

PS26 Support Vector Machine/Logistic
Regression Random Forest Classification

PS27 Multi-view Learning Not available

PS28 Stack Denoise Convolutional Au-
toencoder Neural Networks

PS29 Convolutional Neural Network Neural Networks

PS30 Support Vector Machine with
radial-basis function Classification

PS31 Deep Learning Neural Networks

PS32
Long Short-Term Memory Neural
Network and Fully Connected Net-
work

Neural Networks

PS33 Support Vector Machine with Gaus-
sian kernel Classification

PS34 Light Gradient Boosting Machine Ensemble

Table 4. Performance of models.

ID

Evaluation Metrics Percentage of Data

Compared with
MAE MRE RMSE MSE PAR FPR TPR F1 AUC Train. Valid. Test.

% % % % % %

PS01 66.00 20.00 Not available

PS02 16.07 70.46
K-Nearest Neighbor, Support Vec-
tor Machine, and Logistic Regres-
sion

PS03 0.014 0.034 0.001

LASSO and Ridge Regression,
Support Vector Regression, De-
cision Tree Regression, Random
Forest Regression, Multilayer Per-
ceptron, and Autoregressive Mov-
ing Average

PS04 75.40 Binary Logistic Regression

PS05 78.50 60.0 40.0 Backpropagation Network

PS06 96.70 75.0 25.0 Not available

PS07 38.16 61.11 80.0 20.0 K-Nearest Neighbor
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Table 4. Cont.

ID

Evaluation Metrics Percentage of Data

Compared with
MAE MRE RMSE MSE PAR FPR TPR F1 AUC Train. Valid. Test.

% % % % % %

PS08 99.79 42.86 K-Nearest Neighbor/Regression
Tree

PS09 0.887 0.813 var. var.
Artificial Neural Network,
Bayesian Regression, and Naive
Bayes

PS10 0.267 0.818 0.803 0.807 70.0 30.0 Not available

PS11 0.023 0.019 81.58 0.34

Convolutional Neural Network,
Long Short-Term Memory Neural
Network, Artificial Neural Net-
work, and Gradient Boosting Re-
gression Tree

PS12 0.590 83.0 17.0 Logistic Regression and Gradient
Boosting

PS13 2.520 0.290 Negative Binomial

PS14 76.0 Not available

PS15 0.681 0.786

Support Vector Regression, Logis-
tic Regression, Deep Neural Net-
work, Long-Short Term Memory,
and Recurrent Neural Network

PS16 78.00 73.00 0.740 70.0 30.0 Decision Tree and Random Forest

PS17 0.116 0.013 79.0 9.0 12.0

Least Squares Linear Regres-
sion, Decision Tree Regression,
Deep Neural Network, Fully Con-
nected Long Short-Term Memory,
and Convolutional Long Short-
Term Memory

PS18 77.34 0.765 80.0 20.0 Convolutional Neural Network

PS19 76.35 40.83 75.0 Logistic Regression and Support
Vector Machine

PS20 0.96 0.39 1.0 80.0 20.0 Decision Tree, Logistic Regres-
sion, and Support Vector Machine

PS21 0.90 Not available

PS22 90.49 90.40 0.971 70.0 30.0 Not available

PS23 95.12 0.868 0.898 0.961 var. var. Support Vector Machine, Deci-
sion Tree, and Random Forest

PS24 79.12 0.68 Classification and Regression
Tree and Support Vector Machine

PS25 69.80 67.60 70.0 30.0 Not available

PS26 75.03 80.0 20.0 Support Vector Machine

PS27 1.569 Linear Regression /Ridge Regres-
sion/Multilayer Perceptron

PS28 0.092 0.796 80.0 20.0

Logistic Regression, Random For-
est, Decision Tree, Linear Regres-
sion, and Stack Denoise Autoen-
coder



Appl. Sci. 2022, 12, 4529 11 of 27

Table 4. Cont.

ID

Evaluation Metrics Percentage of Data

Compared with
MAE MRE RMSE MSE PAR FPR TPR F1 AUC Train. Valid. Test.

% % % % % %

PS29 0.40 0.16 88.89 87.0 13.0

Auto-Regressive Integrated Mov-
ing Average, and Convolutional
Long Short-Term Memory Neural
Network

PS30 81.3 80.0 20.0 Support Vector Machine with linear

PS31 0.0082 0.0131 0.0001 67.0 11.0 22.0

Linear Regression, Long Short-
Term Memory Neural Network,
Denoising Auto-Encoder, XG-
Boost, and Seq2Seq

PS32 0.444 0.723 0.773 0.736 70.0 10.0 20.0

Logistic Regression, Least Abso-
lute Shrinkage and Selection Op-
erator, Support Vector Machine,
and Decision Tree

PS33 94.0 70.0 20.0 10.0 Multilayer Perceptron and Support
Vector Machine with poly kernel

PS34 87.54 0.814 0.837 80.0 20.0
Logistic Regression, Decision
Tree, Random Forest, and Naive
Bayesian

3. Results
3.1. Study Overview

Considering the year and the type of publication (Table 2), from 34 selected studies,
19 of them are articles from journals and 15 of them from conferences. The years in which
more papers were published were 2015, 2018, and 2019. The answers to our research
questions are presented as follows.

3.2. RQ01

The prediction models use the following data sources: vehicle data, driver’s data,
weather conditions, light conditions, traffic accidents, traffic flow, traffic events, road
infrastructure, taxi trips, points of interest, and population. The most common data sources
are weather conditions, traffic accidents, traffic flow, and road infrastructure. Meanwhile,
driver’s data, light conditions, and taxi trips are the least common. Based on Table A2, the
attributes contained in each data source are presented as follows.

• Vehicle data: identifier, time, location, type, speed, condition, seat belt, pick up and
pick off time;

• Driver’s data: age, gender, education level, collision factors (sleepiness and boredom),
and involvement of alcohol and drugs;

• Weather conditions: sun, cloud, rain, snow, fog, sleet, crosswind, sand, dawn, dusk,
visibility, temperature, precipitation, snowfall, pressure, wind speed, humidity, hail,
storm, wind direction, and dew point;

• Light conditions: headlights, streetlights, sunlight, and night light;
• Traffic accidents: vehicles involved, collision type, collision description, the direction

of the road, number of killed or injured people, severity, human situation, number
of property damage only collisions, number of collisions with casualties and dead,
presence of traffic objects, road segment, event type, security level, collision month,
vehicle failure, police report, and origin of the collision;

• Traffic flow: vehicle speed according to radar, number of vehicles, occupancy, average
speed, annual average daily traffic, driving direction, and lane identifier;
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• Traffic events: closures, constructions, broken vehicles, collisions, congestion, and
blocked lanes;

• Road infrastructure: geometric characteristics (road length, road shape, road align-
ment, road type, number of lanes, horizontal curve radius, width of shoulder, slope,
tunnel, imperfections, intersections, entrance and exit ramp, and speed limits), and
road signs (warning, priority, information, facilities, and service);

• Taxi trips: pick-up and drop-off timestamp, pick-up and drop-off location, trip dis-
tance, payment information, taxi zones, and taxi speed;

• Points of interest: place, category, and location;
• Population: *not shown;
• Other: topographic map, digital elevation map, land use, satellite images, the area size

of census blocks, special calendar dates, geographical area, trip survey, and bike trip.

3.3. RQ02

The prediction models are fed with data collected from open and government plat-
forms, others from Internet services, and even others with simulators’ data. According to
Table A3, the platforms, Internet services, and simulators used by the models to collect data
are presented as follows.

• Open platforms: Kaggle and Open Data;
• Government platforms: Institutions of statistics and census, geographical and meteo-

rological organizations, and departments of police and transportation;
• Internet services: MapQuest Traffic, Microsoft Bing Map Traffic, The Weather Channel,

Weather Underground, Google Earth Satellite Image, and Twitter;
• Simulators: AIMSUN, VISSIM, PreScan, and Paramics Discovery;
• Applications: Intelligent Transportation Systems (ITS) and Real-Time Monitoring Systems;
• Others: Questionnaires.

3.4. RQ03

Considering that “no model is perfect”, the prediction models present at least some of
the following shortcomings.

• Non-inclusion of spatial heterogeneity within the zones of study;
• Information imbalance (the amount of useless data is greater than useful data) because

most data are non-accident related;
• Insufficient capacities to process and analyze an enormous amount of data;
• Poor handling of long-scale datasets. It is not practical to work with huge amounts of

raw data; therefore, it is necessary to select relevant features to be extracted. If this
selection is not made adequately, the generated models will not work correctly;

• Not having enough related information to train and test the models (e.g., it is essential
to have information about traffic accidents and normal traffic conditions from the
same segment).

3.5. RQ04

The most common algorithms among prediction models in order of occurrence are
Neural Networks (Long Short-Term Memory NN, Convolutional NN, Deep NN, and
Feed Forward NN), Support Vector Machine, and Bayesian Networks. According to
Figure 2, 30% of prediction models use some variants of Neural Networks, 15% of them
use Support Vector Machine, and 12% use Bayesian Networks. Regarding ranking and
selection variables/features, the most common algorithm is Random Forest. The categories
to which those algorithms belong are Neural Networks, Classification, and Ensemble.
Finally, the most common algorithms used by models to compare their performance are
Logistic Regression, Support Vector Machine, Decision Tree, and some variants of Neural
Networks. Their categories are Classification and Neural Networks.
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Figure 2. Distribution of algorithms in traffic accident prediction models.

3.6. RQ05

The evaluation metrics used by authors are:

• For classification problems: Prediction Accuracy Rate (PAR)/Accuracy, True Positive
Rate (TPR)/Sensitivity/Recall, False Positive Rate (FPR)/Fall-Out, F1 Score, and Area
Under Curve (AUC);

• For regression problems: Mean Absolute Error (MAE), Mean Relative Error (MRE),
Root Mean-Square Error (RMSE), and Mean Squared Error (MSE).

Of all these metrics, the more commonly used are:

• For classification: PAR, TPR, and F1 Score;
• For regression: RMSE and MAE.

3.7. RQ06

The prediction models obtained the results presented as follows. Figure 3 shows the
dispersion of values of evaluation metrics.

• Accuracy (%):
PS01 � 66.00 PS05 � 78.50 PS06 � 96.70 PS08 � 99.79 PS11 � 81.58
PS14 � 76.00 PS16 � 78.00 PS18 � 77.34 PS19 � 76.35 PS23 � 95.12
PS24 � 79.12 PS25 � 69.80 PS29 � 88.89 PS30 � 81.30 PS33 � 94.00
PS34 � 87.54

• Sensitivity (%):
PS02 � 70.46 PS04 � 75.40 PS07 � 66.11 PS26 � 75.03

• F1 score:
PS09 � 0.813 PS10 � 0.803 PS12 � 0.590 PS15 � 0.681

• Root Mean-Square Error:
PS03 � 0.034 PS13 � 0.290 PS17 � 0.116 PS32 � 0.444

• Mean Absolute Error:
PS20 � 0.960 PS27 � 1.569 PS28 � 0.092 PS31 � 0.008

• Area Under Curve:
PS21 � 0.900

According to Figure 3, there are four groups of values for PAR, F1, AUC, and MSE.
All PAR values range from 0.65 to 1.0 (65% to 100%). Similarly, all F1 and AUC values
range from 0.58 to 0.90 and 0.80 and 0.97, respectively. Additionally, all MSE values are
located under 0.17. These ranges could be seen as a reference for new models that use these
evaluation metrics. By contrast, the values of the rest of metrics are so dispersed that it is
not possible to identify group of values to serve as references.
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Figure 3. Dispersion of values of evaluation metrics.

3.8. RQ07

Most models only use data for training and testing; however, a few models also use
data for validation. The percentages established by the models are as follows:

• For training: [60.0–83.0]%
• For validation: [9.0–30.0]%
• For testing: [10.0–40.0]%

Even there are models in which those percentages are variable and defined dynami-
cally. The most common split configuration among proposals is 80% for training and 20%
for testing.

4. Discussion

Below, we mention some thoughts presented in the articles to analyze and consider
for future research. For instance, traffic accidents are not fortuitous events but events
caused by conditions that occur in space and time and under certain circumstances [30].
According to [32], unfavorable traffic characteristics, adverse weather conditions, and driver
distraction may lead to a crash. Additionally, the most significant factors on crash severity
are vehicle failures, not wearing the seat belt, and unfavorable weather conditions [38].
Meanwhile, others assert that driving drunk and at high speed are serious factors in traffic
accidents [45], and the wet pavement is one condition that increases the accident rate
significantly [8]. Finally, the situation that causes the highest probability of suffering a
traffic accident is the aggressive driving behavior after unusual congestion to recover the
time lost [6]. For their part, the authors of [25] determined as follows: high speed is one of
the most recurrent causes among fatal vehicle crashes; the traffic during morning peak and
the first days of the week increase the risk of property-damage-only crashes; additionally,
slopes and proximity to curves are the main road geometry factors that lead to fatal crashes;
high speed and proximity to curves are the main causes of fatal-injury type crashes; faulty
windshield wipers in rainy weather conditions and not wearing seat belt among young
people are the most important causes of injury crashes; and, finally, driving at night without
caution during rainy weather conditions increase the risk of property-damage-only crashes.

About performance, models based on Deep Neural Networks reduce their accuracy,
precision, and F1 score as the learning data size increases [37]. Additionally, the perfor-
mance of a Support Vector Machine model depends on the learning process, so future efforts
must focus on tuning the scale of parameter values and kernel functions selection [42].
Finally, the authors of [26] assert that the performance of the prediction models decreases
as the spatio-temporal resolution of the prediction task increases. Regarding features,
incorporating more features into the model does not always improve its performance [44].
Meanwhile, ref. [45] asserts that a lesser number of features affect the performance of a
neural network. Finally, and according to [37], removing features from models based on
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Decision Tree or Random Forest has an enormous impact, but slight in models based on
Deep Neural Networks.

Some authors propose some recommendations; for instance, splitting data into pieces
to send them to compute nodes can make the computational time much lower, which
would benefit the handling of social media data [24]. For their part, ref. [19] suggests that
the threshold used to separate different states (crash/non-crash) must compensate the
values of True Positive Rate and False Positive Rate, and also that the optimal threshold
may be found by comparing the performance of different thresholds. Finally, the authors
of [5] proposes that the outcomes of a real-time traffic accident prediction model are
shown through a variable message sign or transmitted between vehicles using a connected
vehicular system.

Despite the advantages that simulators offer at present, this mechanism of data gener-
ation has not been received as expected. In fact, there is a clear trend in prediction models
about using real data instead of simulated ones. From the results, we could remark that
only 1 out of 10 models use data generated by simulators. Because traffic accidents are
events caused by a group of conditions that are not always the same and take place in space
and time and under certain circumstances, it can be suspected that the authors prefer less
controlled scenarios than those provided by simulators to generate data. Moreover, it was
noted that there are both static and variable data. Static data, such as most driver data, road
infrastructure, points of interest, or satellite images could be used to build a base model. In
contrast, data that vary over time, such as traffic accidents, weather conditions, or traffic
flow, could be used to adjust the model.

The human factor is the leading cause of traffic accidents [49,50], and the most common
human factor (contributing or principal) is inattention while driving because of overloading
attention, distraction, or monotonous driving [51]. According to [46], young people are
more susceptible than adults to suffer a traffic accident; male drivers are more involved in
traffic incidents than female drivers, and female drivers are more susceptible than male
drivers to suffering severe injuries. It is clear that the human factor influences and plays
an essential role in the occurrence and severity of traffic accidents. This affirmation is
confirmed in the Global Status Report on Road Safety. It establishes that factors associated
with road user behavior, such as speeding and drink-driving, are two of the key risk factors
to be considered and reinforced within the legislation of countries to prevent deaths and
injuries due to traffic accidents. Some countries, especially high-income ones, have reduced
the number of deaths and injuries by adopting policies for all the key risk factors [1].
Although we have improved much in the prevention of traffic accidents, it is clear that
we must now focus on the field of the prediction of traffic accidents. In the context of our
research, we could notice that very few models use driver’s data, although the human
factor is one of the leading causes of traffic accidents. We believe that this may be due to
the non-availability of this type of information.

Considering that the prediction models are generally fed with real data, the authors
have resorted primarily to governmental institutions related to transportation or related
areas and secondly to Internet services. The information collected from government
platforms is mainly related to traffic accidents, traffic flow, and road infrastructure. The
information collected from government platforms is mainly related to traffic accidents,
traffic flow, and road infrastructure. Internet services provide information mainly related to
weather and light conditions and traffic events. Most Internet services (MapQuest Traffic,
Microsoft Bing Map Traffic, or Twitter, among others) provide APIs that can be integrated
into the model to establish real-time or deferred information channels.

One of the most challenging issues for the traffic accident prediction models is to
count on a real-time solution. According to some authors [4,9,33,37], the development of
a real-time decision-making tool to avoid traffic accidents is completely viable as soon as
shortcomings such as the non-integration of spatial heterogeneity, the incorrect handling
of long-scale datasets, the improper handling of unique data properties, the information
imbalance, and the lack of related information, are resolved. The correct handling of long-
scale datasets requires feature extraction and imbalance correction. First of all, it is not
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practical to work with a huge amount of raw data, therefore to handle adequately large
datasets, it is necessary to extract essential features such as weather, type of environment
(for instance, rural highway vs. urban street), road conditions, speed limit, type of traffic,
driver data, and type of vehicles [26]. Additionally, the accident-related data are less
frequent than the non-accident-related information. Therefore, the datasets are imbalanced,
and a predicting model has to be built to correct this situation [32].

It is also essential to consider which characteristics are time-sensitive, time-insensitive,
and related to spatial heterogeneity. Time-insensitive data are fully connected, and spatial
heterogeneity is a trainable component. It would be possible to obtain a somewhat general-
ized solution trained for different scenarios starting with a common base that considers
this feature differentiation type [52]. These data-handling strategies could make it possible
to obtain a real-time prediction which is the next big challenge for this research area.

The high-dimensionality problem may be solved using data processing techniques
to derive relevant features through methods, such as clustering, chi-square, Minimum-
Redundancy-Maximum-Relevance (mRMR), and predictor importance, among others.
Some authors, such as [28], have worked on this strategy for dimensionality reduction
using clustering, but other pre-processing techniques could also be tested.

Regarding algorithms, we were able to identify two stages for which machine learning
algorithms were assigned. The pre-processing stage includes the tasks of ranking and
selecting features, while the classification stage includes the selection of the model. For
pre-processing, the most common algorithm is Random Forest; and, for classification, the
most common algorithms are some variants of Neural Networks (Long Short-Term Memory
NN, Convolutional NN, Deep NN, and Feed Forward NN). This algorithm selection is
consistent with the fact that deep learning models applied in the area of Traffic Accident
Prediction are becoming more popular. Most authors use shallow learning algorithms as
baseline algorithms to compare the performance of their models based on neural networks.
This tendency marks a path for research in learning-based accident prediction.

The metrics more commonly used for classification problems are accuracy, sensitivity,
and F1 Score; meanwhile, for regression problems, Mean Absolute Error and Root Mean-
Square Error. However, there is such a diversity of experimental design, data volume, and
structure used in the various studies that it is difficult to compare results using simply
evaluation metrics. Not to mention that some proposals present non-normalized values for
their evaluation metrics. The datasets are typically unbalanced, and performance must be
understood in a contextualized way. Therefore, to compare models to find the one with the
best performance is not necessarily real because the results are not completely comparable
among the studies.

Although there is no precise rule to split data for training, validation, and testing, a
tacit agreement establishes an approximate data split configuration. From the analysis, we
could establish that a higher percentage (more than 50%) of data are used for training and
a lower percentage (less than 50%) for testing. The most common data split configuration
among proposals is 80% for training and 20% for testing. Some models even establish a
low percentage of data for validation. It was noted that there is no evidence or justification
for splitting data in one way or the other or whether such a data split configuration could
improve the performance of the models. Because of this drawback, we could suggest
using data splitting methods (e.g., SPlit [53]) instead of splitting randomly to obtain the
optimal configuration.

5. Conclusions

The elaboration of this work has made it possible to present a review of the research
done so far on learning-based traffic accident prediction. Some of the most important points
to be considered are as follows.

The development of prediction models in real-time is viable as soon as issues, such
as the efficient use of large-scale datasets, the integration of spatial heterogeneity, and
the solution for high dimensionality in data, are resolved. In this context, some solutions
for these issues are presented as follows. The efficient handling of large-scale datasets
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may be solved using feature extraction and imbalance correction; meanwhile, the high
dimensionality in data may be solved using data processing techniques.

There is a trend about using real data generated by less controlled scenarios (as in real
life) instead of data generated by simulators. Thus, authors have opted to correlate real data
usually collected from open and government platforms with information from Internet
services. Additionally and through APIs, real-time or deferred information channels may
be integrated into the model.
The performance of a prediction model depends largely on the quality of data, the set of
algorithms, among others, but also depends on the data split configuration. Despite not
having with specific and exact mechanism is fundamental to count on a strategy to establish
the correct percentages of data for training, validation, and testing. Using splitting methods
instead of splitting randomly to obtain the optimal configuration may be an option.

Future research must point to developing prediction models using deep learning (a
combination of supervised and unsupervised learning techniques) and be focused on using
data sources little used in traffic accident predictions (driver’s data and pedestrian mobility).
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Appendix A

Table A1. Quality instrument.

Title AQ01 AQ02 AQ03 AQ04 AQ05 Total

A Bayesian network based framework for real. . . [4] 1.0 1.0 0.5 1.0 0.0 3.5

A Bayesian network model for real-time crash. . . [19] 1.0 1.0 0.5 1.0 0.0 3.5

A crash-prediction model for multilane roads [54] 0.0 1.0 1.0 0.0 0.0 2.0

A deep learning approach to the Citywide. . . [20] 1.0 0.5 1.0 1.0 0.0 3.5

A genetic programming model for real-time crash. . . [7] 0.5 1.0 0.5 1.0 0.0 3.0
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Table A1. Cont.

Title AQ01 AQ02 AQ03 AQ04 AQ05 Total

A model of traffic accident prediction based on. . . [21] 0.5 1.0 0.5 1.0 0.0 3.0

A New Framework of Vehicle Collision. . . [22] 0.5 1.0 0.5 1.0 0.0 3.0

A novel variable selection method based on. . . [9] 1.0 1.0 0.5 1.0 1.0 4.5

A real-time autonomous highway accident. . . [23] 1.0 0.5 1.0 1.0 0.0 3.5

A real-time explainable traffic collision inference. . . [24] 1.0 1.0 1.0 1.0 0.0 4.0

A rear-end collision prediction scheme based on. . . [55] 0.5 0.5 0.5 0.0 0.0 1.5

A semantic-based classification and regression. . . [25] 1.0 1.0 0.5 1.0 0.0 3.5

A spatiotemporal deep learning approach for. . . [26] 1.0 1.0 1.0 1.0 0.0 4.0

Accident risk prediction based on heterogeneous. . . [27] 1.0 1.0 1.0 1.0 0.0 4.0

Crash prediction based on random effect. . . [28] 1.0 1.0 0.5 1.0 0.0 3.5

Data integration and clustering for real time crash. . . [5] 0.0 1.0 0.5 1.0 0.0 2.5

Deep dynamic fusion network for traffic accident. . . [29] 1.0 1.0 1.0 1.0 0.0 4.0

Evaluating the Performance of Explainable. . . [30] 1.0 0.5 1.0 1.0 0.0 3.5

Hetero-ConvLSTM: A deep learning approach to. . . [31] 1.0 1.0 1.0 1.0 0.0 4.0

Highway crash detection and risk estimation. . . [32] 1.0 1.0 0.5 1.0 1.0 4.5

Highway traffic accident prediction using VDS. . . [33] 1.0 1.0 1.0 1.0 0.0 4.0

Intelligent algorithm in a smart wearable device. . . [56] 0.0 1.0 0.5 0.0 0.0 1.5

Learning deep representation from big and. . . [34] 1.0 1.0 1.0 1.0 0.0 4.0

Operational forecasting of road traffic accidents. . . [35] 0.5 1.0 0.5 1.0 0.0 3.0

Predicting crashes on expressway ramps with. . . [36] 1.0 1.0 0.5 1.0 0.0 3.5

Predicting motor vehicle crashes using Support. . . [52] 0.0 0.5 0.5 1.0 0.0 2.0

Predicting traffic accidents through. . . [37] 1.0 1.0 1.0 1.0 1.0 5.0

Prediction of Crash Severity on Two-Lane, Two. . . [38] 1.0 1.0 1.0 1.0 1.0 5.0

Real-time crash prediction for expressway. . . [8] 1.0 1.0 0.5 1.0 0.0 3.5

Real-time crash prediction in an urban. . . [6] 0.5 1.0 1.0 1.0 0.0 3.5

RiskCast: Social sensing based traffic risk. . . [39] 0.5 1.0 1.0 0.0 0.0 2.5

Real-time estimation of accident likelihood for. . . [57] 0.0 1.0 0.5 0.0 0.0 1.5

Road traffic accidents prediction modelling: An. . . [58] 1.0 1.0 0.0 0.0 0.0 2.0

Road Traffic Injury Prevention Using DBSCAN. . . [59] 0.0 0.5 0.5 1.0 0.0 2.0

SDCAE: Stack Denoising Convolutional. . . [40] 1.0 1.0 1.0 1.0 0.0 4.0

Stack ResNet for Short-term Accident Risk. . . [41] 1.0 1.0 1.0 1.0 0.0 4.0

Support vector machine in crash prediction at. . . [42] 1.0 1.0 0.5 0.0 0.0 2.5

TA-STAN: A Deep Spatial-Temporal. . . [43] 1.0 1.0 1.0 0.0 0.0 3.0

Traffic accident prediction based on deep. . . [44] 1.0 1.0 1.0 1.0 0.0 4.0

Traffic accident prediction model using. . . [45] 0.5 1.0 1.0 0.0 0.0 2.5

Traffic accident prediction using 3-D. . . [60] 0.0 0.5 0.5 0.0 0.0 1.0

Utilizing Machine Learning Models to Predict. . . [46] 1.0 1.0 1.0 1.0 1.0 5.0
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Table A2. Features list.

ID Data Source Type 1 Type 2 Variables

PS01
traffic flow real variable vehicle speed, number of vehicles. . .

traffic accidents real variable date, time, location, vehicles involved. . .

PS02
traffic flow real variable vehicle speed, flow, and occupancy

traffic accidents real variable time, location, and collision description

PS03 traffic accidents real variable time and location

PS04
weather conditions real variable clear and adverse

traffic flow real variable vehicle speed, number of vehicles. . .

PS05
weather conditions real variable sun, cloud, rain, snow, fog, sleet. . .

traffic flow real variable vehicle speed, number of vehicles. . .

PS06
weather conditions simulated variable rain, snow, and fog

light conditions simulated variable sun, headlights, and streetlight

PS07
weather conditions real variable type and visibility

traffic accidents Not available

traffic flow real variable vehicle speed, volume, and occupancy

PS08
traffic accidents real variable date, time, location. . .

traffic flow real variable date, time, number of vehicles. . .

PS09

weather conditions real variable tweets (snow, sleet, fog. . .)

traffic accidents real variable time, street name, location. . .

traffic events real variable tweets (closures, incidents. . .)

PS10

vehicle data real static type and seat belt

driver’s data real static age, gender, and education level

weather conditions real variable visibility

light conditions Not available

traffic accidents real variable time, day of week, severity. . .

road infrastructure real static geometric characteristics

others real static topographic map. . .

PS11

weather conditions real variable average temperature, precipitation. . .

traffic accidents real variable date, time, location, collision type. . .

taxi trips real variable pick-up timestamp, pick-up location. . .

traffic flow real variable volume

road infrastructure real static road length, road type, and intersections

population real static Not available

others real static land use

PS12

weather conditions real variable temperature, pressure, humidity. . .

traffic events real variable collision, broken vehicle, congestion. . .

road infrastructure real static warning, priority, information. . .

PS13

weather conditions real variable visibility

traffic accidents real variable number of property damage only. . .

traffic flow real variable average speed limit. . .

road infrastructure real static road length, curvature. . .
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Table A2. Cont.

ID Data Source Type 1 Type 2 Variables

PS14

weather conditions simulated variable street identifier, temperature, snow. . .

traffic accidents simulated variable time, location. . .

traffic flow simulated variable Not available

road infrastructure simulated static geometric characteristics

points of interest simulated static location

PS15

traffic accidents real variable timestamp, location. . .

traffic events real variable timestamp, location, and category

points of interest real static place, category, and location

PS16
weather conditions real variable Not available

traffic accidents real variable date, time, city, state. . .

PS17

weather conditions real variable precipitation, temperature. . .

traffic accidents real variable time and location

road infrastructure real static speed limits and volume

others real static satellite images

PS18
traffic accidents real variable identifier, timestamp, location. . .

traffic flow real variable volume, average speed, and occupancy

PS19

weather conditions real variable Not available

traffic accidents real variable time, day, location, number of dead. . .

traffic flow real variable time, number of lanes, volume, density. . .

road infrastructure real static road shape and alignment

PS20
traffic accidents real variable time, location, and security level

pedestrian mobility real variable identifier and location

PS21

weather conditions undefined variable categories

light conditions undefined variable categories

traffic accidents undefined variable time, day of week, and collision month

traffic flow undefined variable type and state of the control device. . .

road infrastructure undefined static speed limit, road type, pavement type. . .

traffic events undefined variable type

PS22

traffic accidents real static time, location, vehicles involved. . .

traffic flow real variable average speed, volume, average. . .

road infrastructure real static road type, road length, tolls. . .

weather data real variable visibility and road surface

PS23

weather data real variable precipitation, temperature. . .

traffic accidents real variable time and location

traffic flow real variable speed limits and annual average daily. . .

population real static Not available

others real static area size of census blocks

PS24

vehicle data real static type

driver’s data real static age, gender, education level. . .

weather conditions real variable sun, fog, rain, snow, storm, dry, wet. . .

light conditions real variable day or night
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Table A2. Cont.

ID Data Source Type 1 Type 2 Variables

PS24

traffic accidents real variable time, day of week, and vehicle failure

road infrastructure real static road width, imperfections. . .

others real static topographic map and digital elevation. . .

PS25

weather conditions real variable type, wind direction and speed. . .

traffic accidents real variable time, location, collision type. . .

traffic flow real variable number of vehicles, occupancy. . .

road infrastructure real static entrance and exit ramp

PS26
vehicle data real static / identifier, time, vehicle speed, and type

variable

traffic accidents real variable date, time, location, and collision type

PS27 traffic accidents real variable tweets and police report

PS28
traffic accidents real variable identifier, time, location. . .

traffic flow real variable device identifier, timestamp. . .

PS29

weather conditions real variable precipitation, snowfall, temperature. . .

road infrastructure real static number of lanes, road type. . .

pedestrian mobility real variable people’s arrivals and departures

points of interest real static place, location, and category

population real static Not available

others real static weekends and holidays

PS30

traffic accidents real variable number of dead and victims. . .

road infrastructure real static road width, segment length. . .

population real static Not available

others real static geographical area, income. . .

PS31

vehicle data real variable location, pick up and pick off time

weather conditions real variable date, time, location, temperature. . .

traffic accidents real variable time, place, street, collision reason

road infrastructure real static geometric characteristics

taxi trips real static taxi zones

points of interest real static name, location, and category

others real variable start and end point

PS32

weather conditions real variable temperature, dew point, humidity. . .

traffic accidents real variable time and location

road infrastructure real static name and points for roads. . .

taxi trips real variable time, location, and speed

points of interest real static name, location, and category

PS33

vehicle data simulated variable speed and vehicle condition

driver’s data simulated static age, involvement of alcohol and drugs

weather conditions simulated variable Not available

PS34

traffic accidents real variable age, gender, injury, collision year. . .

traffic flow real variable volume

road infrastructure real static geometric characteristics (speed limits)
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Table A3. Datasets and simulators.

ID Datasets/Services Simulators

PS01 Metropolitan Expressway Company Limited and Vehicle Collision
and Normal Traffic Condition [61]

PS02 California Department of Transportation and Highway Perfor-
mance Measurement System [62]

PS03 Beijing traffic accident data

PS04 The Statewide Integrated Traffic Records System [63], Highway Per-
formance Measurement System [64], and Interstate 880 Highway

PS05 Interstate 15 Highway

PS06 Prescan [65] and
Matlab/Simulink

PS07 Virginia Department of Transportation [66] and Interstate 64 High-
way

PS08 Intelligent Transportation Systems and Real-Time Monitoring Sys-
tem [67]

PS09 Twitter API [68] and New York City Open Data [69]

PS10
National Cartographic Centre [70], Ministry of Roads and Urban
Development [71], Meteorological Organization [72], and Highway
Police [73]

PS11

New York of Police Department (Vehicle collisions) [69], New York
City Taxi and Limousine Commission, Taxi GPS Data [74], New
York City Department of Transportation [75], United States Cen-
sus Bureau (TIGER files) [76], New York City Department of City
Planning [77], and National Climatic Data Center [78]

PS12 US-Accidents dataset [79], MapQuest Traffic [80], and Microsoft
Bing Map Traffic [81]

PS13
Washington State Department of Transportation [82], Highway
Safety Information System [83], and Digital Roadway Interactive
Visualization and Evaluation Network [84]

PS14

Paramics Microsim-
ulation [85], AIM-
SUN [86], and VIS-
SIM [87]

PS15
New York Police Department (Traffic Accident Dataset) [69], Points
of Interest from New York City [88], and New York City’s govern-
mental platform [88]

PS16 US Accidents (A Countrywide Traffic Accident Dataset) [89] and
The Weather Channel [90]

PS17
Iowa Department of Transportation [91], Iowa Department of Trans-
portation (RWIS) [92], Iowa Department of Transportation (Iowa
DOT GIS) [93], and Google Earth Satellite Image [94]

PS18 Iowa Department of Transportation (Traffic Management Centers
Reports) [91], Iowa DOT (Interstate 235 (I-235) and Traffic Flow) [91]

PS19 Korea Expressway Corporation (Traffic Flow) [95] and Korean Na-
tional Policy Agency (Traffic Accidents) [96]

PS20 Japan traffic accident data and Japan human mobility data

PS21 Not available

PS22 Signal Four Analytics [97], Central Florida Expressway Author-
ity [98], and National Climatic Data Center (Weather Data) [78]
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Table A3. Cont.

ID Datasets/Services Simulators

PS23

Iowa Department of Transportation (Vehicle collisions) [91],
Stage IV radar rainfall [99], Iowa Department of Transporta-
tion (RWIS) [92], Iowa Department of Transportation (Iowa DOT
GIS) [93], and Census Data [76]

PS24

Iran National Cartographic Center [70], Ministry of Roads and
Urban Development Islamic Republic of Iran [71], Iran Meteoro-
logical Organization [72], National Geographical Organization of
Iran [100], and the Information and Technology Department of the
Iranian Traffic Police [73]

PS25 Signal Four Analytics [97], National Climatic Data Center [78] and
Central Florida Expressway Authority [98]

PS26 Autopista Central [101] and Department of Geophysics of Univer-
sity of Chile [102]

PS27 New York City Police Department (Public Traffic Accident Re-
port) [103]

PS28 Xiamen traffic accident data and Vehicle License Plate Recogni-
tion sensors

PS29 New York City data

PS30
Florida Department of Transportation (Crash Analysis Reporting
System) [104], FDOT (Roadway Characteristics Inventory) [104],
Map of Hillsborough, and United States Census Report [76]

PS31

New York of Police Department (Vehicle collisions) [69], New York
City Taxi and Limousine Commission (Trip Data) [74], National
Climatic Data Center (Weather Data) [78], and New York City Open
Data [69]

PS32 Beijing’s datasets about traffic accidents and Weather Under-
ground [105]

PS33 Questionnaires filled by drivers, pedestrians, and others

PS34 Office of Highway Safety Planning (Michigan Traffic Crash Facts
Dataset) [106]
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