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Abstract: Machine translation has received significant attention in the field of natural language
processing not only because of its challenges but also due to the translation needs that arise in the
daily life of modern people. In this study, we design a new machine translation model named
X-Transformer, which refines the original Transformer model regarding three aspects. First, the model
parameter of the encoder is compressed. Second, the encoder structure is modified by adopting two
layers of the self-attention mechanism consecutively and reducing the point-wise feed forward layer
to help the model understand the semantic structure of sentences precisely. Third, we streamline the
decoder model size, while maintaining the accuracy. Through experiments, we demonstrate that
having a large number of decoder layers not only affects the performance of the translation model
but also increases the inference time. The X-Transformer reaches the state-of-the-art result of 46.63
and 55.63 points in the BiLingual Evaluation Understudy (BLEU) metric of the World Machine Trans-
lation (WMT), from 2014, using the English–German and English–French translation corpora, thus
outperforming the Transformer model with 19 and 18 BLEU points, respectively. The X-Transformer
significantly reduces the training time to only 1/3 times that of the Transformer. In addition, the
heat maps of the X-Transformer reach token-level precision (i.e., token-to-token attention), while the
Transformer model remains at the sentence level (i.e., token-to-sentence attention).

Keywords: machine translation; natural language processing

1. Introduction

In the context of the development of several innovative neural network models used in
machine translation, the Recurrent Neural Network (RNN) has become a classic model used
for neural machine translation (NMT) [1]. However, RNN still faces some obstacles in the
training process. First, because the sequential input of RNN is adopted, early information
is easily lost, especially when there is a large input. Second, the basic RNN uses back prop-
agation, and back-propagated gradients are usually vanished or exploded because of the
use of a finite-precision number in computing. With the development of Long Short-Term
Memory (LSTM) [2,3], the gradient-vanishing problem has been reassessed. In a different
manner to the standard feed forward network, LSTM has its own feedback connections: in-
put gate, forget gate, and output gate. However, unlike the Convolutional Neural Network
(CNN), both RNN and LSTM are time-sequence models that still suffer from the parallel
computing problem—i.e., the GPU cannot be used to speed up while training.

A state-of-the-art model called the Transformer [4] proposed by Google applies the
Multi-Head Self-Attention Mechanism and leverages the parallel computing in Neural
Machine Translation. The Transformer has been the best NMT model to be proposed
to date. In recent years, several researchers have used this self-attention mechanism to
improve their models. Using GPU computing, the self-attention mechanism has improved
the NMT model to a certain extent, and more researchers have chosen to stack more GPUs
or model parameters, such as BERT. Although this parameter improves performance, its
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higher training cost also implies that these pre-trained models can only be owned by
specific researchers. Therefore, in this paper, we focus on adjusting the sub-layers of the
Transformer model, whilst maintaining its accuracy and efficiency.

To prove that our model is better than the state-of-the-art model Transformer, in this
paper we use two different language pairs: the English–German and English–French news
commentary translation corpus of the World Machine Translation (2014) [5]. The proposed
X-Transformer, which is an NMT model, includes the following features:

• The X-Transformer modifies the structure of the Transformer by reducing the number
of model parameters in both the encoder and decoder.

• The basic building block of the encoder in the X-Transformer is refined. We believe
that applying the self-attention mechanism in the feed forward layer of the encoder
is helpful for the model to understand natural languages, as will be shown in the
experimental results.

• Two different language pairs are applied to train the Transformer and X-Transformer
at the same time. The experiment results reveal that the proposed X-Transformer has
an outstanding performance.

• The visual heat map is used to aid the comprehension ability of the trained models.
The results again demonstrate the superiority of the X-Transformer. The refined
encoder structure of the X-Transformer elevates the comprehension ability to a token-
to-token level.

2. Review of the Literature

The training process of an NMT model includes data collection, data cleaning, data
preprocessing, model training, and model evaluation. In this section, we review the
methods used in previous research. First, we discuss the development and extension of
translation models, then the construction of translation datasets, and finally, the natural
language processing tasks in the medical domain.

2.1. Machine Translation

The NMT model, which mainly consists of an encoder and a decoder, is the best-
performing translation model recognized by everyone to date. An encoder maps an input
sequence to a hidden representation, including tokenization. A decoder maps the hidden
representation to a target sequence, including un-tokenization. When an NMT model
tackles a longer sequence, in the manner of a human, it is affected by more information,
which causes a lower learning efficiency. The attention mechanism can be used to align the
model to focus on the correct tokens. It can not only tackle longer sequences but also allow
the model to “attend” on the correct key point(s) in the sequence.

The work presented in [6] is the first research to incorporate the attention mechanism
in the NMT model. Luong et al. proposed Global Attention, which performs attention
calculations on all input sequences, whilst Local Attention only performs attention calcu-
lations on N contexts to reduce the burden of computing and thus improve the attention
mechanism in the NMT model [7]. The NMT model proposed by [7], training on an English–
German translation dataset, obtained significantly better results than classic NMT models.
The encoder and decoder can be implemented by well-known deep learning models, such
as LSTM [2,3], the Convolution seq2seq model [8], and the Transformer [4].

A disadvantage of the NMT model is that it is limited by words that are not in
its vocabulary, so-called out-of-vocabulary (OOV) words. Luong et al. highlighted this
problem and the model they presented copied the OOV word directly from the encoder to
the decoder to form a translation result [9]. In addition, the authors of [10,11] also used a
similar approach to solve the OOV problem. Certain medical terminology or names that are
not included in the dictionary due to the insufficient frequency of appearances in the corpus
will cause the NMT model to be unable to generate the specific words or names when
generating the results. CopyNet, proposed by [10], applies two training modes: generation
and copy modes. In addition, CopyNet has two dictionaries: one is a traditional dictionary,
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and the other is a dictionary that contains the words that appear only once in the dataset.
While training, CopyNet has to learn which mode to apply. If the probability of using the
generation mode is higher, the word is generated from the traditional dictionary. Otherwise,
the word is generated from the dictionary of words that have only appeared once in the
dataset. The use of this method can alleviate the OOV problem, and it is, therefore, better
in the case of preprocessing at the word level than in processing at the letter level.

Gulcehre et al. used human psychology to solve OOV problems [11]. In human
psychology, when there is an unknown object in the environment, people often seek answers
from the surrounding environment. Therefore, this study used the Multi-Layer Perceptron
(MLP) model and two SoftMax layers to construct the NMT model. One SoftMax layer
predicts where the word currently generated is located in the source sequence. Additionally,
the other SoftMax layer predicts where the currently generated word is in the vocabulary
list. In the training step, the MLP model determines which SoftMax layer is used. This
method decides whether the original input word is used as output word as a result of
model adaption. The adaption method can be also used in text summarization.

The authors of [12] used a direct method to solve the OOV problem. Jean et al.
proposed an important sampling method. This enabled the NMT model to only consider a
small and important part in the vocabulary list rather than the entire vocabulary list. The
important sampling method combining the LSTM model training with the English–German
translation dataset was the state of the art at the time of its production.

Finally, the work in [13] used Byte Pair Encoding (BPE) to generate sub-words, which
is a useful method to effectively solve the OOV problem. It also considers compound words
and cognate words, so the semantics of the sentence can be fully expressed. Additionally,
the vocabulary list can also have a fixed size.

2.2. Transformer

The Transformer [4] has been the state-of-the-art NMT model since 2017. Through the
clustering of GPU computing, it reduces the training time [14]. Due to the success of the
Transformer, a lot of research has been devoted to modifying the Transformer into a better
model [15–17]. The work in [15] analyzed the influence of the number of encoders and
decoders in the Transformer. Shi et al. proposed a sentence alignment NMT model [17],
which is divided into two stages. First, a discriminator is pre-trained. After the sentence is
generated by the NMT model, the sentence calculates the difference to the ground truth
using the pre-trained discriminator and considers the training loss. This method allows the
model to learn the differences in comparison with the original sentence more efficiently,
rather than just decide whether the two sentences are equal. In [16], the sub-layers of the
encoder and decoder in the Transformer, such as the self-attention and feed forward layers,
were reordered to reduce the model’s perplexity and increase the model’s robustness. In
this study, we also aim to improve the efficiency of the refined model and shorten the
training time.

2.3. Combination with the Pre-Trained Model

Zhu et al. showed how to combine BERT into the Transformer’s encoder and decoder
layers [18]. BERT is introduced to processes the input sequences of the encoder and decoder.
The output of BERT is combined with the inputs of the encoder and decoder to create
self-attention calculations, as shown in Figure 1. This proposed BERT combined with the
NMT model outperforms the original Transformer.
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In [19], three methods were proposed to combine BERT and the Transformer—namely
Embedding, Fine-tuning, and Freeze. Embedding only combines BERT with the embedding
layer. Fine-tuning applies BERT as the encoder’s initial parameter and trains it with the
training set. Additionally, Freeze treats BERT as the Transformer’s encoder, and thus
only the decoder is trained. According to the results, both Embedding and Fine-tuning
showed improvements in the model, but Freeze led to a decline in the performance of the
Transformer. From the above results, we conclude that BERT only helps the encoder to
understand the training set. However, if BERT is allowed to become the encoder without
any fine-tuning, the results will be worse than those obtained with the Transformer because
the pre-training corpus of BERT may not achieve the focus of the training set. In their
study, Clinchant et al. also added noise in the training corpus. The Transformer combined
with BERT can identify when the training data are mixed with redundant symbols or
misspellings. The performance of the Transformer combined with BERT when using both
the Embedding and Fine-tuning methods is better than that of the original Transformer.

2.4. Model Parameter Compression

Several studies have attempted to reduce the model parameters, such as [20,21]. In [20],
two models are proposed: the teacher model and student model. The student model uses
sentence-level knowledge extracted from the teacher model. Through experiments, it is
shown that this method not only improves the training speed of the student model but also
has a small loss in performance. The parameters of the student model after knowledge
extraction are only 1/13 times that of the teacher model, causing the parameters of the
NMT model to be compressed even further.

Sun et al. explained that, although BERT is helpful in NLP tasks, its high requirements
in terms of computing resources often discourage people from using it [21]. Therefore,
they also proposed the teacher and student model. The teacher model is called BERT, and
the student model has two ways to learn from the teacher model. One is called PKD-Last,
in which the student model only learns the last K layers from the teacher model. The
other is called PKD-Skip, in which the student model learns every K layer from the teacher
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model. These two solutions allow the student model to patiently learn and imitate the
teacher model. The experiments show that the training efficiency can be improved without
sacrificing the accuracy in multiple NLP tasks. Model parameter compression is also one of
the key points explored in our study.

3. The Proposed Model
3.1. Multi-Head Self-Attention Mechanism

Scale dot product attention is the most important self-attention mechanism that was
studied in this paper. As shown in Figure 2, it involves three main parameters: Q (Query),
K (Key), and V (Value). Each of the three parameters performs linear conversion and is
represented by a vector matrix. After calculating the dot product of Q and K, we can attain
the attention weight of the input sequence, which is, then, multiplied by V to obtain the
final attention context vector.

Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V (1)

As shown in Equation (1), the transposed matrices of K and Q are multiplied to
calculate the similarity between each other, and the obtained result is the attention weight
matrix of the current input sequence. The importance of the sequence information can
be learned through this method. Then, this result is divided by sqrt (dk) to prevent the
result of SoftMax from being only 1 and 0. Finally, it is multiplied by V to obtain the corpus
attention matrix of the last calculated sequence value.
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The multi-head self-attention mechanism divides the dimension of the sub-word
embedding equally and then calculates it by the scale dot product attention. Considering
that the Head number H = 8 and the model dimension dmodel = 512 are the hyperparameters
of the X-Transformer model set in this study, there is a 64-dimensional vector (512/8 = 64) in
each head. The eight heads are, then, combined after the attention matrix is obtained. The
reason behind separating the model dimension to calculate the self-attention mechanism
is that the model in the multi-head mode can learn more easily the key point on which
it must be focused. The eight heads can bring attention to at least eight tokens to let the
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training of the NMT model be performed more precisely [4]. Both the encoder and decoder
of the X-Transformer use double multi-head self-attention mechanisms.

In the encoder, the parameters Q, K, and V of the first self-attention mechanism
were used as inputs of the encoder after the sub-word embedding process. The residual
result of the first self-attention mechanism and the input of the first self-attention mecha-
nism were added and normalized, which were the parameters Q, K, and V of the second
self-attention mechanism.

In the decoder, the parameters Q, K, and V of the first self-attention mechanism were
used as the input of the decoder after the sub-word embedding process and the correct
answer (i.e., ground truth). More specifically, in order to prevent the NMT model from
knowing the correct answer of the future training sequence in advance, an additional
look-ahead mask was added.

The look-ahead mask was implemented by multiplying a negative infinity value that is,
assuming that the input sequence of the decoder is d, d + 1, d + 2, . . . , d + n. Additionally,
in training step t, except for input sequence d, the other sequence d + 1, d + 2, . . . , d + n
was multiplied by the negative infinity value. Then, in training step t + 1, except for input
sequence d, d + 1 , the other sequence d + 2, . . . , d + n was multiplied by the negative
infinity value, too. This took place until training step t + n, which was the last training step,
when the look-ahead mask ended.

The second self-attention mechanism in the decoder calculated the similarity between
the output of the first self-attention mechanism in the decoder and the output of the encoder.
The parameter Q was added up and normalized the residual result of the first self-attention
mechanism and the input of the first self-attention mechanism in the decoder. Additionally,
the parameters K and V were the output of encoder.

3.2. The Lazy Layer Question

In [15], a variety of different encoder and decoder layer combinations were studied
to test the impact on the translation. The experimental results revealed that the encoder
is more effective and important than the decoder. Increasing or decreasing the number of
layers of the decoder of the Transformer does not significantly affect the model performance.
Based on this previous work, we determined the required number of layers of encoders
and decoders in the X-Transformer. We experimented with various encoder and decoder
combinations for comparison and used the original Transformer model as a baseline for
benchmark, as shown in Table 1.

Table 1. Comparison of the number of layers of encoder and decoder in the Transformer model.

Encoder Layers Decoder Layers BLEU Training Time (under the Same Env.)

6 6 29.33 1×
6 4 29.26 0.82×
6 2 30.99 0.68×
8 6 29.26 1.19×
8 4 29.82 1.01×

From Table 1, we discover that, in the case of the same number of encoder layers, re-
ducing the number of decoder layers can improve the translation performance of the model
and reduce the training time. We believe the reason for the improvement in performance
is that the encoder of the Transformer is a very important part to understand the input
corpus. After the encoder has a considerable understanding of the original corpus, then,
the target language sentence is generated by the decoder. Since the decoder is used for
generation, the self-attention mechanism calculation is employed by mixing the original
input and the partially generated results to predict the next output step. The presence of a
large number of encoder layers seems to force the model to refocus on some tokens, which
are not important or had already been attended before. Therefore, the translation accuracy
cannot be improved.
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Humanoid learning translation works as, for example, asking students who have a
considerable knowledge of a language to translate sentences to the target language through
what they learned. If students are asked to attempt to understand and translate what has
been written in the target language, the improvement may be obvious in the beginning.
However, students have to give too much attention when they are repeatedly asked to focus
on understanding and translating the target language. In these, the learning outcomes are
not met. On the contrary, they mostly stop paying attention and slow down the learning
pace. This phenomenon is similar to the phenomenon called “learning plateau” in
educational psychology [22]. As shown in Figure 3, as the learning time increases, there is
a period of low efficiency when a plateau is reached. At this time, the manner to continue
the learning process must be changed. Returning to the translation model, a decoder
with fewer layers is recommended. However, if the decoder is reduced to one layer, the
generated results will be unstable. Finally, we decided to use a double-layer decoder for
the X-Transformer.
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3.3. The Modified Encoder of the X-Transformer

In the original Transformer [4], as shown in Figure 4a, each encoder is a self-attention
mechanism with a point-wise feed forward layer, which is added for residual calculation
and normalization. Additionally, the point-wise feed forward layer is mainly a fully con-
nected layer with a large number of neurons through the middle layer, and it is responsible
for retrieving important information in the corpus, so that the neurons can learn actively.
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However, we found that if the feed forward layer is added for non-linear conversion at
the early training stage, the NMT model is not able to capture the true hidden representation
in the corpus. The reason for this is that the feed forward layer contains a non-linear
transformation, Relu, which directly converts all negative values to 0. The original intention
is to help the model to converge, but it may cause adverse effects in the early training
step. Therefore, we experimented with several different combinations of self-attention
mechanisms and feed forward layers in the encoder, with the aim of clarifying which
combination does not affect the NMT model while training and that still can help to
converge the model.

Table 2 shows the impact of different combinations of self-attention mechanisms and
feed forward layers in the model. In the table, the “s” represents a self-attention mechanism,
and the “f” represents a feed forward layer, and the arrangement of letters represents the
order of arrangement of the layers. Therefore, “sf-sf-sf-sf-sf-sf” is the baseline model of the
original Transformer.

Table 2. BLEU scores on different arrangements of self-attention mechanisms and feed forward layers
in the encoder.

Modified Encoder BLEU

sf-sf-sf-sf-sf-sf (Baseline) 29.33
s-sf-s-sf-s-sf 32.14

s-sf-sf (X-Transformer) 46.63
s-sf-sf-sf 46.72
s-sf-s-sf 46.62

In this specific translation dataset, it was found that three self-attention mechanisms
are sufficient. It seems that the learning plateau phenomenon occurs again in the encoder.
Finally, we chose s-sf-sf as our proposed model because it has fewer model parameters,
while the BLEU score is almost the same. A similar notion was also proposed in [16]. If the
self-attention mechanism appears earlier in the model and stacks more than the number of
feed forward layers, the perplexity of the language model can be much lower.

3.4. X-Transformer

In order to break through the traditional NMT model training strategy, we chose to
train a model with a smaller parameter, called the X-Transformer. This NMT model was
retrained according to different usage scenarios in order to prevent issues similar to those
of the traditional pre-trained model with larger model parameters, such as BERT. Some of
these issues are that, when it encounters a non-trained corpus, the performance struggles,
and the inference time is quite long.

The X-Transformer model was constructed using the aforementioned methods, as
shown in Figure 5, and has the following advantages:

• Sub-word tokenization: Sub-words can reduce the sparse words (such as terminology)
of the model, improve the relevance of each vocabulary through sub-words, and
reduce the dictionary size.

• Modifies the basic building block of the encoder: It can rearrange the self-attention
mechanism and feed forward layer and modify the ratio number to improve the
accuracy of the attention given to the input sequence.

• Reduces the number of encoder and decoder layers: It can reduce an excessive self-
attention mechanism in both the encoder and decoder to ease the learning plateau in
the model and also increase inference speed. In addition, reducing the decoder layers
also increases the influence of the encoder output and helps to obtain a better output.
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4. Experimental Results and Discussion

We conducted experiments on the WMT 2014 English–German and English–French
corpora. The World Machine Translation dataset contains data collected from news trans-
lation tasks launched by the World Machine Translation Conference [5], and it has been
continuously updated until last year. In addition to the news corpus, public information
from the United Nations is also included. The WMT 2014 English–German (EG) and
English–French (EF) corpus was used in the original Transformer paper [4], and was also
used as the basis for the evaluation of the model performance in this paper. The BLEU
score [23] was used as the evaluation standard.

At the same time, we also trained the BERT-fused NMT model. BERT was pre-trained
using a considerable number of corpora, including BooksCorpus [24] and the English
version of Wikipedia. The contents in the BooksCorpus are divided into 16 categories, and
the majority of entries belong to the romance, fantasy, science fiction, and teen categories.
The contents of English Wikipedia include culture, art, biographies, geography and so
on [25], as shown in Figure 6.
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The experimental results are separated into two aspects:

• First, the comparison of the performance between the X-Transformer and related
models. In addition to comparing our model with the baseline Transformer, we also
compared it with the results of adding the pre-trained model BERT, so that readers
have a clearer understanding the performance of the X-Transformer.

• Second, the learning situation of the self-attention mechanism in the encoder is
presented, which is displayed by a visual heat map. Through the visualized heat maps
of the Transformer and X-Transformer, we can understand whether the mechanism
pays attention to the correct tokens and the attention relationship between tokens.
These also reveal the comprehension of the models.

The computer specification used in the experiments of this paper was Intel core i7-9700,
with 32 GB RAM, and the GPU was Nvidia Titan RTX. The experimental operating system
was Ubuntu 18.04 LTS, and the software used was CUDA 10.1, cuDNN v7.6.5.

4.1. The Hyperparameter

All sentences were segmented into sub-word types before training. The segmentation
algorithm was the subwordtextencoder in tf.keras. The results of WMT 2014 corpus were
obtained from the test set called newstest 2014. There were 3000 sentences in both test sets
that did not enter the NMT model for training. BLEU was used as the quality assessment
of machine translation after the translated sentence was generated.

Adam [26] was the used optimizer during training. The learning rate was adjusted
according to Equation (2). The other hyperparameters are listed in Table 3.

lrate = d−0.5
model ·min

(
step_num·warmup_steps−1.5

)
(2)

Table 3. List of hyperparameters.

Parameters

Batch size 128
Token Length 80

Token Per Batch 10,240
Embedding Dimension 512

dff 2048
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4.2. The Result of Newstest 2014 EN-DE and EN-FR

As shown in Table 4, the X-Transformer obtained the best BLEU scores of 46.63 and
55.62 in the WMT 2014 English–German (EN–DE) and English–French (EN–FR) corpora.
The baseline Transformer [4] had BLEU scores of 27.3 and 38.1, which are about 19 and
17 points of BLEU score lower than our proposed model. The comparison with the BERT-
fused NMT model revealed that, although the performance improved, it did not surpass
that of the X-Transformer. As shown, the obtained BLEU scores of the BERT-fused NMT
model are 30.75 and 43.78 for EN–DE and EN–FR, respectively, which are about 15 points
in terms of BLEU score lower than the X-Transformer.

Table 4. BLEU scores on EN–DE and EN–FR newstest 2014 corpus according to model.

Models BLEU (EN–DE) BLEU (EN–FR) Training Time
(under the Same Env.)

Transformer [4] 27.3 38.1 1×
Transformer + Large Batch [14] 29.3 43.2
BERT-fused Transformer [18] 30.75 43.78 2.42×

X-Transformer 46.63 55.63 0.35×

In Table 4, the training time experienced for each model per epoch in average under
the same environment is also presented. For the convenience of observation, it is presented
in multiples and the original Transformer is set as the baseline 1×. The training time of
the X-Transformer is only 0.35 that of the original Transformer. In addition, the BERT-
fused Transformer requires a longer training time, mainly because BERT is a pre-trained
model with twelve layers of encoder and decoder stacked. Therefore, the BERT-fused
Transformer has to wait for the output of BERT during each training process and takes a
long time for training. The experiment results reveal that the training time of the BERT-
fused Transformer is around 6.9 times higher than that of the proposed X-Transformer. The
proposed X-Transformer not only significantly reduced the training time but also obtained
a better BLEU score compared to that of the BERT-fused Transformer.

Analyzing the experimental results obtained from two different language pairs, we
can conclude that the X-Transformer has a streamlined encoder and decoder that sped up
the training speed and simultaneously improved accuracy.

4.3. The Visualization Heat Map

In order to understand whether the self-attention mechanism in the encoder produces
adequate effects in the model, we applied the visualization heat map in the last self-attention
mechanism in the encoder. A brighter color shows more attention, while a darker color
represents less attention.

We randomly selected a sentence (“World currency standards have enormous inertia”)
from the WMT 2014 English–German corpus to show the heat maps.

From the heat maps shown in Figures 7 and 8, we found that the self-attention
mechanism in the original Transformer can only understand which token is important to the
whole sentence, but X-Transformer upgrades to a higher precision level. The X-Transformer
can understand the influence relation between tokens, which also demonstrates a better
comprehension ability. These findings also support that the X-Transformer significantly
outperforms the Transformer and BERT-fused Transformer.
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5. Conclusions and Future Work

In this paper, an NMT model X-Transformer was designed for translation, improving
the original state-of-the-art Transformer. First, stacking more self-attention mechanisms
before the feed forward layer allowed the model to significantly improve the understanding
of the input sequence during training. Second, we reduced the number of useless encoder
and decoder layers to improve the inference speed of the model. For the WMT 2014 EN–DE
and EN–FR translation corpora, the X-Transformer improved the BLEU score by about
20 points.

Based on the above experimental results, the following considerations will be taken
forward for our future work. First, the decoder will still be an important aspect to be
discussed. Its main function is to generate the target sentence with the assistance of the
understanding of the input sentence by the encoder, which is different from the functionality
encoder. We will attempt to find a better algorithm to clarify the relationship between
the input and output sequences and to generate an appropriate translation. Second, we
will build a Chinese-based translation corpus of the medical field for the NMT system. In
machine-learning-based NMT systems, the training corpus is one of the key elements to
improve the quality of translations. The frequent international communication that is the
result of business, education and travel drives the need for international medical care. The
need for bilingual or even trilingual communication using medical field terminology is an
urgent and essential issue to be solved. These will be the two directions of our future work
to continue to improve machine-learning-based NMT systems.
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