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Abstract: In this work, the form finding of an asymmetric cable network reflector is considered
by taking into account the elastic deformation of the flexible ring truss. Firstly, by treating the
boundary nodes as fixed nodes, the balance equations of the structure are transformed into linear
equations using the force density method (FDM). Next, the genetic algorithm (GA) is used to find
the force density values that satisfy the surface accuracy required to complete the form finding of
a cable network reflector. Secondly, a design procedure is presented by incorporating the elastic
deformation of the ring truss. Finally, using an iterative process, the coordinates of the boundary
nodes are modified to repeat the first step to obtain better surface accuracy. Numerical experiments
are presented to demonstrate the effectiveness of the proposed method in comparison with the
conventional method.

Keywords: flexible ring truss; asymmetric; force density method; genetic algorithm; boundary
condition modification

1. Introduction

A large space antenna can increase the bandwidth and reduce the number of receiving
devices at the ground station [1]. Hence, for advanced satellite communications tech-
nology [2], it is becoming more and more important to develop large space antennas for
information transmission. However, the size and weight of a satellite have limitations dur-
ing the launch period [3]. Hence, the satellite missions require low-cost, precision reflector
structures with a large aperture that can be packaged in a small envelope [4]. To integrate
the above features, a large space antenna not only has to have a low mass and a low cost, but
it needs to be packaged compactly with high packaging efficiency [5]. Thus, new designs
for reflector antennas, such as solid surface deployable antennas, inflatable antennas, and
mesh antennas, are explored in the literature [6]. Compared with other structures, cable
nets have significant advantages over conventional structures, such as steel structures, due
to their lightweight characteristics. Mesh reflector antennas have been widely used due
to their potential to fill large apertures with extremely lightweight hardware. Since 1958,
Astro Aerospace Corporation has developed deployable space structures to revolutionize
the deployable mesh reflector technology [7]. As shown in Figure 1, the reflective mesh
is attached to a network of thin cables, with a high axial stiffness that approximates to
a paraboloid. The cables are pre-stressed to form a stiff and accurate structure. The height
of the ring truss is given by the sum of the depth of the two nets and their separation.
The AstroMesh has many advantages over the existing mesh reflectors in terms of having
significantly better stiffness and being more precise, thermally stable, and occupying less
volume. However, the mesh precision determines the antenna performance.
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Figure 1. An illustration of the AstroMesh concept.

Recently, many researchers have considered the problem of form finding of deployable
mesh reflectors. For example, Tibert et al. [8] constructed a small-scale physical model that
deploys two identical cable nets (front and rear nets) to demonstrate that a 10 GHz reflector
with a 3 m diameter and a focal length-to-diameter ratio of 0.4 can be packaged within
an envelope that has a volume of 0.1 × 0.2 × 0.8 m3. Further, Tabarrok et al. [9] used
FDM to revisit and examine the tension truss concept in terms of adjustability to different
support conditions and pre-stressability. In another study, an inverse iteration algorithm
was used for the form-finding design of the creep and recovery behaviors of cable net
reflector antennas [10]. A combination of a non-linear finite element method [11] and other
optimization methods [12] was used to determine the form-finding process using iterative
techniques. However, these methods have drawbacks in terms of slow convergence speed
and poor accuracy.

The surface accuracy of an antenna reflector impacts its electromagnetic perfor-
mance [13,14]. Hence, the design of a large antenna reflector with a high surface accuracy
requirement has been the subject of much research [15]. The allowable random surface
error in each frequency band was presented by Meguro et al. [16]. In the study, the au-
thors assumed that error tolerance was 1/50th of the wavelength (gain loss is −0.2 dB)
and achieved a higher surface accuracy to obtain Ku-band antenna reflector performance.
Tang et al. [17] studied the surface error distribution, root-mean-square error, and far-field
electrical performance of an antenna influenced by pillow distortion. Additionally, there are
also many other active shape adjustment technologies that are used to improve the surface
accuracy. Wang et al. [18,19] established a finite-element model of a cable net structure with
piezoceramic (PZT) actuators and tried to find the desired shape by finding the optimal
actuation voltages. Yan et al. [20] proposed a novel self-sensing vibration control method
and applied a self-sensing electromagnetic transducer that acts as both an isolator and a ve-
locity sensor to suppress the vibration of a space antenna reflector. Xun et al. [21] proposed
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an active cable structure constructed by incorporating a piezoelectric (PZT) actuator into
flexible cables to achieve the active shape control of the reflector surface.

The deployable reflector that we studied in this work is a composite structure compris-
ing the supporting truss and the flexible cable net. The supporting truss will be deformed
under the pre-stress of the flexible cable net [22]. If the antenna aperture size is small, the
deformation of the ring truss can be ignored because of the significant stiffness of the sup-
porting structures. However, with the increase in the aperture size, the ring truss should be
lightweight to decrease the weight of the antenna structure, which could increase the defor-
mation of the supporting structures. Hence, it is important to consider the flexibility of the
supporting structures in the form-finding of the reflector. There have been several research
works focusing on the design of cable network structures by considering the flexibility
of the ring truss. Maddio et al. [23] extends the traditional force density method for the
form-finding analysis of an asymmetric offset antenna. Li et al. [24] optimized the pre-stress
distribution of the boundary cables connected directly to the supporting truss by consider-
ing the elastic deformation of the antenna structure. Liu et al. [25] searched for the desired
mesh configurations with an iterative strategy by incorporating the standard FEM (finite
element method) with the traditional FDM (force density method). Li et al. [26] tried to
minimize the reflector surface error by adjusting the tension-force distribution of the bound-
ary cables and by considering deformations of the supporting truss. However, the above
works all treated the reflectors as identical paraboloid-shaped nets. The advantage of the
asymmetric paraboloid-shaped net will be shown in the following.

Since only the reflective mesh is useful during the process of transmitting or receiving
messages, the focal length-to-diameter ratio of the rear net can be reduced to minimize
the total mass. Figure 2 shows the identical paraboloid-shaped nets model, where L is the
depth of the reflector, Hc is the length between the front and rear reflectors, and R is the
radius of the reflector. Using these notations, the depth of the truss H can be expressed as:

H = Hc + 2L (1)

Figure 2. Identical paraboloid-shaped net model.

An asymmetric paraboloid-shaped net model is shown in Figure 3. In the figure,
H2 is the depth of the truss, Hc is the length between the front and rear reflectors, and
R is the radius of the reflector. The depth of the front and rear reflectors are L and L

5 ,
respectively. The depth of the truss for the asymmetric paraboloid-shaped net model can
be expressed as:

H2 = Hc +
6
5

L (2)

From Equations (1) and (2), it can be noted that the depth of the truss for the asym-
metric reflector structure is lower than the identical one. Hence, in this work, an asym-
metric cable network reflector is designed to reduce the size of the hoop truss structure.
The pre-stress distribution in cables has a significant effect on the deformation of the sup-
porting structure. The aim of this work is to obtain an even distribution of pre-stress to
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form a high-accuracy mesh reflector. In order to solve the non-linear equations, the force
density method is utilized, which has been frequently used in the form finding of cable
and membrane structures.

Figure 3. Asymmetric paraboloid-shaped net model.

The rest of the paper is organized as follows. The form finding for an asymmetri-
cal cable network reflector using FDM and GA is presented in Section 2. In Section 3,
the proposed form-finding method that involves considering the deformation of the ring
truss is discussed. Numerical results are presented to illustrate the effectiveness of the
proposed approach in Section 4. Some conclusions are summarized in Section 5.

2. Form-Finding Method for Asymmetric Cable Network Reflector
2.1. Equilibrium Equation

The asymmetric cable network reflector is designed using a combination of the force
density method, a genetic algorithm, and an iterative technique. The boundary nodes of the
ring truss are called “fixed nodes” and nodes on the cable network are called “free nodes”.
Assuming that the structure of the cable net has m members, n free nodes, n f fixed nodes,
and ns = n + n f , its topology can be expressed using an incidence matrix Cs(∈ Rm×ns) [27].
Supposing that the member k connects nodes i and j (i < j), the ith and jth elements of the
kth row of Cs are set to 1 and −1, respectively. This can be represented as:

CS(k, g) =


+1 for g = i
−1 for g = j
0 otherwise

(3)

The columns of the matrix Cs can be rearranged such that the free nodes precede the
fixed nodes in the numbering sequence. Hence, Cs can be divided into two parts as:

Cs = [C Cf] (4)

where C ∈ Rm×n and C f ∈ Rm×n f describe the connectivity of the members to the free and
fixed nodes, respectively. As an example, for a simple two-dimensional truss shown in
Figure 4a, which consists of seven members and eight nodes, including two free nodes
(n = 2) and six fixed nodes (n f = 6), the connectivity matrix Cs is given in Figure 4b.

The force density method is typically used to control both the geometry and the
pre-stress distribution [28]. Using this method, we can transform a set of non-linear
equilibrium equations of the nodes into a set of linear equations, which will be explained
in the following.
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Figure 4. A two-dimensional cable net.

If R members of the cable net structure meet at the node i, then the equilibrium
equations of node i can be derived as:

R

∑
1

xk − xi
li,k

si,k + pxi = 0

R

∑
1

yk − yi
li,k

si,k + pyi = 0

R

∑
1

zk − zi
li,k

si,k + pzi = 0

(5)

Further, define
u = Cs · xs = C · x + C f · x f

v = Cs · ys = C · y + C f · y f

w = Cs · zs = C · z + C f · z f

(6)

where si,k and li,k denote the tension force and length of the kth member, respectively.
The symbols pxi, pyi, and pzi denote the column vectors of the external forces of the nodes.
The set of equations in Equation (5) can be linearized for each member by introducing the
force density as:

qj =
si
lj

(7)

The force density values are the target values that need to be calculated during the
form-finding process. For a general structure with w members and j nodes, the equilibrium
equations in the x-direction are written as:

CT
s ·Q · Cs · xs = px (8)

In a similar way, the equilibrium equations in the y- and z-directions are expressed as:

CT
s ·Q · Cs · ys = py (9)

CT
s ·Q · Cs · zs = pz (10)

Since the external forces and weight of the whole structure are ignored during the
form-finding process, the equilibrium equations in the x-coordinate are changed to
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[
CT

CT
f

]
· [Q] ·

[
C C f

]
·
{

x

x f

}
=

{
0

px f

}
(11)

which can be expressed as:{
CT ·Q·C · x + CT ·Q · C f · C f · x f = 0

CT
f ·Q · C · x + CT

f ·Q · C f · x f = px f
(12)

Further, considering similar sets of equations in the y-coordinate and z-coordinate, we
obtain the following set of equations:

CT ·Q · (C · x + C f · x f ) = 0

CT ·Q · (C · y + C f · y f ) = 0

CT ·Q · (C · z + C f · z f ) = 0

(13)

Using Equation (13), the column vectors of the positions of the free nodes (x, y, z) can
be obtained as:

x = −Q̃−1 · Q̃ f · x f

y = −Q̃−1 · Q̃ f · y f

z = −Q̃−1 · Q̃ f · z f

(14)

where,
CT ·Q · C = Q̃

CT ·Q · C f = Q̃ f
(15)

We assume that x, y, and z are the positions of the free nodes. When the supporting
structure is undeformed, the x and y positions of the rear reflector are the same as the front
reflector because the tension ties between the front and rear surfaces are vertical. Since the
front and rear surfaces are placed asymmetrically, the front and rear parabolic surfaces are
described using the global coordinates as follows:

z1 =
x2 + y2

4 f1
− η1

z2 = − x2 + y2

4 f2
− η2

(16)

where f1 and f2 denote the focal length of the front and rear reflectors, respectively.
The symbols η1 and η2 denote the depth of the front and rear reflectors, respectively.
For a certain cable network reflector, the parabolic surface is given during the design pro-
cess. Therefore, if the positions in the x-coordinate and y-coordinate can be calculated,
the positions in the z-coordinate can be obtained using Equation (16).

2.2. The Optimal Design of the Pre-Stress in Cable Nets

In this sub-section, we describe a procedure to obtain the proper pre-stress to form
an asymmetric cable network reflector. Figure 5 shows the finite element model of the front
reflector for a typical large cable network antenna. The surfaces are filled with triangular
facets. Since the reflector is a central symmetric structure, the preload is also a central
symmetric force. The unique cable nets are shown as Figure 6, which are one-twelfth those
in Figure 5.

From Equation (13), we can note that Q is the key component in obtaining the coor-
dinates of the free nodes. The force density of each cable net is set as the design variable
and an even distribution of the pre-stress is set as the objective function. The optimization
problem for the form finding of the cable network reflector is formulated using the force
density method. In this work, GA is used to find the optimal values of the force density.
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The GA [29,30] is an optimization technique based on random search that is guided by
the principles of evolution and natural genetics. Moreover, the GA has a large amount of
implicit parallelism [31,32], which is suitable for implementation.

Figure 5. The finite element model for the antenna reflector.

Figure 6. The unique cable nets.

The optimization problem for the form finding of the cable network reflector can be
expressed as:

find q1, q2, q3, · · · , qn

Min f = FMax/FMin,

S.t. CT ·Q · C · x = fx,

CT ·Q · C · y = fy,

z =
x2 + y2

4 f
− η,

0 < qi ≤ [q]

where, q1, q2, q3, . . . , qn are the column vectors of the force densities for the cable net
structure and f is max–min tension ratio of the cable net. The objective of the GA is to
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search for the appropriate force density values q1, q2, q3, . . . , qn, such that the max–min
tension ratio is minimized. The obtained GA solution is substituted into Equation (12) to
obtain the optimal reflector of the antenna.

An element of the cable net structure is shown in Figure 7. Using the optimal force
density values, we can obtain the pre-stress in the front reflector, given as:

si = q∗
i
li (17)

where qi
* is the optimal force density in the cable i and li is the cable length.

Figure 7. An element of a cable net structure.

Then, from Equation (10), the equilibrium equations in the z-direction for the front
reflector can be expressed as:

(CF)
T ·QF · (CF · ZF + C f

F · ZF
f ) + F f

z = 0

FF
z = −(CF)

T ·QF · (CF · ZF + C f
F · ZF

f )

(18)

where CF, Cf
F, QF, and ZF are the topological relation matrix corresponding to the front

reflector. FF
z is equal to the force on the front reflector by the tension ties.

The rear reflector only provides support for the front reflector and does not require
high surface accuracy. Therefore, in order to reduce the quantity of calculations, the cable
tension of the rear reflector can be given by:

sj
′ =

f2l′ j
f1li

si (19)

where l′j is the cable length in the rear reflector corresponding to the cable length li in the
front reflector.

Next, the static equilibrium of the cable nets in the rear reflector is verified. In this
process, an arbitrary node i of the rear reflector is considered to be the object. The resultant
force in the x, y-directions for node i can be computed as:

F′xi =
R

∑
1

xk
′ − xi

′

l′ i,k
s′ i,k

F′yi =
R

∑
1

yk
′ − yi

′

l′ i,k
s′ i,k

(20)
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where, x′ = x, y′ = y and substituting Equation (18) into Equation (19), we can obtain:
F′xi =

f2

f1

R

∑
1

xk − xi
li,k

si,k

F′yi =
f2

f1

R

∑
1

yk − yi
li,k

si,k

(21)

From Equation (12), we can obtain{
F′xi = 0

F′yi = 0
(22)

From Equation (22), we can conclude that the rear reflector can keep its balance in the
x- and y-directions. The resultant force of node i in the z-direction can be written as:

F′zi =
R

∑
1

zk
′ − zi

′

l′ i,k
s′ i,k (23)

Using Equations (16), (18) and (19), and x′= x, y′ = y, the cable tension in the z-direction
can be rewritten as:

F′zi = −
R

∑
1

zk − zi
li,k

si,k (24)

F′zi = −Fzi (25)

Hence, the pre-stress in the rear cable networks, which is obtained through Equation (19),
can keep the whole structure at its static equilibrium.

3. Form-Finding Method Considering the Deformation of Flexible Ring Truss

In most of the existing literature, the connecting points between the cable networks and
flexible ring truss were assumed to be fixed during the form finding for the cable network
reflector. Therefore, the deformations of the flexible ring truss due to tensions in the cable
networks were not considered. In this section, a novel design method that considers the
deformation of the ring truss is proposed. Since the ring truss is deformed, the coordinates
of the fixed nodes are updated to achieve the objective shapes of the reflector. By modifying
the coordinates of the fixed nodes, a new series of force density values are calculated to
decrease the influence of the deformation on the accuracy of the reflector. The procedure of
the design method is given below:

Step 1: Input basic parameters for the cable network reflector.
Step 2: A set of suitable force density values should be obtained, using the MATLAB

program to design an objective shape of the cable network structure.
Step 3: Calculate the deformations of the ring truss in the ANSYS software to update

the boundary coordinates. From Equation (12), the reaction force vector provided by the
boundary nodes can be obtained as:

px f = CT
f ·Q · C · x + CT

f ·Q · C f · x f

py f = CT
f ·Q · C · y + CT

f ·Q · C f · y f

pz f = CT
f ·Q · C · z + CT

f ·Q · C f · z f

(26)

The deformations in the nth iteration step are obtained from the following equation:
∆x f ,n

∆y f ,n

∆z f ,n

 = −K f


px f

py f

pz f

 (27)
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Next, the coordinates of the fixed nodes are updated using:
x f ,n

y f ,n

z f ,n

 =


x f

y f

z f

+


∆x f ,n

∆y f ,n

∆z f ,n

 (28)

Step 4: The surface root-sum-of-squares (RSS) error wn during the nth iteration is used
as a performance metric of the obtained mesh reflector. The RSS error can be expressed as

wn =

√
(xn − x0,n)

2 + (yn − y0,n)
2 + (zn − z0,n)

2 (29)

The termination condition for the algorithm is specified as:

wn ≥ wn−1 (30)

where x0,n, y0,n, z0,n are the coordinates of the free nodes when the boundary nodes are
fixed, and xn, yn, zn are the coordinates of the free nodes if the ring truss has a deformation
in the nth iteration step.

Step 5: Generate the desired mesh shape with the obtained x0,n, y0,n, z0,n and x f ,n,
y f ,n, z f ,n.

The design flow is illustrated using the flowchart shown in Figure 8.

Figure 8. Flowchart of the proposed method using an iterative technique.

4. Numerical Simulations

In this section, to demonstrate the effectiveness of the proposed method, numerical
examples for the design of an asymmetric cable network antenna are presented. A finite
element model of the cable mesh antenna structure was built with the ANSYS software.
Three views of the antenna structure are illustrated in Figure 9. The material parameters of
the subject are given in Table 1 and the structural dimensions of the subject are as follows:

The diameter of the aperture: 16 m.
The focal length of the front reflector: 9.5 m.
The focal length of the rear reflector: 304.2 m.
Number of cable networks: 1555 (Front: 672, Rear: 672, Tie cables: 211).
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Number of boundary cables: 120.
Number of free nodes: 422.
Number of connecting nodes: 60.
Type of facets: triangular facets.

Figure 9. Three views of the antenna structure.

Table 1. Material parameters of the structure.

Material Parameter Material Properties Elastic Modulus (GPa) Density (kg/m3) Diameter (m)

Cable network Kevlar49 137.07 1440 0.002

Ring truss Carbon Fiber 60J 588 1940
inner outer
0.018 0.02

Due to the complexity of the cable mesh antenna structure, we used APDL pro-
gramming in ANSYS to build the model. The pre-stress which was obtained during the
form-finding progress in MATLAB was applied to the cable nets in the form of pre-strain.

In order to compare the proposed approach and the conventional method without
considering the flexibility of the supporting structure, the cable network antenna is designed
using both methods. The results are shown in Figures 10 and 11.
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Figure 10 shows the contour nodal displacement of the front reflector which was
calculated in ANSYS during successive iterations. From the figures, we can see that the
maximum nodal displacement in the second iteration is the smallest, and that the nodal
displacement increases in the third iteration. Hence, we set the second iteration as the
termination iteration.

Figure 11 shows the contour nodal displacement of the supporting truss during
successive iterations. From the figures, we can note that the deformation of the support
truss decreases with successive iterations and the second iteration hass the smallest nodal
displacement.

The differences between the free node positions of the objective shapes and that of the
shapes at the equilibrium states are summarized in Table 2.

Table 2. Comparison of the design results using the proposed and the conventional method.

The Initial Reflector Data
Present Approach

1st Iteration 2nd Iteration 3rd Iteration

Max–min distributed tension
in the front reflector (N) 17.06/3.53 27.39/6.40 22.24/5.70 27.90/5.00

Max–min tension ratio of
cable net 4.82 4.28 3.90 5.58

Free nodal position error (m) 7.56 × 10−3 2.14 × 10−3 0.76 × 10−3 1.95 × 10−3

Improvement of
surface accuracy — 71.69% 89.95% 74.21%

From Table 2, it can be observed that the free nodal position error for the conventional
design approach is large as it does not consider the ring truss. Further, the result of the
conventional method does not satisfy the surface accuracy requirement. In the case of the
proposed method, with finite iterative steps, the tension distribution is uniform. Further,
there is an obvious improvement in reflector accuracy. Compared with the conventional
design method, the proposed design method achieves an accuracy improvement of 71.69%
and 89.95% for the first and second iteration, respectively. We can also observe that the
free nodal displacement error was increased in the third iteration, and hence the algorithm
was stopped.
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5. Conclusions

In this work, a design method for an asymmetric reflector is proposed. By using the
FDM, a set of suitable tensions that were obtained using the MATLAB program language is
searched using genetic algorithm for the desired asymmetric mesh configuration under
fixed boundary nodes. Then, the displacements of the boundary nodes caused by the
deformation of the flexible truss were calculated using the finite element method. Further,
we updated the coordinates of the boundary nodes to eliminate the effect of the elastic
deformations of the ring truss supporting structure on the surface accuracy, which will
lead to a great improvement of the surface accuracy in the designed mesh shape. Finally,
numerical simulations were conducted to verify the performance of the proposed approach.
The simulation results demonstrated that the proposed approach could generate exact
spatial parabolic mesh shapes that can satisfy the requirements. Therefore, the work
presented in this paper can be used for the efficient designing of cable network structures.

Author Contributions: Conceptualization and methodology, Z.H. and Y.L.; software, Z.H.; validation,
X.Z.; formal analysis, Z.H.; investigation, Z.H.; resources, Z.H.; data curation, Z.H.; writing—original
draft preparation, Z.H.; writing—review and editing, Y.L. and X.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant
No. 11972024).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mileski, P.; Kornblith, J. Lightweight Deployable Antenna System. U.S. Patent 5,091,732, 25 February 1992.
2. Takano, T.; Miura, K.; Natori, M.; Hanayama, E.; Inoue, T.; Noguchi, T.; Miyahara, N.; Nakaguro, H. Deployable antenna with

10-m maximum diameter for space use. IEEE Trans. Antennas Propag. 2004, 52, 2–11. [CrossRef]
3. Salama, M.; Lou, M.; Fang, H. Deployment of inflatable space structures-a review of recent developments. In Proceedings of the

41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA, USA, 3–6 April 2000; p. 1730.
4. Freeland, R.E.; Bilyeu, G.D.; Veal, G.R.; Steiner, M.D.; Carson, D.E. Large inflatable deployable antenna flight experiment results.

Acta Astronaut. 1997, 41, 267–277. [CrossRef]
5. Tabata, M.; Fujii, K.; Shintate, K.; Ozawa, S. Deployable antenna. U.S. Patent 20,120,193,498, 30 January 2012.
6. Pellegrino, S. Deployable Structures; Springer: Berlin/Heidelberg, Germany, 2014; Volume 412.
7. Thomson, M.W. The Astromesh deployable reflector. In Proceedings of the Antennas and Propagation Society International

Symposium, Orlando, FL, USA, 11–16 July 1999; pp. 1516–1519.
8. Tibert, A.G.; Pellegrino, S. Deployable tensegrity reflectors for small satellites. J. Spacecr. Rocket. 2002, 39, 701–709. [CrossRef]
9. Tabarrok, B.; Qin, Z. Nonlinear-Analysis of Tension Structures. Comput. Struct. 1992, 45, 973–984. [CrossRef]
10. Tang, Y.Q.; Li, T.J.; Ma, X.F. Form Finding of Cable Net Reflector Antennas Considering Creep and Recovery Behaviors. J. Spacecr.

Rocket. 2016, 53, 610–618. [CrossRef]
11. Tabata, M.; Yamamoto, K.; Inoue, T.; Noda, T.; Miura, K. Shape adjustment of a flexible space antenna reflector. J. Intell. Mater.

Syst. Struct. 1992, 3, 646–658. [CrossRef]
12. Fazli, N.; Abedian, A. Design of tensegrity structures for supporting deployable mesh antennas. Sci. Iran. 2011,

18, 1078–1087. [CrossRef]
13. Mobrem, M. Methods of analyzing surface accuracy of large antenna structures due to manufacturing tolerances. In Proceedings

of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia,
7–10 April 2003; p. 1453.

14. Tanaka, H. Surface error estimation and correction of a space antenna based on antenna gainanalyses. Acta Astronaut. 2011,
68, 1062–1069. [CrossRef]

15. Shi, H.; Yang, B.; Fang, H. Offset-feed surface mesh generation for design of space deployable mesh reflectors. In Proceedings
of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, USA,
8–11 April 2013; p. 1526.

16. Meguro, A.; Harada, S.; Watanabe, M. Key technologies for high-accuracy large mesh antenna reflectors. Acta Astronaut. 2003,
53, 899–908. [CrossRef]

http://doi.org/10.1109/TAP.2003.820968
http://doi.org/10.1016/S0094-5765(98)00057-5
http://doi.org/10.2514/2.3867
http://doi.org/10.1016/0045-7949(92)90056-6
http://doi.org/10.2514/1.A33548
http://doi.org/10.1177/1045389X9200300407
http://doi.org/10.1016/j.scient.2011.08.006
http://doi.org/10.1016/j.actaastro.2010.09.025
http://doi.org/10.1016/S0094-5765(02)00211-4


Appl. Sci. 2022, 12, 4508 16 of 16

17. Tang, Y.Q.; Li, T.J.; Ma, X.F. Pillow Distortion Analysis for a Space Mesh Reflector Antenna. AIAA J. 2017, 55, 3206–3213. [CrossRef]
18. Wang, Z.; Li, T.; Deng, H. Form-finding analysis and active shape adjustment of cable net reflectors with PZT actuators. J. Aerosp.

Eng. 2012, 27, 575–586. [CrossRef]
19. Wang, Z.W.; Li, T.J.; Cao, Y.Y. Active shape adjustment of cable net structures with PZT actuators. Aerosp. Sci. Technol. 2013,

26, 160–168. [CrossRef]
20. Yan, B.; Wang, K.; Kang, C.X.; Zhang, X.N.; Wu, C.Y. Self-Sensing Electromagnetic Transducer for Vibration Control of Space

Antenna Reflector. IEEE/ASME Trans. Mechatron. 2017, 22, 1944–1951. [CrossRef]
21. Xun, G.B.; Peng, H.J.; Wu, S.N.; Wu, Z.G. Active Shape Adjustment of Large Cable-Mesh Reflectors Using Novel Fast Model

Predictive Control. J. Aerosp. Eng. 2018, 31, 04018038. [CrossRef]
22. Tanaka, H.; Shimozono, N.; Natori, M.C. A design method for cable network structures considering the flexibility of supporting

structures. Trans. Jpn. Soc. Aeronaut. Space Sci. 2008, 50, 267–273. [CrossRef]
23. Maddio, P.D.; Meschini, A.; Sinatra, R.; Cammarata, A. An optimized form-finding method of an asymmetric large deployable

reflector. Eng. Struct. 2019, 181, 27–34. [CrossRef]
24. Li, T.; Zuowei, W.; Deng, H. Mesh reflector antennas: Form-finding analysis review. In Proceedings of the 54th AIAA/ASME/ASCE/

AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, USA, 8–11 April 2013; p. 1576.
25. Liu, W.; Li, D.X.; Yu, X.Z.; Jiang, J.P. Exact mesh shape design of large cable-network antenna reflectors with flexible ring truss

supports. Acta Mech. Sin. 2014, 30, 198–205. [CrossRef]
26. Li, T.J.; Jiang, J.; Deng, H.Q.; Lin, Z.C.; Wang, Z.W. Form-finding methods for deployable mesh reflector antennas. Chin. J.

Aeronaut. 2013, 26, 1276–1282. [CrossRef]
27. Tran, H.C.; Lee, J. Self-stress design of tensegrity grid structures with exostresses. Int. J. Solids Struct. 2010, 47, 2660–2671. [CrossRef]
28. Linkwitz, K.; Schek, H.-J. Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen [Some comments on

the calculation of pre-tensioned cable network constructions]. Ing. Arch. 1971, 40, 145–158. (In German) [CrossRef]
29. Davis, L. Handbook of Genetic Algorithms; Van Nostrand Reinhold: New York, NY, USA, 1991.
30. Michalewicz, Z. Evolution strategies and other methods. In Genetic Algorithms+ Data Structures = Evolution Programs; Springer:

Berlin/Heidelberg, Germany, 1996; pp. 159–177.
31. Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [CrossRef]
32. Ribeiro Filho, J.L.; Treleaven, P.C.; Alippi, C. Genetic-algorithm programming environments. Computer 1994, 27, 28–43. [CrossRef]

http://doi.org/10.2514/1.J055913
http://doi.org/10.1061/(ASCE)AS.1943-5525.0000273
http://doi.org/10.1016/j.ast.2012.03.001
http://doi.org/10.1109/TMECH.2017.2712718
http://doi.org/10.1061/(ASCE)AS.1943-5525.0000858
http://doi.org/10.2322/tjsass.50.267
http://doi.org/10.1016/j.engstruct.2018.11.077
http://doi.org/10.1007/s10409-014-0029-6
http://doi.org/10.1016/j.cja.2013.04.062
http://doi.org/10.1016/j.ijsolstr.2010.05.020
http://doi.org/10.1007/BF00532146
http://doi.org/10.1023/A:1022602019183
http://doi.org/10.1109/2.294850

	Introduction 
	Form-Finding Method for Asymmetric Cable Network Reflector 
	Equilibrium Equation 
	The Optimal Design of the Pre-Stress in Cable Nets 

	Form-Finding Method Considering the Deformation of Flexible Ring Truss 
	Numerical Simulations 
	Conclusions 
	References

