
Citation: Li, M.; Ingwersen, W.W.;

Young, B.; Vendries, J.; Birney, C.

useeior: An Open-Source R Package

for Building and Using US

Environmentally-Extended

Input–Output Models. Appl. Sci.

2022, 12, 4469. https://doi.org/

10.3390/app12094469

Academic Editor: Edyta

Plebankiewicz

Received: 15 March 2022

Accepted: 23 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

useeior: An Open-Source R Package for Building and Using US
Environmentally-Extended Input–Output Models
Mo Li 1,* , Wesley W. Ingwersen 2,* , Ben Young 3 , Jorge Vendries 3 and Catherine Birney 2

1 General Dynamics Information Technology, Inc., Fairfax, VA 22042, USA
2 Office of Research and Development, US Environmental Protection Agency, Washington, DC 20460, USA;

birney.catherine@epa.gov
3 Eastern Research Group, Lexington, MA 02421, USA; ben.young@erg.com (B.Y.); jvendries@gmail.com (J.V.)
* Correspondence: mo.li@gdit.com (M.L.); ingwersen.wesley@epa.gov (W.W.I.)

Abstract: useeior is an open-source R package that builds USEEIO models, a family of environmentally-
extended input–output models of US goods and services used for life cycle assessment, environmental
footprint estimation, and related applications. USEEIO models have gained a wide user base since
their initial release in 2017, but users were often challenged to prepare required input data and
undergo a complicated model building approach. To address these challenges, useeior was created. In
useeior, economic and environmental data are conveniently retrievable for immediate use. Users can
build models simply from given or user-specified model configuration and optional hybridization
specifications. The assembly of economic and environmental data and matrix calculations are
automatically performed. Users can export model results to desired formats. useeior is a core
component of the USEEIO modeling framework. It improves transparency, efficiency, and flexibility
in building USEEIO models, and was used to deliver the recent USEEIO model.

Keywords: environmentally-extended input–output; life cycle inventory; life cycle assessment;
input–output analysis; environmental impact; open-source software

1. Introduction

Environmentally-extended input–output (EEIO) analysis is a widely used method
to identify opportunities for reducing environmental impacts, material use, and waste
generation from economic activities or products. EEIO models were developed to calculate
direct and indirect environmental impacts in many countries for various applications. In the
United States (US), the Environmental Protection Agency (EPA) developed a family of EEIO
models, referred to as USEEIO, to support the agency’s Sustainable Materials Management
(SMM) program and broader mission [1]. The USEEIO was developed to meet the recom-
mendations of the US source code policy [2], and the recommendations of the National
Academies of Sciences, Engineering, and Medicine on reproducibility for computational
science [3]. The model was developed with the USEEIO modeling framework [4]. This
framework has evolved toward a fuller realization of the recommendations and objectives
of transparency, reproducibility, and at the same time, has become more robust.

1.1. Background

Prior to the creation of the modeling framework, we reviewed computer languages
and modeling tools that would be most pertinent in creating and maintaining USEEIO
models. The criteria that the languages/tools should meet included:

• Be free and open-source;
• Use and produce human-readable, non-proprietary data formats;
• Be easily distributed, and installed and used in common computing environments

(Windows, MacOS, Linux);

Appl. Sci. 2022, 12, 4469. https://doi.org/10.3390/app12094469 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12094469
https://doi.org/10.3390/app12094469
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3672-1622
https://orcid.org/0000-0002-9614-701X
https://orcid.org/0000-0001-6276-8670
https://orcid.org/0000-0002-8452-229X
https://orcid.org/0000-0003-4467-9927
https://doi.org/10.3390/app12094469
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12094469?type=check_update&version=1

Appl. Sci. 2022, 12, 4469 2 of 21

• Support high-level and efficient matrix mathematical operations;
• Be able to be maintained on GitHub or a similar git-based cloud version control platform;
• Have a simple syntax, and support structured programs (modules, sub-route);
• Have an active community;
• Optionally permit graphical user interface development.

Languages and tools that were evaluated and found suitable included Python, Go,
R, Julia, Scilab, Java, and Jupyter. Python was initially selected based on it being used by
the research team to reassemble the openIO model (See SI2 of [1]), because of its rapidly
developing libraries for data science, and its growing usage in the life cycle assessment
community. An open source Python package for USEEIO assembly called the input–output
model builder (iomb) was the first tool created for the USEEIO modeling framework.
The iomb required that users independently generate all model economic, environmental,
and indicator components in standard .csv data files, with type-specific formats. The
first USEEIO model [1] was assembled with the iomb. However, collecting various data
components and preparing them in correct formats in a way that is reproducible is a
challenging process. A simple Python package used to organize some of the USEEIO
input data for feeding into the iomb, called useeiopy, was later developed to assist users
with assembling these data to recreate USEEIO models. Nevertheless, the acquisition and
transformation of core economic input data were not performed with the package. These
data, along with the indicators and environmental data, were each prepared with a large set
of independent Excel® models that were not managed in a version control system and were
unique to a given USEEIO model. As a result, a lot of core data, such as industry output,
lists of environmental flows, and economic data, were replicated across these various Excel®

models, which also posed a risk of lack of synchrony or data errors and required more labor
to update. Some of the Excel® models of the environmental data grew large enough to
consume all available RAM on a typical scientific laptop computer (8–16 GB), which made
operation slow and increased the risk of program failure. The R language, which has many
similarities in data science applications to Python [5], was also used in USEEIO model
component development, initially to retrieve and process larger environmental datasets
such as the National Emissions Inventory and USDA chemical use survey. The use of
the R language in USEEIO model component preparation continued to grow as USEEIO
expanded to cover new datasets, such as the addition of the waste datasets in v1.2 [6], and
was used to assemble the simplified two-region USEEIO state models [7]. The early work
in the USEEIO modeling framework in R culminated in a set of interdependent R scripts
coupled with the useeiopy and iomb packages that:

• Retrieved and processed Bureau of Economic Analysis (BEA) input–output tables and
industry gross output;

• Performed flow and sector mapping using stored .csv files;
• Used a model build script, specific to a given model version, for formatting and

writing all the core economic direct requirements and market shares matrices, the
environmental and indicator components, and demand vectors for use by useeiopy/iomb
to assemble the model;

• This work was captured in v0.1 of the USEEIO modeling framework [8].

While the USEEIO modeling framework continued to evolve, a need grew for an
increased variety of USEEIO models for various applications. USEEIO was rebranded as a
“family of models,” rather than just a single, national US model. An increasing number
of contributors and users provided additional evidence of the challenge of synchronizing
and fully recreating the latest models. Experience gained in other tools, including in
Standardized Emission and Waste Inventories (StEWI) [9] and ElectricityLCI [10], also
provided examples of more transparent and reproducible model build paths from data
acquisition through to final output, as well as embedded model validation procedures. In
response to these needs and challenges, the useeior R package was developed, along with
a versioning scheme [4] for USEEIO models. useeior replaces the iomb/useeiopy tools and
integrated fully with tools in the USEPA ecosystem of tools for industrial ecology [11].

Appl. Sci. 2022, 12, 4469 3 of 21

1.2. Overview

useeior is an R package for building and using USEEIO models. It was created following
the R packages design manual [12] and has advantages including, but not limited to, clear
help pages for functions, convenient build checks, explicit dependency installation, and,
most importantly, ease of sharing. Consolidating USEEIO model construction in useeior not
only provided full transparency of data, but also ensured reproducibility of the model.

useeior is actively developed and maintained in a public GitHub repository (https:
//github.com/USEPA/useeior, (accessed on 14 March 2022)), with a primary focus on
constructing and enabling technical use of USEEIO models. Using GitHub as the project
repository not only allows for a built-in method of version control, but also provides auto-
mated build and test checks for useeior, utilizing the continuous integration and continuous
delivery (CI/CD) platform by GitHub Actions [13]. A configured GitHub Actions workflow,
defined by R-CMD-check.yaml in the ‘.github/workflows/’ folder, is triggered when an
event occurs in the repository, such as a pushed commit or a pull request being opened and
updated. In the workflow, a job to execute R CMD check will “run in sequential order or
in parallel inside its own virtual machine runner, or inside a container” [13]. The R CMD
check examines if the requirements for successfully building the R package are met, such as
code, R dependencies, and documentation, and if the validation on a selection of models is
successfully completed [12]. This check is a fundamental and easy-to-use quality assurance
(QA) tool for useeior, and can be combined with more configured workflows to serve as the
QA of useeior.

useeior builds USEEIO models according to a given model configuration/specification
and optional hybridization specification, e.g., disaggregation and aggregation, and returns
the primary output, model object. A limited set of model specifications and associated
hybridization specifications for EPA-validated models are included in the ‘format_specs’
folder in the package. The package offers various functions for calculating, validating,
visualizing, and writing out models and/or their components.

In useeior, underlying input-output (IO) tables, economic gross output data, and chain-
type price indices (CPI) compiled by BEA are downloaded and pre-saved in native R data
formats (.rda) in the ‘data/’ folder, using the usethis package [14], and made available for
immediate use; other critical datasets, including sector crosswalk tables that map BEA
sectors to the North American Industry Classification System (NAICS) industries, BEA
sector code and name correspondence tables, and configuration files for model component
attributes are also prepared and saved as .rda files in the ‘data/’ folder. Functions used to
download, format, and save the .rda files are available in the ‘data-raw/’ folder. Model
aggregation and disaggregation specifications, as well as supporting data, are available
for optional use in the ‘inst/extdata/’ folder. Environmental flow data generated by
FLOWSA [15], and life cycle impact assessment (LCIA) characterization factors generated
by the LCIA formatter [16], can be specified for inclusion in a model and retrieved from
the EPA Data Commons. Therefore, to build desired USEEIO models, users do not have
to prepare data or LCIA factors; instead, they only need to choose from available models
in useeior to allow model building functions to construct the desired EEIO models. For
advanced users, useeior can take user-defined model specifications, and the accompanying
data and metadata files, then construct EEIO models using the same model building
functions. Detailed instructions are found in the Wiki page in the GitHub repository.

Once a USEEIO model is successfully built, a set of validation steps can be performed
to ensure the model is correctly calculated. Then, the model can be conveniently exported
to .csv files, Excel® workbook (.xlsx), .bin format, or .json format, which suit various
applications. Furthermore, users use built-in visualization functions to inspect and compare
the model including matrix coefficients, indicator scores, and sector ranking.

useeior was developed and deployed in an iterative pattern, and the release described
here is v1.0.0 [17]. To use useeior, it is recommended to install it from GitHub, then load it
upon successful installation.

install.packages(“devtools”)

https://github.com/USEPA/useeior
https://github.com/USEPA/useeior

Appl. Sci. 2022, 12, 4469 4 of 21

devtools::install_github(“USEPA/useeior@v1.0.0”)
library(useeior)
useeior v1.0.0 is capable of building USEEIO v2.0 models [18] and variants, such as

USEEIO v2.0.1s. In the model name, ‘USEEIO’ is the main model name indicating the model
is a US (single-region) model; ‘v2.0.1’ is the major (‘v2’) + minor (‘.0.1’) version number;
and ‘s’ indicates that the IO data level of detail is summary. Further explanation about
USEEIO model naming is available at versioning scheme [4].

USEEIO models prior to v2.0, including USEEIOv1, and its variants v1.1 and v1.2,
were not built with useeior. Major advances from USEEIOv1 to v2 models included not only
the updated economic data (from 2007 to 2012), and environmental data prepared with
improved methods, but also novel methodologies about waste sector disaggregation, final
demand vectors, and a domestic form of the model. A high-level summary comparison of
content differences between the USEEIOv1 and v2 models is available in technical content
of USEEIO models [19].

The objective of this paper is to provide a comprehensive introduction of the novel
useeior package. This paper serves as the primary documentation of useeior v1.0.0 and
enhances transparency of the package and reproducibility of USEEIO models. Users can
follow the explicit guidelines described in the paper to build and use v2.0 and v2.1 national
USEEIO models with useeior. Details of model construction, calculation, validation, and
exporting in useeior v1.0.0 are described in Section 2. A single-region, summary level
(73 commodities and 71 industries) [20] USEEIO model, USEEIOv2.0.1s, was used as the
example to demonstrate and discuss selected results that can be generated from useeior
v1.0.0 in Section 3.

2. Materials & Methods

The complete model building process in useeior v1.0.0 requires the following six
successful steps and returns a model object as the primary output:

1. Initialize model;
2. Load IO data;
3. Load and build satellite tables;
4. Load and build indicators;
5. Load demand vectors;
6. Construct EEIO matrices.

For hybrid models, hybridization processes such as aggregation and/or disaggregation
of sectors are incorporated in step 2 and 3.

To simplify the model building process, the six steps are integrated into a wrapper
function, buildModel, that builds a USEEIO model in one line of code, and provides logging
of the build process using the logging package [21]:

model <- buildModel(modelname)
Before building a model, it is recommended to check if the model is available in useeior

using this function:
seeAvailableModels()
useeior v1.0.0 comes with nine built-in national models (Table 1), and their configuration

files are found in the ‘inst/extdata/modelspecs/’ folder.

Table 1. Built-in models in useeior v1.0.0. All models are single-region USEEIO models, with the 50
states of the US modeled as one region. IO data used in all models are before BEA’s redefinition and
in producer price.

Model Name Description Number of Sector Number of
Impact Category IO Data Year Environmental

Data Years

USEEIOv2.0 A detail level commodity model with full life
cycle inventory 405 23 2012 2010–2017

USEEIOv2.0-411
A detail level commodity model with waste
sector disaggregation and full life
cycle inventory

411 (404 + 7) 23 2012 2010–2017

Appl. Sci. 2022, 12, 4469 5 of 21

Table 1. Cont.

Model Name Description Number of Sector Number of
Impact Category IO Data Year Environmental

Data Years

USEEIOv2.0.1-411

A detail level commodity model with waste
sector disaggregation and full life cycle
inventory, including updated satellite tables
with UUIDs

411 (404 + 7) 23 2012 2010–2017

USEEIOv2.1-422
A detail level commodity model with waste
sector disaggregation and electricity sector
aggregation and disaggregation

422 (403 + 19) 23 2012 2010–2017

USEEIOv2.0-GHG A detail level commodity model with life
cycle inventory of greenhouse gas (GHG) 405 1 2012 2016

USEEIOv2.0-i-GHG A detail level industry model with life cycle
inventory of greenhouse gas 405 1 2012 2016

USEEIOv2.0-s-GHG A summary level commodity model with life
cycle inventory of greenhouse gas 73 1 2012 2016

USEEIOv2.0-79-GHG
A summary level commodity model with
waste sector disaggregation and life cycle
inventory of greenhouse gas

79 1 2012 2016

USEEIOv2.0-is-GHG A summary level industry model with life
cycle inventory of greenhouse gas 71 1 2012 2016

Model configurations are stored in relevant .yml (interchangeable with .yaml) files.
YAML is a simple text-based format used to store configuration data across the USEEIO
tool ecosystem [11]. useeior uses the configr package [22] to parse YAML files.

2.1. Model Initialization

The first step in the model building process is to initialize the model according to
the input model name, and paths to configuration files if provided. This step establishes
the scope, e.g., single-region or two-region, and focus, e.g., specific or all environmental
impacts, of the model.

model <- initializeModel(modelname, configpaths)
If the desired model is available in useeior, it is initialized based on modelname only,

i.e., configpaths = NULL. This loads the built-in model configuration .yml file with that model
name, and related aggregation/disaggregation configuration, and .yml and data .csv files.

Alternatively, a user-customized model can be initialized as long as its configuration
files, including model and related hybridization configuration (in .yml format only), as
well as data files (in .csv format only), are prepared following the format of configuration
and data files of the available models. All configuration and data files must be accessible in
the user directory specified in model configuration, i.e., configpaths = user_directory.

Model initialization returns a model object in list form that contains two elements: model
specs and crosswalk. Specs stored the model specifications sourced directly from the model
configuration files include:

• Basic information including the name of the model, model region acronym, model
type, and pointers to hybridization, such as aggregation and disaggregation;

• Basic IO specifications including base IO schema, base IO level, IO year, model region
acronym, IO data source, base price type, base with redefinitions or not, commodity
or industry type, and scrap included or not;

• Satellite table specifications including the name of environmental satellite tables, years
represented by flows included in the satellite table, path of the source file, source
category used for sectors in the satellite table, year and level of resolution of the
sectors, original flow source, function name for additional processing of the satellite
table, and metadata of satellite table;

• Indicator specifications including name, code, group, and unit of indicator, path of the
source file, function name and parameters for additional processing of the indicator,
and metadata of indicator; and

• Demand vectors specifications including a pointer to default demand vectors (i.e., a
production vector, a consumption vector, and domestic version of the two vectors),
and optional demand vectors, such as household purchase that contains name, type,
year, system, and location information.

Appl. Sci. 2022, 12, 4469 6 of 21

The crosswalk is a sector correspondence table of five columns for sets of BEA and
NAICS codes, and any custom codes used in the current model:

1. NAICS—2- to 6-digit NAICS codes (7–10 digit codes exist for manufacturing and
mining industries);

2. BEA_Sector—code used at the BEA sector level;
3. BEA_Summary—code used at the BEA summary level
4. BEA_Detail—code used at the BEA detail level;
5. USEEIO—code used at the model level of detail, including any adjustments

for hybridization.

The crosswalk is a fundamental table in the useeior model building process, as it con-
nects the BEA and NAICS classification systems, which have notably different commodity
and industry sectors, and enables mapping from one system to the other. An example of
the crosswalk is presented in Table S1 in the Supplementary Information (SI). In useeior
v1.0.0, the crosswalk is built based on 2012 BEA and NAICS codes, with an inclusion of 2007
NAICS codes, according to the 2012 to 2007 NAICS concordance by Census Bureau [23].
The correspondences between BEA and NAICS codes were adopted from the BEA–NAICS
relationship table, published in national IO accounts by BEA [20], which presents a hierar-
chy of the BEA codes at sector, summary, and detail levels, as well as how each level relates
to the NAICS code structure. Two adjustments were applied to the original BEA–NAICS
table in order to create a crosswalk that captured all correspondences between BEA and
NAICS sectors:

1. For BEA codes not aligned with specific NAICS industries, their correspondences are
approximated after careful inspection and comparison of their definitions in the BEA
and NAICS systems;

2. For BEA codes that do not have correspondences with the complete hierarchy of
NAICS codes (2- to 6-digit), the correspondences are extended to all related NAICS
codes, based on the Census 2- to 6-digit NAICS code table [24].

With a complete crosswalk, useeior successfully and seamlessly harmonizes economic
and environmental data that are categorized by BEA, NAICS, and original classifications.

2.2. Economic Input–Output Data

In useeior, the most recent IO data are the form of “Make” (showing the production
of commodities by industries) and “Use” (showing the consumption of commodities by
industries and by final demand) tables compiled by BEA [20], saved in native R data
formats, .rda, via automated downloading and writing functions. These tables are available
at three levels of sector resolution: “Detail” (405 commodities by 405 industries), “Summary”
(73 commodities by 71 industries), and “Sector” (17 commodities by 15 industries).

The summary and sector levels tables are released annually by BEA, while the detailed
tables are produced roughly every five years, with 2012 representing the most recent
release [20]. Therefore, in useeior v1.0.0, the summary and sector make and use tables are
available for years 2010–2018, while the detail tables are only available for the year 2012.

The Make and Use tables compiled by BEA were available “before redefinition” and
“after redefinition”. Redefinition adjusts secondary products “from the industry that
produced it to the industry in which it is primary”. [25] In useeior, “before redefinition”
tables are used, as they are more aligned with the majority of environmental data that
reflect the original industry activities that occurred [1].

Additionally, the use tables are available in producer price and purchaser price. Ex-
isting model configuration files in useeior used the use tables in producer price. useeior
provides the option to convert the model from producer to purchaser price, with additions
of trade and transportation margins [26].

In EEIO modeling, the direct requirements matrix A and domestic direct requirements
matrix Ad can be derived from the Make and Use tables to build EEIO models in two forms:
industry-by-industry or commodity-by-commodity. useeior is capable of building industry

Appl. Sci. 2022, 12, 4469 7 of 21

(industry-by-industry) and commodity (commodity-by-commodity) models. The former
was the most suitable for EEIO models, with a focus on industries and environmental
impacts from related producing processes; the latter was most relevant for EEIO models
concerned with products and services and their associated materials. A direct requirements
matrix derived based on two distinct assumptions, industry–technology and commodity–
technology, yields different results. The former assumes that all commodities produced
by the same industry have the same input structure, while the latter assumes that each
commodity has a unique input structure, regardless of the industry that produced it [25].
useeior v1.0.0 implements the industry–technology model.

Other economic data, including multi-year economic gross output, gross output
chained price index, the margins table, and the import matrix, are also prepared and made
available for immediate use in useeior.

Model IO data are loaded upon model initialization and with paths to configuration
files if provided.

model <- loadIOData(model, configpaths)
After this step, the model object is expanded to include core IO data and related

metadata for building the desired model, including:

• The Make table in industry-by-commodity form;
• Use and domestic use tables split into intermediate consumption, final demand,

and value added in commodity-by-industry and commodity-by-component forms
(note: domestic use table = use table − import matrix);

• Commodity and industry output in model year, as well as in a range of multiple years
in commodity-by-year and industry-by-year forms;

• A Margins in commodity-by-margin-sector form disclosing producer price, trade
(retail and wholesale) + transportation cost, and purchaser price of each commodity,
used for converting from producer price to purchaser price, and vice versa;

• Metadata of the IO data-code, name and group details about commodity, industry,
final demand component, value added component, and margin sector;

• IO data and metadata of hybridization if pointers to hybridization, such as aggregation
and disaggregation, were not NULL in model specifications.

It is during this step of the model building process that custom hybridization of the
model object occurs, when specified in the model configuration file. Currently, useeior
only supports hybridization in the form of model aggregation and disaggregation, though
support for other forms of hybridization is in progress. For model aggregation, the user
only needs to input one additional .yml file to specify which sectors are to be aggregated.
For model disaggregation, several additional input files need to be provided:

• A .yml file containing a list of sectors, including the sector to be disaggregated and the
new sectors that will take its place;

• Two .csv files for the Use and Make tables (one for each) that specify the allocation
values from the original to the disaggregated sectors. If the user does not have the
data available to provide the allocation values, both .csv files can be omitted and the
disaggregation proceeds uniformly based on the number of sectors specified;

• A .csv file providing inputs for disaggregation of the satellite tables (see next section).

For all aggregation and disaggregation procedures, the commodity and industry sums
are compared for equality across the Use and Make tables to ensure that the economic
balance is maintained. If user inputs result in an unbalanced model, useeior attempts to
balance the tables using a RAS approach. If this balancing is unsuccessful, the program
execution halts and requests revised input files that will result in a balanced model.

2.3. Environmental Data and Satellite Tables

useeior characterizes the amount of environmental releases/losses, resource use, waste
generation, and employment by model-specified industry, through the use of national
totals of flows by NAICS industry and the crosswalk created in Section 2.1. National totals

Appl. Sci. 2022, 12, 4469 8 of 21

of flows by NAICS industry data used in useeior can be generated by a Python-based tool
called FLOWSA [15], which structures data in a flow-by-sector (FBS) format. The latest
version of FLOWSA, v1.0.1, delivers FBS data that covers a variety of flow types, including
criteria and hazardous air emissions, point source industrial releases to water and soil, use
of land, use of water, and employment. To support impact assessment and a consistent flow
naming system across data sources, flows in FLOWSA conform to the Federal Elementary
Flow List (FEDEFL) [27]. The FBS data to build the models specified in useeior v1.0.0 are
retrieved from the EPA Data Commons [28] via automated functions in useeior.

These flow-by-NAICS-industry data are transformed into flow-by-model-sector for-
mat, and loaded as satellite tables via the NAICS-to-BEA crosswalk. Value added by BEA
industry are also considered flow data, but are directly loaded from the IO data that was
added in the previous step.

model <- loadandbuildSatelliteTables(model)
A Satellite Tables component is added in the model object after this step. In the new

component, the satellite tables are stored in totals_by_sector, while flow metadata were
stored in flows. Each type of flow had a designated satellite table. Following the loading
of all satellite tables, useeior identified instances of flows reported by the same sector from
multiple satellite tables as a means to avoid double counting. All satellite tables were
formatted into a standard structure that included the following columns:

• Flow name, context, universally unique identifier (UUID), amount, unit, location, and
data year;

• Sector code and name;
• Data quality scores for data reliability, temporal correlation, geographical correlation,

technological correlation, and data collection.

Flow metadata displays unique flows found across all satellite tables with names,
contexts, UUIDs, and units were sourced from FEDEFL.

Satellite, or totals_by_sector, tables provide a full picture of flows from and to the
environment. They are used to calculate impact coefficients and validate the model.

If aggregation or disaggregation is specified during model build, each satellite table is
aggregated or disaggregated upon loading. Specifications for disaggregating environmental
data can be provided in one of two ways. If flow totals are provided for a given flow for any
of the new sectors, useeior replaces the existing satellite table data for that flow with the data
in the supplementary disaggregation file. Alternatively, flow ratios can be provided for one
or more flows in a satellite table. If the FlowRatio field was supplied, useeior disaggregates
each flow to the new sectors according to the supplied ratios. In either case, if data for a
specific flow are not provided, useeior disaggregates the existing satellite table data for that
flow proportional to gross industry output of the new sectors.

2.4. Indicators and Life Cycle Impact Assessment Characterization Factors

Model indicators quantitatively aggregate the environmental flow data to their cor-
responding impact categories, through the use of life cycle impact assessment (LCIA)
characterization factors. For example, flows of greenhouse gases are valued as carbon diox-
ide equivalencies. To support the use of environmental flow data retrieved from FLOWSA,
standard LCIA characterization factors generated by the LCIA formatter were used to
populate model indicators [16]. Users can choose from a number of available methods in
the LCIA formatter including the Tool for Reduction and Assessment of Chemicals and
Other Impacts (TRACI) [29], ReCiPe [30], etc., to generate LCIA factors that suit their needs.
For any model, the method parameter is customizable and can be modified under the
indicators section in model specifications (see Supplementary Information S2 for example
of model specifications).

model <- loadandbuildIndicators(model)
A new component Indicators is added in the model object after this step. In the new

component, factors table presents the LCIA characterization factors linking one unit of

Appl. Sci. 2022, 12, 4469 9 of 21

the flow to its indicator, while meta table includes metadata for the indicators included in
the model.

2.5. Final Demand

The final demand vectors represent purchases of goods and services by final con-
sumers, including households, investors, and governments. This function generates final
demand vectors specified by model specs:

model <- loadDemandVectors(model)
A new component DemandVectors is added in the model object after this step. In the

new component, vectors contain numeric vectors of final demand, while meta table includes
metadata for the demand vectors included in the model.

In useeior, two primary final demand vectors, a production vector and a consumption
vector, plus the domestic version of the two vectors are prepared as default vectors for all
models. They are the same final demand vectors described in the USEEIO v2.0 documen-
tation [18]. Additional demand vectors, such as household purchases, can be added in
DemandVectors if declared in model configuration.

2.6. EEIO Matrices Construction

The last step to build a complete USEEIO model is to construct EEIO matrices based
on previously loaded IO, satellite, and indicator tables.

model <- constructEEIOMatrices(model)
Satellite tables are first combined into one totals_by_sector table, TbS. The TbS table is

then used to calculate coefficients-by-sector and generate a CbS table.
IO tables loaded by previous step are formed into matrices and vectors with stan-

dard notations:

• The Make matrix, V, is an industry x commodity matrix with amounts in commodities
in year USD produced by industries;

• The Use matrix, U, is a commodity x industry matrix with total amounts in model year
USD of commodities used by industries for intermediate production, or used by final
consumers. U also includes commodity imports, exports, and change in inventories as
components of final demand, and value added components as inputs to industries;

• The domestic Use matrix, Ud, is a commodity x industry matrix that provides com-
modity and value added use totals by industries, and final demand, only from the US;

• The commodity output vector, q, and the industry output vector, x, contain economic
gross output in model year US dollars;

• The market shares matrix, Vn, is a q normalized form of V, also in industry x commod-
ity format;

• The commodity mix matrix, Cm, is an x normalized and transposed form of V in
commodity x industry format.

Model matrices are then prepared. The direct requirements matrix, A, is a sector x
sector matrix that contains in each column, i, the direct sector inputs required to produce
USD 1 of output from sector i. A is created from the normalized forms of the model make,
V, and use, U, tables in one of two ways, depending on if the model type was set to be
commodity or industry (Equations (1) and (2)).

A(c) = Un ∗Vn (1)

A(i) = Vn ∗Un (2)

Un = Ux̂−1 (3)

Vn = Vq̂−1 (4)

The domestic direct requirements matrix, Ad, is a sector x sector matrix that provides
direct sector inputs per dollar sector output, only from the US. Similar to A, Ad is created
from the normalized forms of the model Make, V, and Use, Ud, tables in one of two

Appl. Sci. 2022, 12, 4469 10 of 21

ways, depending on if the model type is set to be commodity or industry in the model
configuration file (Equations (5) and (6)).

Ad(c) = Udn ∗Vn (5)

Ad(i) = Vn ∗Udn (6)

Udn = Ud x̂−1 (7)

The total requirements matrix, L (the Leontief inverse of A), is a sector x sector matrix
that contains in each column, i, the total requirements of the respective sectors inputs per
1 USD of output from sector i. L is obtained from A, using Equation (8).

L = (I − A)−1 (8)

The domestic total requirements matrix Ld (the Leontief inverse of Ad), is a sector x
sector matrix that provides total sector inputs per dollar sector output, only from the US.
Ld is obtained from Ad, using Equation (9).

Ld = (I − Ad)
−1 (9)

The direct emission and resource use matrix, B, is a flow x sector matrix that contains
in each column, i, the amount of a flow given in the reference units of the respective flow
(e.g., kg) per USD 1 output from sector i. To obtain B, B(i) is first derived from E, a emission
x industry matrix of national totals of each flow by industry sector in year y, and xz,y, a
vector of gross output by industry in year z, given in year y dollars (Equation (10)).

B(i)y = Ez x̂−1
z,y (10)

The industries in the E columns match the industries in x.
For x to be in year y USD, the year of the IO data, x, must first be price adjusted using

Equation (11), where xz is the year industry output for industry, i, in the currency year, z,
corresponding to the year of the national flow totals.

xy = xz ∗ ρz−>y (11)

If model type is Industry, B(i) is essentially B flow x industry form.
If model type is Commodity, B(i) is transformed with the market shares matrix Vn and

becomes B(c) in flow x commodity form (Equation (12)).

B(c) = B(i)Vn (12)

The original relation between the environmental data in the form of national totals by
industry, E, and the model economic data uses the model industry output, as described in
Equation (10).

The characterization factor matrix, C, is an indicator x flow matrix that contains in
each column, k, the characterization factors of the indicators related to one reference unit of
flow k. The factors in C are inherited from indicators, and used to convert and aggregate
individual environmental flows, e.g., carbon dioxide, methane, etc., to total impact of the
corresponding indicator, e.g., greenhouse gas. The price year conversion matrix, Rho, is a
sector x year matrix that contains in each column y model-IO-year-to-year USD ratios. The
price type conversion matrix, Phi, is a sector x year matrix that contains in each column, y,
producer to purchaser price ratios.

Lastly, the following core EEIO matrices are constructed to complete the model.
The direct impact coefficient matrix, D, is an indicator x sector matrix that contains

in each column, i, the direct impact (e.g., kg CO2 eq) per USD output from sector i. D is

Appl. Sci. 2022, 12, 4469 11 of 21

derived from the multiplication of C and B in one of two ways, depending on if the model
type is set to be commodity or industry (Equations (13) and (14)).

D(c) = CB(c) (13)

D(i) = CB(i) (14)

The direct and indirect flow coefficient matrix, M, is a flow x sector matrix that contains
in each column, i, the direct and indirect amount of a flow given in the reference units
of the respective flow (e.g., kg) per USD 1 output from sector i. M is derived from the
multiplication of B and L in one of two ways, depending on if the model type is set to be
commodity or industry (Equations (15) and (16)).

M(c) = B(c)L (15)

M(i) = B(i)L (16)

The domestic form of M, Md, is a flow x sector matrix that contains in each column, i,
the direct and indirect amount of a flow given in the reference units of the respective flow
per USD 1 sector output, only from the US. Similar to M, Md is derived in one of two ways,
depending on if the model type is set to be commodity or industry (Equations (17) and (18)).

Md(c) = B(c)Ld (17)

Md(i) = B(i)Ld (18)

The direct and indirect impact coefficient matrix, N, is an indicator x sector matrix that
contains in each column, i, the direct and indirect impacts (e.g., kg CO2 eq) per USD output
from sector i. N is derived from the multiplication of D and L in one of two ways, depending
on if the model type is set to be commodity or industry (Equations (19) and (20)).

N(c) = D(c)L (19)

N(i) = D(i)L (20)

The domestic form of N, Nd, is an indicator x sector matrix that contains in each
column, i, the direct and indirect impacts per USD sector output, only from the US. Similar
to N, Nd is derived in one of two ways, depending on if the model type is set to be
commodity or industry (Equations (21) and (22)).

Nd(c) = D(c)Ld (21)

Nd(i) = D(i)Ld (22)

At this point, a complete USEEIO model is successfully constructed. The environ-
mental impact coefficient matrices, i.e., B, D, M, and N, are directly usable for life cycle
assessment, input–output modeling, footprint, and related applications.

2.7. Matrix Price Adjustment

A coefficient matrix (B, D, M, or N) can be further adjusted to desired currency year
(e.g., 2018) and price type (e.g., purchaser price) via

matrix_adj <- adjustResultMatrixPrice(matrix_name, currency_year = 2018, purchaser_
price = TRUE, model)

The returned matrix has the same dimensions and format as the original coefficient
matrix. useeior v1.0.0 supports currency year adjustment from 2007 to 2018, to control
for the influence of inflation on the model. The conversion from producer to purchaser
price is most useful from a consumer perspective, as the purchaser price, i.e., the price
paid by consumers, equals to producer prices plus any associated margin, which generally

Appl. Sci. 2022, 12, 4469 12 of 21

includes distribution, wholesale and retail costs, and price type adjustment from producer
to purchaser price.

2.8. Model Calculation

Model matrices can be used to calculate life cycle inventory (LCI) and life cycle
impact assessment (LCIA) results given a user-specified perspective, demand vector (from
DemandVectors in the model object or a user-provided vector), and a selected requirements
matrix (complete or domestic).

result <- calculateEEIOModel(model, perspective = “DIRECT”, demand = “Produc-
tion”, use_domestic_requirements = FALSE)

The return result list contains two matrices: either LCId and LCIAd, where d indicates
the “DIRECT” perspective, or LCI f and LCIA f , where f indicates the “FINAL” perspective.

The direct perspective calculation associates the total impact with the sectors that
produce the given flows (e.g., direct emissions, waste generation, or resource use), while
the final perspective calculation associates the total impacts with the final consumption
sectors that drives that impact.

The direct perspective LCI, i.e., the direct flows matrix, is calculated with Equation (23).

LCId = Bŝ (23)

where s, a scaling vector, is the product of L and the given final demand vector, y, as shown
in Equation (24).

s = Ly (24)

A similar approach is used to calculate the direct impacts with the direct perspective
Equation (25).

LCIAd = Dŝ (25)

The direct + indirect flows matrix with the final perspective, LCI f is calculated with
Equation (26).

LCI f = Mŷ (26)

The direct + indirect impacts are calculated as in Equation (26), but use U in place of M,
as shown in Equation (27).

LCIA f = Nŷ (27)

To calculate any domestic result, the Ld and a demand vector derived from yd are used.
The difference between any full result calculation and the domestic calculation can be used
to derive rest of world region results, as in Equation (28).

LCIAd,RoW = LCIA− LCIAd,US (28)

where LCIAd,RoW is the contribution from rest of world, and LCIAd,US is the contribution
from the US.

To calculate a flow’s contribution to total impacts of an indicator in a sector, divide the
product of the flow’s total impact, in M or M_d, and its indicator factor, in C, by the sum of
total impacts in the sector.

flow_impact <- calculateFlowContributiontoImpact(model, sector, indicator, domes-
tic = FALSE)

To calculate a sector’s contribution to total impacts of an indicator, divide the product
of the sector’s total requirements, in L or L_d, and the indicator’s direct impact by flow, in
D, by the sum of total impacts of the indicator.

sector_impact <- calculateSectorContributiontoImpact(model, sector, indicator, domes-
tic = FALSE)

To calculate the total impact of an indicator passed from one sector to another through
purchase, the diagonalized form of the indicator’s direct impact, D, is multiplied by the
product of total requirements, L, and the diagonalized form of the demand vector, y.

Appl. Sci. 2022, 12, 4469 13 of 21

y can be a calculated demand vector in model or a user-specified vector that has the same
dimension with any model demand vector. sector2sector_impact is a matrix of total impacts
in the form of sector purchased x sector sourced, where negative values are interpreted as
reduced impacts.

sector2sector_impact <- calculateSectorPurchasedbySectorSourcedImpact(y, model, in-
dicator)

Margin impacts are calculated via multiplying the normalized impact of margin
sector (i.e., retail, wholesale, and transportation sectors) on each commodity by the total
impact coefficients (amount per dollar in producer price) of each commodity. As a result,
margin impacts are delivered in by-flow and by-indicator forms based on the model M and
N matrices.

margin_impact <- calculateMarginSectorImpacts(model)
Any sector x flow matrix can be normalized by the total of respective flow (column

sum) for usage in further applications.
matrix_n <- normalizeResultMatrixByTotalImpacts(m)
Any sector x flow matrix can be aggregated by row or by both row and column to a

user-defined sector’s level of detail.
matrix_aggbyrow <- aggregateResultMatrixbyRow(matrix, to_level, crosswalk) ma-

trix_agg <- aggregateResultMatrix(matrix, to_level, crosswalk)

2.9. Model Validation

A series of validation functions are available to validate that model calculation results
were equivalent to known IO and EEIO identities. As model calculation results would not
be expected to match exactly, due to rounding in original datasets, the margin of error is
customizable to meet different restrictions, with a default setting of 1% error. Complete
model validation checks were performed in ValidateModel.Rmd in the ‘inst/doc/’ folder.
Knit ValidateModel_render.Rmd in the same folder to run all validation checks on selected
models specified under the YAML header. This returns an .html and a .md file in the
‘inst/doc/output/’ folder containing validation results for each model.

A full model validation is performed via verifying that national flow totals by sector
used as inputs to the model can be recalculated using appropriate model components.

model_val <- compareEandLCIResult(model, use_domestic = TRUE, tolerance = 0.01)
This validation was performed using Equation (29).

E = B
.
χLŷ (29)

If model is a commodity model, E on the left side becomes E(c), which is the original
flow by industry totals, E(i), put into a flow x commodity form. E(i), a national total of
flow by industry per year, consisting of the concatenation of all the satellite tables described
above, and is available for various years. E(c) is obtained from E(i) by multiplying its
transpose by the commodity mix matrix, Cm, and transposing the result (Equation (30)).

E(c) =
(

CmE(i)′
)′

(30)

Cm = V′ x̂−1 (31)

Cm is obtained from Equation (31), where V′ is the transposed model make table,
which is normalized by multiplying it by the diagonalized form of the inverse of model
output, x.

Given the commodity model, the right side of Equation (29) is a slightly modified form
of the matrix, calculated using the direct perspective, where B becomes B(i) representing
the satellite matrix in industry form from Equation (10).

As the original flow totals in E(i) may be in varying years, while the model IO data
are all in the IO year (e.g. 2012 for USEEIO v2.0), to validate the model, B(i) requires an
output adjustment via multiplication with χ, an output adjustment matrix. χ is composed

Appl. Sci. 2022, 12, 4469 14 of 21

of xs : x output ratios and in the same form, as well as rows and column identifiers, as
B(c). The element-wise product of B(i) and χ adjusts B(i) for the flow year differences,
and effectively converts B(i) into a harmonized IO year form. Before being multiplied
with the commodity-based Lŷ product, B(i) is further transformed using Equation (12) into
commodity form, B(c), via the market shares matrix, Vn, obtained from Equation (4).

If model is an industry model, E on the left side of Equation (29) becomes E(i), which is
the original flow by industry totals, while B on the right side becomes B(i). As L and ŷ are
also in industry form, they can directly times B(i) and χ, then the product is comparable
against E(i) on the left side of Equation (29).

Additional validations were performed to:

• Check that economic output, industry output (if model is an industry model), or
commodity output (if model is a commodity model) can be recalculated by final
demand multiplying the Leontief matrix in Equation (32) or Equation (33).

econ_val <- compareOutputandLeontiefXDemand(model, tolerance = 0.01)

x = Lŷ (32)

q = Lŷ (33)

• Check that a commodity model’s final demand and commodity output can be recalcu-
lated by summing domestic use.

q_val <- compareCommodityOutputandDomesticUseplusProductionDemand(model,
tolerance = 0.01)

q = ydomestic,production (34)

• Check that total commodity output can be recalculated by industry output via trans-
formation of CPI ratios.

q_x_val <- compareCommodityOutputXMarketShareandIndustryOutputwithCPI-
Transformation(model, tolerance = 0.01)

qρc,z−>y = Cmxρi,z−>y (35)

Output from the validation functions included the compared objects, their relative
differences, passing records, and failing records. Quickly showing whether there are
failures, and which sectors failed, is a primary goal of model validation, and provides clear
directions to address the failures.

print(paste(“Number of sectors failing:”, model_val$N_Fail))
print(paste(“Sectors failing:”, paste(model_val$Failure$rownames, collapse = “, “)))

2.10. Model Exporting

Models can be conveniently exported to .csv files, Excel® workbook (.xlsx), or .bin
format, in a user-specified directory that suits various applications. Recently exported
model files overwrite existing files by default.

One outlet for the USEEIO model is the USEEIO API [31], which was designed for
dynamic access by applications or other uses. This wrapper function exports model
components required by the API to a user-specified directory basedir and sub folders.

writeModelforAPI(model, basedir)
To comply with format requirements of the API, model matrices, including V, U,

Ud, A, Ad, B, C, D, L, Ld, M, Md, N, Nd, Rho, and Phi, are written to .bin files in the
‘basedir/build/data/modelname/’ folder, where modelname is the name of the given model.
Model demand vectors are written to .json files in ‘basedir/build/data/modelname/
demands/’ folder. Model description and metadata of indicators, demands, sectors, flows,
and years are written to .csv files in the ‘basedir/build/data/’ folder.

Appl. Sci. 2022, 12, 4469 15 of 21

A Python script (https://github.com/USEPA/USEEIO/blob/master/olca/u2o.py, (ac-
cessed on 14 March 2022)) is available to generate a fully-linked JSON-LD model compatible
with the openLCA JSON-LD schema [32], which leverages the output of writeModelforAPI.

The matrices that are written to .bin files for the API use can also be exported to
individual .csv files, by specifying to_format = “csv”. The files can be saved to any user-
specified folder, outputfolder, and do not have to be the same basedir in writeModelforAPI.

writeModelMatrices(model, to_format = “csv”, outputfolder)
A consolidated Excel® workbook (.xlsx) may be created to store the model matrices

mentioned above, model commodity and industry output (q and x), model demand vectors,
and model sector crosswalk, plus the metadata of demands, flows, indicators, commodities,
or industries (depending on if the model was a commodity or industry model), final
demand, and value added..

writeModeltoXLSX(model, outputfolder)
A 16-digit hash of the full model object can be created to assign the model object a

unique id.
generateModelIdentifier(model)

2.11. Model Visualization

Good visualizations present critical analysis and findings in the most effective ways.
useeior provides a series of visualization functions to showcase fundamental results from
the model, and assist further analysis.

Model coefficient matrices such as N can be visualized to show coefficients for a
given model, or compare coefficients across models. Users choose to view a single in-
dicator (coefficient_name) or multiple indicators at once. They can also remove sectors
(sector_to_remove) if a close-up examination on certain sectors is desired.

plotMatrixCoefficient(model_list = list(modelA, modelB), matrix_name = “N”, coeffi-
cient_name = “Greenhouse Gases”, sector_to_remove = ““,y_title = “Greenhouse Gases”,
y_label = “Name”)

Indicator scores calculated from totals_by_sector and displayed by BEA sector level
can be visualized to show scores for a given model, or scores can be compared across
models. Users specify the sectors (sector) that interest them in terms of their scores for a
given indicator (indicator_name).

barplotIndicatorScoresbySector(model_list = list(modelA, modelB), totals_by_sector_
name = “GHG”, indicator_name = “Greenhouse Gases”, sector = FALSE, y_title = “Green-
house Gases”)

Model LCI and LCIA results can be visualized to show flows or impacts split by a
region, and the rest of the region. For example, users calculate and then visualize impacts
associated with domestic consumption as a portion of total consumption in the US.

fullcons <- calculateEEIOModel(model, perspective = “DIRECT”, demand = “Consump-
tion”) domcons <- calculateEEIOModel(model, perspective = “DIRECT”, demand = “Con-
sumption”, use_domestic_requirements = TRUE) barplotFloworImpactFractionbyRegion(R1_
calc_result = domcons$LCIA_d, Total_calc_result = fullcons$LCIA_d, x_title = “Domestic
Proportion of Consumption Impact in the US”)

Model LCI and LCIA results can also be visualized to show sector rankings according
to given indicators.

result <- calculateEEIOModel(model, perspective = “DIRECT”, demand = “Production”,
use_domestic_requirements = FALSE) heatmapSectorRanking(model, matrix = result$LCIA_d,
indicators = c(“ACID”, “GHG”, “WATR”), sector_to_remove = ““,N_sector = 20)

Flow data coverage can be visualized to show the presence or absence of flows from
the various environmental and employment flow datasets.

heatmapSatelliteTableCoverage(model, form = model$specs$CommodityorIndustryType)

https://github.com/USEPA/USEEIO/blob/master/olca/u2o.py

Appl. Sci. 2022, 12, 4469 16 of 21

2.12. Model Comparison

Comparison between two models was accomplished by executing compare functions
in a built-in CompareModel.Rmd in the ‘inst/doc/’CompareModels.Rmd)’ folder. To
perform comparison on selected models, use CompareModel_render.Rmd in the same
folder to specify model names under the YAML header, then knit the document. This
returns an .html and a .md file in the ‘inst/doc/output/’ folder containing comparison
results for each model. Currently, only flow totals between two models are compared with
built-in function. More comparisons will be added in the future.

model_comparison <- compareFlowTotals(modelA, modelB)

3. Results

A single-region, summary level (73 commodities and 71 industries) USEEIO model,
USEEIOv2.0.1s, is used as the example to demonstrate and discuss selected results in this
section. The model is built with 2018 Summary IO data, 2010–2017 environmental flow
data and a collection of indicators used with other v2 models like USEEIO v2.0.1-411 [18].

Total impact (direct + indirect) coefficients by sector, i.e., N (see Equation (19)), are
examined through the plotMatrixCoefficient function. Results of three impact categories,
including acidification potential (ACID), greenhouse gases (GHG), and freshwater with-
drawals (WATR), are presented in Figure 1. It should be noted that coefficients of these
impact categories are generated using LCIA characterization factors from the TRACI2.1
method [33]. The farms sector has the largest ACID (0.02 kg SO2 eq/USD) and WATR
(460 kg/USD) coefficient, and the second largest GHG coefficient (2.4 kg CO2 eq/USD)—
only smaller than that of the utilities sector (2.8 kg SO2 eq/USD), which is carbon intensive
due to primarily fossil fuel-based electric power generation in the US. Utilities also has a
notably large WATR coefficient (230 kg/USD), for the same reason. Energy intensive sec-
tors including resource exploitation (i.e., oil and gas extraction and mining), manufacturing,
transportation, and waste management sectors have relatively large GHG coefficients. This
illustration provides a clear view of total impact coefficients by sector in the model year.
With more environmental flow data over years, multiple snapshots of the illustration could
reflect changes in impact coefficients potentially caused by technological advancement in
industries, or structural changes in the economy.

Ranking sectors based a composite score of selected total impacts associated with
total US demand is an effective means to identify prioritization opportunity in practices,
such as the EPA’s Sustainable Materials Management program. Comparing rankings is
another form of model validation that incorporates the demand vectors and the indicators,
as well as the matrices. The composite score for the rankings is calculated as a sum of
fractions of sector impact relative to total impact across all sectors, by each selected indicator.
This is represented using Equation (36), where s represents this score and t, calculated in
Equation (37), is a vector of the column sums of the given LCIA (see Equation (25)) matrix.

s = (LCIAt̂−1)i (36)

t = i′LCIA (37)

The first ranking uses LCIAd with the US production vector (left in Figure 2), while the
second ranking is performed with LCIAf (see Equation (27)), along with the US consumption
vector (right in Figure 2). The sets of commodities in the top 20 from the two rankings
(left and right in Figure 2) are nearly identical, with some notable substitutions and some
exchanging of places. Farms, utilities, and construction are in the top places in both rankings,
but the orders and the distance (darkness of shade) separating Construction from the other
commodities are different. Food and beverage and tobacco products is not in top 20 in the
impact ranking created with LCIAd and the US production vector (left), but is in the top
place in the other impact ranking created with LCIAf and the US consumption vector, as
the latter calculation captures impacts, e.g., human health—respiratory effects (HRSP),
associated with the use phase of commodities, e.g., tobacco.

Appl. Sci. 2022, 12, 4469 17 of 21Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 22

Figure 1. Total impact coefficients by commodity for acidification potential, greenhouse gases, and

freshwater withdrawals.

Ranking sectors based a composite score of selected total impacts associated with

total US demand is an effective means to identify prioritization opportunity in practices,

such as the EPA’s Sustainable Materials Management program. Comparing rankings is

another form of model validation that incorporates the demand vectors and the indicators,

as well as the matrices. The composite score for the rankings is calculated as a sum of

fractions of sector impact relative to total impact across all sectors, by each selected

indicator. This is represented using Equation (36), where 𝑠 represents this score and 𝑡,

calculated in Equation (37), is a vector of the column sums of the given 𝐿𝐶𝐼𝐴 (see Equation

(25)) matrix.

𝑠 = (𝐿𝐶𝐼𝐴�̂�−1)𝑖 (36)

𝑡 = 𝑖′𝐿𝐶𝐼𝐴 (37)

The first ranking uses LCIAd with the US production vector (left in Figure 2), while

the second ranking is performed with LCIAf (see Equation (27)), along with the US

consumption vector (right in Figure 2). The sets of commodities in the top 20 from the two

rankings (left and right in Figure 2) are nearly identical, with some notable substitutions

and some exchanging of places. Farms, utilities, and construction are in the top places in

both rankings, but the orders and the distance (darkness of shade) separating Construction

from the other commodities are different. Food and beverage and tobacco products is not in

top 20 in the impact ranking created with LCIAd and the US production vector (left), but

is in the top place in the other impact ranking created with LCIAf and the US consumption

Figure 1. Total impact coefficients by commodity for acidification potential, greenhouse gases, and
freshwater withdrawals.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 22

vector, as the latter calculation captures impacts, e.g., human health—respiratory effects
(HRSP), associated with the use phase of commodities, e.g., tobacco.

Figure 2. Top 20 commodities by composite impact score for USEEIOv2.0.1s calculated using the
total US production demand vector and the direct perspective (left), and using the total US
consumption demand vector and the final perspective (right). Darker shade indicates a relatively
higher score. Color of text on the vertical axis follows the color grouping in Figure 1.

Contribution from the top five flows to total acidification potential in the Utilities
sector is shown in Table 2. As fossil fuels are still significant resources used by the Utilities
sector in the US, and sulfur dioxide and nitrogen dioxide emissions are the main cause for
acidification potential, it is natural that they are the top two flows, and together contribute
to more than 96% of the total impact. The other contributing flows are ammonia, sulfuric
acid, and hydrofluoric acid, which together contribute to less than 4% to the total impact.

Table 2. Contribution from top 5 flows to total acidification potential in the Utilities
sector.

Flow Contribution
Sulfur dioxide/emission/air/kg 56.1%

Nitrogen dioxide/emission/air/kg 40.0%
Ammonia/emission/air/kg 2.8%

Sulfuric acid/emission/air/kg 0.7%
Hydrofluoric acid/emission/air/kg 0.2%

Contribution from the top five sectors to direct freshwater withdrawals in the Food
and beverage and tobacco products sector is shown in Table 3. The Farms sector contributes
the most, because most inputs to the Food and beverage and tobacco products sector come
from Farms. The Utilities sector is in the second place, with less than 5% contribution, most

Figure 2. Top 20 commodities by composite impact score for USEEIOv2.0.1s calculated using the total
US production demand vector and the direct perspective (left), and using the total US consumption
demand vector and the final perspective (right). Darker shade indicates a relatively higher score.
Color of text on the vertical axis follows the color grouping in Figure 1.

Appl. Sci. 2022, 12, 4469 18 of 21

Contribution from the top five flows to total acidification potential in the Utilities
sector is shown in Table 2. As fossil fuels are still significant resources used by the Utilities
sector in the US, and sulfur dioxide and nitrogen dioxide emissions are the main cause for
acidification potential, it is natural that they are the top two flows, and together contribute
to more than 96% of the total impact. The other contributing flows are ammonia, sulfuric
acid, and hydrofluoric acid, which together contribute to less than 4% to the total impact.

Table 2. Contribution from top 5 flows to total acidification potential in the Utilities sector.

Flow Contribution

Sulfur dioxide/emission/air/kg 56.1%
Nitrogen dioxide/emission/air/kg 40.0%

Ammonia/emission/air/kg 2.8%
Sulfuric acid/emission/air/kg 0.7%

Hydrofluoric acid/emission/air/kg 0.2%

Contribution from the top five sectors to direct freshwater withdrawals in the Food
and beverage and tobacco products sector is shown in Table 3. The Farms sector contributes
the most, because most inputs to the Food and beverage and tobacco products sector come
from Farms. The Utilities sector is in the second place, with less than 5% contribution, most
likely due to water use in processing food, beverages, and tobacco products. The other
contributing sectors are the Food and beverage and tobacco products sector itself, which relates
to by-products in the sector, the Forestry, fishing, and related activities sector, which relates to
seafood produced in the food sector, and the Fabricated metal products sector, which most
likely relates to canning of food and beverage.

Table 3. Contribution from top 5 sectors to direct freshwater withdrawals in the food and beverage
and tobacco products sector.

Sector Contribution

111CA/US—Farms 92.1%
22/US—Utilities 4.7%

311FT/US—Food and beverage and tobacco products 1.6%
113FF/US—Forestry, fishing, and related activities 0.9%

332/US—Fabricated metal products 0.1%

4. Conclusions

The USEEIO modeling framework requires model building tools to be free, open-
source, and easily distributed, installed, and used in common computing environments.
The programming languages behind the tools should have simple syntax and an active user
community; support structured programs, and high-level, efficient matrix mathematical
operations; use and produce human-readable, non-proprietary data formats; and be able to
be maintained on GitHub, or a similar git-based cloud version control platform. Among
suitable languages, Python was initially selected to create two packages, iomb and useeiopy,
for USEEIO assembly and organizing some of the USEEIO input data, respectively, but
collecting and preparing the core economic data, the environmental data, and indicators
was not performed by either package. To assist data acquisition and transformation, the R
language, which has many similarities in data science applications to Python, was used to
create a set of interdependent R scripts, coupled with the useeiopy and iomb packages, to
retrieve and process larger environmental datasets and assemble the simplified two-region
USEEIO state models.

With a growing need for increased variety of USEEIO models for various applications,
USEEIO was rebranded as a “family of models”, and received significant redesign in
the modeling process. In response to the needs for more transparent and reproducible
model build paths from data acquisition through to final output, as well as embedded

Appl. Sci. 2022, 12, 4469 19 of 21

model validation procedures, the useeior R package was developed, along with a versioning
scheme [4] for USEEIO models. useeior simplifies and streamlines the modeling process and
enables transparent and reproducible model construction. Users are provided with not only
fundamental data and metadata to build default USEEIO models, but also great flexibility
to customize models of their own. useeior replaces the iomb/useeiopy tools, and now serves
as a core component of the US EPA’s USEEIO modeling framework, as it integrates the
up-to-date IO tables prepared within itself with the environmental data generated by other
tools within the framework, and then produces EEIO results in standard formats and
software-ready LCI.

Designed and created with the principles of open-source software, useeior is continu-
ously improved to be more comprehensive and up-to-date in a transparent and iterative
way. Currently, useeior is capable of building USEEIO models that reflect the US national
average economic and environmental conditions. Users should be aware of the limitations
of using the national average to estimate environmental impacts of goods and services
produced in a sub-national scope. To address user demand for sub-national models, region-
alized versions of the model are being incorporated into useeior to enable construction of
two-region (a US state and a rest of US region) USEEIO state models. Future improvements,
such as physical hybrid models and linkage to global multi-regional input–output (MRIO)
models are planned to facilitate additional extensions in useeior.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app12094469/s1. Table S1: A portion of the model crosswalk table.

Author Contributions: Conceptualization, W.W.I.; methodology, M.L., W.W.I., B.Y. and J.V.; software,
M.L., W.W.I., B.Y. and J.V.; validation, M.L. and W.W.I.; formal analysis, M.L., W.W.I. and B.Y.;
investigation, M.L. and W.W.I.; resources, M.L., W.W.I., B.Y., J.V. and C.B.; data curation, M.L., B.Y., J.V.
and C.B.; writing—original draft preparation, M.L.; writing—review and editing, M.L., W.W.I., B.Y.
and J.V.; visualization, M.L.; supervision, W.W.I.; project administration, W.W.I.; funding acquisition,
W.W.I. All authors have read and agreed to the published version of the manuscript.

Funding: The U.S. Environmental Protection Agency, through its Office of Research and Development,
funded and conducted the research described herein, under an approved Quality Assurance Project
Plan (K-LRTD-0030017-QP-1-3). It has been subjected to the Agency’s peer and administrative review
and has been approved for publication as an EPA document. Mention of trade names or commercial
products does not constitute endorsement or recommendation for use. This research was supported
through USEPA contract HHSN316201200013W, Task Order EP-G16H-01256 with General Dynamics
IT (GDIT) and contract EP-C-16-015, Task Order 68HERC19F0292 with Eastern Research Group (ERG).
Internal peer reviews of useeior code and this manuscript were performed by Sabitri KC, Michael
Gonzalez, and Thomas Barnum (USEPA); quality assurance was provided by Jill Hoelle (USEPA). Bill
Michaud (GDIT), Bhagya Subramanian (USEPA), and Sarah Cashman (ERG) assisted with project
and contract management.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used to demonstrate useeior are available as part of the useeior
software package. Source code for useeior is available at https://github.com/usepa/useeior, (accessed
on 14 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, Y.; Ingwersen, W.W.; Hawkins, T.R.; Srocka, M.; Meyer, D.E. USEEIO: A New and Transparent United States

Environmentally-Extended Input-Output Model. J. Clean. Prod. 2017, 158, 308–318. [CrossRef] [PubMed]
2. Scott, T.; Rung, A. Federal Source Code Policy: Achieving Efficiency, Transparency, and Innovation through Reusable and Open Source

Software; Office of Management and Budget: Washington, DC, USA, 2016. Available online: https://www.whitehouse.gov/sites/
whitehouse.gov/files/omb/memoranda/2016/m_16_21.pdf (accessed on 11 October 2021).

https://www.mdpi.com/article/10.3390/app12094469/s1
https://www.mdpi.com/article/10.3390/app12094469/s1
https://github.com/usepa/useeior
http://doi.org/10.1016/j.jclepro.2017.04.150
http://www.ncbi.nlm.nih.gov/pubmed/30344374
https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/memoranda/2016/m_16_21.pdf
https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/memoranda/2016/m_16_21.pdf

Appl. Sci. 2022, 12, 4469 20 of 21

3. National Academies of Sciences, Engineering, and Medicine. Reproducibility and Replicability in Science; National Academies
Press: Washington, DC, USA, 2019; ISBN 9780309486163. Available online: https://www.nap.edu/catalog/25303 (accessed on
14 March 2022).

4. Ingwersen, W.; Li, M.; Young, B. United States Environmentally-Extended Input-Output (USEEIO) Modeling Framework for USEEIOv2.0;
Zenodo, 2022. Available online: https://zenodo.org/record/6370073#.YmoAQdNBzIU (accessed on 14 March 2022). [CrossRef]

5. Karakan, B. Python vs. R for Data Science. Available online: https://towardsdatascience.com/python-vs-r-for-data-science-6a8
3e4541000 (accessed on 22 December 2021).

6. Meyer, D.E.; Li, M.; Ingwersen, W.W. Analyzing Economy-Scale Solid Waste Generation Using the United States Environmentally-
Extended Input-Output Model. Resour. Conserv. Recycl. 2020, 157, 104795. [CrossRef] [PubMed]

7. Yang, Y.; Ingwersen, W.W.; Meyer, D.E. Exploring the Relevance of Spatial Scale to Life Cycle Inventory Results Using
Environmentally-Extended Input-Output Models of the United States. Environ. Model. Softw. 2018, 99, 52–57. [CrossRef]
[PubMed]

8. Ingwersen, W.; Li, M.; Yang, Y. United States Environmentally-Extended Input-Output (USEEIO) Modeling Framework; Zenodo, 2018.
Available online: https://zenodo.org/record/1248955#.Ymos59NBxPY (accessed on 14 March 2022). [CrossRef]

9. Young, B.; Ingwersen, W.W.; Bergmann, M.; Hernandez-Betancur, J.D.; Ghosh, T.; Bell, E.; Cashman, S. A System for Standardizing
and Combining U.S. Environmental Protection Agency Emissions and Waste Inventory Data. Appl. Sci. 2022, 12, 3447. [CrossRef]

10. Cooney, G.; Skone, T.J.; Jamieson, M.; Zaimes, G.G. Open-Source Life Cycle Baseline for Electricity Consumption in the United
States—LCI Public Release. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2019;
Volume 2019.

11. Ingwersen, W. Open Source Tool Ecosystem for Automating LCA Model Creation and Linkage; U.S. Environmental Protection Agency:
Washington, DC, USA. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=350369 (accessed on
21 October 2021).

12. Wickham, H.; Bryan, J. R Packages, 2nd ed.; O’Reilly: Sebastopol, CA, USA, 2021. Available online: https://r-pkgs.org/ (accessed
on 14 March 2022).

13. GitHub, Inc. GitHub Actions Documentation. Available online: https://docs.github.com/en/actions (accessed on
14 March 2022).

14. Wickham, H.; Bryan, J.; Barrett, M. Usethis: Automate Package and Project Setup; Comprehensive R Archive Network (CRAN), 2021.
Available online: https://CRAN.R-project.org/package=usethis (accessed on 14 March 2022).

15. Birney, C.; Young, B.; Conner, M.; Specht, J.; Li, M.; Ingwersen, W. FLOWSA v1.0.1; Zenodo. 2021. Available online: https:
//zenodo.org/record/6370115#.Ymn_6NNBzIU (accessed on 14 March 2022). [CrossRef]

16. Young, B.; Srocka, M.; Ingwersen, W.; Morelli, B.; Cashman, S.; Henderson, A. LCIA Formatter. J. Open Source Softw. 2021, 6, 3392.
[CrossRef] [PubMed]

17. Li, M.; Ingwersen, W.; Young, B.; Vendries, J.; Birney, C. useeior v1.0.0. 2021. Available online: https://zenodo.org/record/637010
1#.Ymoz19NBxPY (accessed on 14 March 2022). [CrossRef]

18. Ingwersen, W.; Li, M.; Young, B.; Vendries, J.; Birney, C. USEEIO v2.0, The U.S. Environmentally-Extended Input-Output Model
v2.0. Sci. Data 2022. [CrossRef]

19. U.S. EPA US Environmentally-Extended Input-Output (USEEIO) Technical Content. Available online: https://www.epa.gov/
land-research/us-environmentally-extended-input-output-useeio-technical-content (accessed on 26 January 2021).

20. U.S. Bureau of Economic Analysis Input-Output Accounts Data. Available online: https://www.bea.gov/industry/input-output-
accounts-data (accessed on 28 January 2021).

21. Frasca, M. Logging: R Logging Package; Comprehensive R Archive Network (CRAN), 2019. Available online: https://CRAN.R-
project.org/package=logging (accessed on 14 March 2022).

22. Li, J. Configr: An Implementation of Parsing and Writing Configuration File (JSON/INI/YAML/TOML); Comprehensive R
Archive Network (CRAN). 2020. Available online: https://CRAN.R-project.org/package=configr (accessed on 14 March 2022).

23. U.S. Census Bureau 2012 NAICS to 2007 NAICS Concordance. Available online: https://www.census.gov/naics/concordances/
2012_to_2007_NAICS.xls (accessed on 5 March 2021).

24. U.S. Census Bureau 2–6 Digit 2012 NAICS Code File. Available online: https://www.census.gov/naics/2012NAICS/2-digit_20
12_Codes.xls (accessed on 5 March 2021).

25. Horowitz, K.J.; Planting, M.A. Concepts and Methods of the U.S. Input-Output Accounts; U.S. Bureau of Economic Analysis: Suitland,
MD, USA, 2009. Available online: https://www.bea.gov/resources/methodologies/concepts-methods-io-accounts (accessed on
14 March 2022).

26. Miller, R.; Blair, P. Input-Output Analysis: Foundations and Extensions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009.
27. Edelen, A.; Hottle, T.; Cashman, S.; Ingwersen, W. The Federal LCA Commons Elementary Flow List: Background, Approach,

Description and Recommendations for Use; U.S. Environmental Protection Agency: Washington, DC, USA, 2019. Available online:
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=347251 (accessed on 14 March 2022).

28. Zhuang, X.; Balassiano, K. EPA Data Commons v0.1. Available online: http://edap-data-commons.s3.amazonaws.com/data_
commons_search.html (accessed on 12 December 2021).

29. Bare, J. TRACI 2.0: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts 2.0. Clean Technol.
Environ. Policy 2011, 13, 687–696. [CrossRef]

https://www.nap.edu/catalog/25303
https://zenodo.org/record/6370073#.YmoAQdNBzIU
http://doi.org/10.5281/zenodo.6370073
https://towardsdatascience.com/python-vs-r-for-data-science-6a83e4541000
https://towardsdatascience.com/python-vs-r-for-data-science-6a83e4541000
http://doi.org/10.1016/j.resconrec.2020.104795
http://www.ncbi.nlm.nih.gov/pubmed/32831477
http://doi.org/10.1016/j.envsoft.2017.09.017
http://www.ncbi.nlm.nih.gov/pubmed/29456453
https://zenodo.org/record/1248955#.Ymos59NBxPY
http://doi.org/10.5281/zenodo.1248955
http://doi.org/10.3390/app12073447
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=350369
https://r-pkgs.org/
https://docs.github.com/en/actions
https://CRAN.R-project.org/package=usethis
https://zenodo.org/record/6370115#.Ymn_6NNBzIU
https://zenodo.org/record/6370115#.Ymn_6NNBzIU
http://doi.org/10.5281/zenodo.6370115
http://doi.org/10.21105/joss.03392
http://www.ncbi.nlm.nih.gov/pubmed/34805725
https://zenodo.org/record/6370101#.Ymoz19NBxPY
https://zenodo.org/record/6370101#.Ymoz19NBxPY
http://doi.org/10.5281/zenodo.6370101
http://doi.org/10.1038/s41597-022-01293-7
https://www.epa.gov/land-research/us-environmentally-extended-input-output-useeio-technical-content
https://www.epa.gov/land-research/us-environmentally-extended-input-output-useeio-technical-content
https://www.bea.gov/industry/input-output-accounts-data
https://www.bea.gov/industry/input-output-accounts-data
https://CRAN.R-project.org/package=logging
https://CRAN.R-project.org/package=logging
https://CRAN.R-project.org/package=configr
https://www.census.gov/naics/concordances/2012_to_2007_NAICS.xls
https://www.census.gov/naics/concordances/2012_to_2007_NAICS.xls
https://www.census.gov/naics/2012NAICS/2-digit_2012_Codes.xls
https://www.census.gov/naics/2012NAICS/2-digit_2012_Codes.xls
https://www.bea.gov/resources/methodologies/concepts-methods-io-accounts
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=347251
http://edap-data-commons.s3.amazonaws.com/data_commons_search.html
http://edap-data-commons.s3.amazonaws.com/data_commons_search.html
http://doi.org/10.1007/s10098-010-0338-9

Appl. Sci. 2022, 12, 4469 21 of 21

30. Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R.
ReCiPe 2016: A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report i: Characterization.
Int. J. Life Cycle Assess. 2017, 22, 138–147. [CrossRef]

31. Srocka, M.; Ingwersen, W.W. USEEIO API v1.0. 2019. Available online: https://github.com/USEPA/useeio_api/ (accessed on
14 March 2022).

32. Ciroth, A. ICT for Environment in Life Cycle Applications openLCA—A New Open Source Software for Life Cycle Assessment.
Int. J. Life Cycle Assess. 2007, 12, 209. [CrossRef]

33. Young, B.; Srocka, M.; Ingwersen, W.; Morelli, B.; Cashman, S.; Henderson, A. TRACIv2.1 for FEDEFLv1; U.S. Environmental
Protection Agency: Washington, DC, USA, 2021. [CrossRef]

http://doi.org/10.1007/s11367-016-1246-y
https://github.com/USEPA/useeio_api/
http://doi.org/10.1065/lca2007.06.337
http://doi.org/10.23719/1522413

	Introduction
	Background
	Overview

	Materials & Methods
	Model Initialization
	Economic Input–Output Data
	Environmental Data and Satellite Tables
	Indicators and Life Cycle Impact Assessment Characterization Factors
	Final Demand
	EEIO Matrices Construction
	Matrix Price Adjustment
	Model Calculation
	Model Validation
	Model Exporting
	Model Visualization
	Model Comparison

	Results
	Conclusions
	References

