
Citation: Du, X.; Sun, Y.; Song, Y.;

Zhou, Q.; Xiu, Z. Using a Machine

Learning Method to Predict the

Penetration Depth of a Gravity Corer.

Appl. Sci. 2022, 12, 4457.

https://doi.org/10.3390/

app12094457

Academic Editor: Jianhong Ye

Received: 31 March 2022

Accepted: 26 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Using a Machine Learning Method to Predict the Penetration
Depth of a Gravity Corer
Xing Du 1,2,* , Yongfu Sun 3, Yupeng Song 1,2,*, Qikun Zhou 1,2 and Zongxiang Xiu 1

1 Engineering Center, First Institute of Oceanography, MNR, Qingdao 266061, China;
zhouqikun@fio.org.cn (Q.Z.); xiuzongxiang@fio.org.cn (Z.X.)

2 Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology,
Qingdao 266000, China

3 National Deep Sea Center, Qingdao 266237, China; sunyongfu@fio.org.cn
* Correspondence: duxing@fio.org.cn (X.D.); songyupeng@fio.org.cn (Y.S.)

Abstract: The study of penetration depth of gravity piston samplers has an essential impact on
sampling efficiency and instrument safety. This study focuses on predicting penetration depth based
on the characteristic parameters of the sampled seafloor sediments and the sampler parameters.
Although numerous studies of gravity corer penetration depth have been carried out, most have
been based on the energy conservation equation, which considers a varying number of influencing
factors. Furthermore, most research has focused on the same research idea of finding analytical
solutions. The present study proposes a new approach to predicting gravity corer penetration depth
based on a machine learning method that uses real sampling data from the sea and experimental
data from a gravity sampling physical model for training and testing. Experimental results indicate
that the machine learning model can accurately predict gravity corer penetration depth. Moreover,
predictions were made for the same penetration conditions using the machine learning model and
three other analytical solution models. Results show that the prediction accuracy of machine learning
outperforms that of the analytical prediction model under various statistical rubrics. This study
demonstrates the capacity of the proposed machine learning model and provides civil engineers with
an effective tool to predict the penetration depth of gravity corers.

Keywords: gravity piston corer; penetration depth; machine learning; artificial neural network

1. Introduction

A gravity piston sampler is an important geological tool that uses its gravity as the
driving force to obtain in situ samples. Since the design proposal of the Kullenberg-type
gravity sampler in 1947 [1], it has been widely used for the acquisition of deep-sea ultra-long
in situ samples [2,3], nearshore sediment samples [4], and in situ lake sediment samples [5].
In recent years, due to the research and development of gas hydrate, the acquisition of
high-fidelity in situ samples based on a gravity piston sampler [6–8] has become a hot
research topic. Whether for the acquisition of deep-sea, nearshore, or lake sediments, how to
improve the sampling efficiency and ensure continuous and undisturbed sediment samples
have been the focus of much research. When sampling with a gravity piston sampler,
the length of the installed sampling tube may be different from the actual penetration
depth, which could lead to accidents, such as breakage of the sample tube when the size
of the sample tube is greater than the penetration depth or failure to obtain the maximum
length of a continuous in situ sample [9] when the size is less than the penetration depth.
Therefore, the prediction of penetration depth according to the geological characteristics of
the sampling area before the release of the gravity sampler can help improve the safety and
efficiency of the sampler.

In previous studies of gravity sampler penetration depth, scholars mainly used force
analysis and energy conservation to study analytical solutions. Li et al. [10] and Du et al. [9]
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obtained the analytical solution of the penetration depth equation based on the energy
conservation equation through force analysis of the gravity sampler. They verified it with
actual offshore sampling data. However, due to the complicated penetration process in
the sampling area and problems of recording and operating errors in the real measured
data at sea, the measured penetration data were not accurate, and the amount of data was
small. To study the penetration process and factors of gravity samplers more accurately and
controllably, Du [11] designed a gravity sampling physical test model in 2014 to address the
problem of the small amount of data and lack of accurate data recording of the penetration
process, conducted dozens of sets of tests, obtained a large amount of accurately recorded
data, and proposed a new analytical solution model based on the tests. In recent years,
scholars have also tried to discuss more influencing factors of gravity sampling penetration
depth, such as friction coefficient and sediment characteristics [12,13]. However, the basic
idea of past research was still to use the energy balance of penetration work and friction
consumption work to solve the equation to determine the penetration depth, and there has
been no substantial breakthrough in the modeling tools but only reduces the error value
by parameters with less influencing factors. The complexity of the sampler penetration
process, inaccuracies and other factors, and errors caused by human operation remain
challenges to be eliminated. Therefore, there is an urgent need to propose a new means to
model and study the penetration depth of gravity samplers.

Machine learning, the best-known class of artificial intelligence algorithms, is capable
of efficiently approaching a wide range of data problems. Machine learning is divided into
two main categories: supervised machine learning and unsupervised machine learning [14].
Supervised machine learning is used for training data with outcome labels, and unsuper-
vised machine learning filters feature data, clustering without outcome labels. Supervised
machine learning is further divided into two types of problems, classification and regres-
sion, depending on the result labels. Classification applies to data with a definite outcome,
and regression applies to data with an uncertain type of outcome. Machine learning and
deep learning techniques have been proven to be robust and promising tools in many
geotechnical applications, such as ground motion prediction [15], soil liquefaction [16,17],
landslides risk assessment [18–21], soil spatial prediction [22], soil hydraulic properties [23],
geophysical exploration [24–26], etc. The above studies show that geological problems with
a certain amount of data are well suited to be solved by machine learning methods. As for
the gravity sampling penetration depth, it is more appropriate to choose the regression
method in supervised machine learning because of its many influencing factors and the
characteristic that the penetration depth results in data rather than categories. However, no
one has yet conducted a gravity sampling penetration depth study using a machine learn-
ing approach. Machine learning methods can be applied to gravity sampling penetration
depth studies, and the accuracy of the model predictions is the focus of this paper.

In this context, in this study, we aim to investigate the feasibility and accuracy of
machine learning models for calculations of gravity piston sampler penetration depth. More
specifically, the MLP neural network model is applied in a gravity sampler penetration
depth study by using actual gravity sampling data collected at sea and the physical model
test data for training. Moreover, the prediction accuracies of machine learning models of
penetration depth of that of various analytical solution models are further compared to
investigate the main factors affecting accuracy. The process of machine learning modeling
and predicting results from the machine learning model proposed in this paper can provide
practical guidance for gravity sampler penetration depth and provide a scientific indication
of significance for similar data regression analysis problems in marine engineering geology.

2. Applied Machine Learning Model

The MLP (multilayer perceptron, also known as artificial neural network) [27] is a
simplified biological model that mimics signal propagation in biological nerves and is
also one of the most widely used and studied neural network models. It is also called
feedforward (Figure 1) because the information flows through a function of x, through an
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intermediate computational process used to define f, and finally to the output, y. There
is no feedback connection between the output of the model and the model itself. When
feedforward neural networks are extended to include feedback connections, they are called
recurrent neural networks. MLP consists of a multilayer neural network in which the input
and output layers consist of a single-layer network. The hidden layer can be a single layer
or a multi-layer network, and each layer consists of multiple neurons. Each neural network
consists of multiple neurons, each neuron is a perceptron, the neurons in each layer are
interconnected, and the connections are fully connected. In a nutshell, the structure of
a BP neural network [28] is that the input layers receives a stimulus and passes it to the
hidden layers. The output layers compare the results. Suppose the output layer compares
the results and is not correct. In that case, it returns to modify the weights of neuron
interconnections, also known as the feedforward multilayer network algorithm trained
according to the error backpropagation method. Although a large number of new machine
learning algorithms have been created, the backpropagation method of BP neural networks
is the basis for the vast majority of model training.
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A feedforward neural network is mathematically represented as:

yk(x) =
M

∑
i=1

ωih × Tr(Z) + bih (1)

z =
D

∑
i=1

ωho × Xi + bho (2)

where x is the input parameter; ωih and ωho are the weights from input-layer to hidden-layer
and weights from hidden-layer to output-layer, respectively; bih and bho are the deviation
parameters; M is the number of nodes in the hidden layer; d is the number of nodes in the
input layer; and Tr(Z) is the transfer function that performs a nonlinear transformation of
the summation input.
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The objective of the algorithm is to reduce the error between the computed value and
the actual value through a training series, and the error E can be defined as:

E =
1
p

p

∑
p=1

Ep (3)

where p is the total number of training patterns, and Ep is the error of the p-th training
pattern obtained from the following equation:

Ep =
1
2

N

∑
k=0

(Ok − tk)
2 (4)

where N is the total number of output nodes, k is the output of the k-th output node, and tk
is the target output of the k-th output node.

After each error is calculated, feedback is propagated forward. The weight values are
updated to bring the network closer to the actual expression values until all training data
are trained. A set of training data is usually trained several times; each training is called a
generation (Epoch), and generally, the training stops when the set parameter conditions
are reached.

3. Application and Analysis

In this section, we describe the gravity sampling penetration depth dataset used for
modeling and the specific process of modeling. The study was performed with scikit-learn,
an open-source machine learning package, using Windows 10 64-bit on a CPU with AMD
Ryzen 3700x, GPU NVIDIA GeForce RTX 3080, and 16GB of RAM.

3.1. Data Description

The data used in this paper consist of two parts: the measured data from the actual
sampling at sea and the physical simulation data obtained from the gravity sampler model
tests. The data measured at sea were obtained from several marine geological survey
projects in Guangzhou from 2006 to 2011 [8], as well as an investigation cruise of the
First Institute of Oceanography of the State Oceanic Administration [10] with 19 datasets.
Du [11] obtained the physical simulation data in 2014 through an isometric reduced-gravity
sampler experiment with a total of 56 datasets. The data measured at sea mainly include
sampler mass, sampling tube inner and outer diameter, cutterhead diameter, and sediment
description. The physical simulation data mainly include sampler mass, penetration
velocity, sampler inner and outer diameter, cutter head diameter, sediment type, etc. The
data include datasets from different deep-sea study areas with deep sampling depths and
physical model sampling datasets with shallow sampling depths. Modeling with datasets
with a wide range of data can indicate the generalizability of the present model to the
gravity sampling problem.

3.2. Prediction Performance Metrics

The performance of the machine learning model was evaluated using the following
statistical metrics: explained variance score (EVS), mean absolute error (MAE), mean square
error (MSE), and the determination coefficient (R2). The value of EVS is in the range of
[0, 1]. Values closer to 1 mean that the independent variable can explain the dependent
variable of the variance, and the lower the value, the worse the effect. MAE is used to assess
the degree of closeness between the prediction results and the real dataset, and a lower
value indicates a better fit. MSE is the mean of the errors of the fitted data and the original
data corresponding to the sample points, and the lower the value, the better the fit. R2 is
the variance score of the explanatory regression model, and its value ranges from [0, 1].
Values closer to 1 mean that the independent variable can explain the variance change of
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the dependent variable, and lower values mean that the effect is worse. The mathematical
expressions of the performance metrics are as follows:

EVS = 1− Var{y_p− y_t}
Var{y_p} (5)

where y_p is the predicted output; y is the true target output; and Var is variance, the square
of the standard deviation.

MAE =
1

nsamples

nsamples−1

∑
i=0

|yi_t− yi_p| (6)

where yi_p is the predicted value of the i-th sample, and yi_t is the corresponding true value.

MSE =
1

nsamples

nsamples−1

∑
i=0

(yi_t− yi_p)2 (7)

where yi_p is the predicted value of the i-th sample, and yi_t is the corresponding true value.

R2 = 1− ∑n
i=1 (yi_t− yi_p)2

∑n
i=1 (yi_t− y)2 (8)

where yi_p is the predicted value of the i-th sample, and yi_t is the corresponding true

value. For n total samples, y = 1
n

n
∑

i=1
yi_t and

n
∑

i=1
(yi_t− yi_p)2 =

n
∑

i=1
ε2

i .

3.3. Neural Network
3.3.1. Input Layer and Output Layer

In the paper from which the above data were derived, the authors also used seawater
density, gravitational acceleration, sampler density, drag coefficient, and friction coefficient
to calculate the penetration depth. However, it is clear from the analysis that parameters
such as seawater density, gravitational acceleration, and sampler density are essentially
constant between samplers (considering that gravity piston samplers are made of steel and
lead), and the friction coefficients reported in the original article were derived by extrapola-
tion from the type of sediment. Therefore, in this paper, the six parameters of weight of
sampler, internal diameter, external diameter, cutter diameter, velocity, and sediment type
are selected as input parameters of the neural network (Table 1). Sediment type numbers
are expressed only from smallest to largest based on particle size; other representations are
also acceptable. The output layer parameter is undoubtedly the penetration depth of the
gravity sampler.

Table 1. Input parameters for gravity corer penetration depth.

Parameter Range

Weight of sampler (kg) 20–2230

Internal diameter (m) 0.042–0.1

External diameter (m) 0.058–0.127

Cutter diameter (m) 0.072–0.1411

Velocity (m/s) 2.8–14.0561

Sediment type Clay = 1; Silt = 2; Fine Sand = 3; Sand = 4
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3.3.2. Data Preprocessing

First, the data are sorted and organized according to the input layer parameters
determined in step (1). A total of 75 sets are obtained; each dataset includes six calculated
parameters and one actual penetration depth. The data were randomly disordered, and the
train set and the test set were divided in a ratio of 65%:35%. Thus, a training set containing
48 groups of data and a test set containing 27 groups were obtained.

In the modeling of machine learning, when the values of various parameters have a
large quantitative difference in the accuracy of the training results, inaccurate prediction
models can easily result. To make model predictions more accurate, it is often necessary to
convert data from different specifications to a uniform specification or from other distribu-
tions to a specific distribution, collectively referred to as “dimensionless” data. Standard
processing methods include min–max scaling and standardization scaling. Min–max scal-
ing can converge the data to the range of [0, 1], and it can project the data to a normal
distribution with a mean of 0 and a variance of 1 according to the normal distribution.
StandardScaler is chosen for feature scaling in most machine learning algorithms because
MinMaxScaler is very sensitive to outliers. Therefore, in this paper, StandardScaler is
chosen to preprocess the data.

3.3.3. Hidden Layer

The number of layers and nodes of hidden layers is significant in constructing neural
networks. So far, no study has been able to arrive at the optimal number of hidden layers
and nodes for a research problem. Therefore, when constructing neural networks for spe-
cific issues, it is necessary to try to obtain a more optimal network based on the parameters
of the actual data. Therefore, 30 gravity sampling depth prediction models are constructed
by varying the number of hidden layers from 1 to 30, with other conditions and model pa-
rameters unchanged. The four model accuracy check parameters mentioned in Section 3.2
are used for evaluation, and the best model is selected after a comprehensive comparison.

To choose the most suitable number of hidden layer nodes, it is necessary to consider
the accuracy of the model prediction results and the increase in computational cost caused
by the rise in the number of hidden layer nodes. Therefore, a model with high accuracy and
low computational cost is desirable. In terms of model prediction accuracy, the results can
be seen in Figure 2. All four evaluation methods show the same trend. With the increase
in the number of hidden layer nodes, the accuracy increases first, suddenly decreases at
the position of node number 7, continues to increase, suddenly increases to number 8,
and has a small up and down oscillation before number 11, with no more significant
changes. Therefore, the model is accurate enough with 11 hidden layer nodes. On the
other hand, the lower the number of nodes, the more efficient the prediction model is in
terms of computational cost. Considering the above two influencing factors, the prediction
models of sampler penetration depth with a number of nodes ranging from 11 to 15 are all
acceptable. The model calculation accuracy does not differ much, and the efficiency is good.
We chose 11 as the number of nodes in the hidden layer in this study, and other numbers of
nodes are also acceptable.

Finally, a gravity sampler penetration depth machine learning model (Figure 3) was
built with six parameters consisting of weight of sampler, internal diameter, external
diameter, cutter diameter, velocity, and sediment type as the input layer; 11 nodes as
the hidden layer; and penetration depth as the output layer. A final gravity sampling
penetration depth prediction model can be made by using this structured neural network
to train and test the gravity sampling data.
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4. Results

Figure 4 shows the gravity sampler penetration depth prediction results using the
training and test sets of the established machine learning model. The results predicted
by the model are in good agreement with the actual results in both the training and test
sets. As shown in Figure 5, the prediction error is small, despite the significant difference
in gravity sampler parameters between the data measured at sea and the physical model
tests. The prediction accuracy statistics of the train and test sets are shown in Table 2. Both
datasets showed promising results on all four statistical scales, and the training set results
are slightly better than those of the test set.

Table 2. Prediction accuracy statistics of train set and test set.

EVS a MAE b MSE c R2

Trian set 0.98 0.34 0.56 0.98
Test set 0.95 0.26 0.38 0.94

a EVS is explained variance score; b MAE is mean absolute error; c MSE is mean square error.
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data obtained from sea.
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The absolute values of the error between predicted and real penetration depth are
shown in Figure 4. The training set error of most cases is less than 1 m. There are six cases
with error values between 1 and 2 m and one case with an error more than 3 m in the train
set. As for the test set, 23 cases of 27 are less than 0.5 m, and there are only 2 cases with
errors over 1 m. Many factors affect the penetration depth of gravity sampling (geology,
marine environment, seafloor topography, etc.). Even if the same sampler is used under
the same geological conditions, the depth of each sample is not the same, and the error can
reach 2~3 m [9]. Therefore, numerical model prediction results within 2~3 m are acceptable.
The machine learning model used in the paper is exceptionally accurate, as most errors are
less than 1 m.

After analyzing the data, we found that the 18 examples with large error values were
all data measured at sea. There are two main reasons for this situation: (1) the amount of
data of the same type and (2) the error of the data itself. When there are only 19 actual
at-sea data point with a slight difference in sampler quality and 56 physical model test
data, the model will tend toward the accuracy of the physical model test. Another reason is
that human operation and recording errors of at-sea sampling are more significant than
those in physical model tests. The high value of the prediction error for the offshore
sampling depth is due to the typical machine learning model training problem caused by
the relatively small amount of offshore sampling data. In the training process of machine
learning models, the accuracy of the model can be increased when the training data sample
is large enough. When the training data sample is insufficient, errors tend to be increased.
The training data used in this paper are limited due to the difficulty of obtaining data for
ocean gravity sampling. The model prediction error will decrease with increased offshore
gravity sampling penetration depth data.

5. Discussion
5.1. Accuracy and Applicability of Machine Learning Model

Machine learning has different characteristics when applied in different fields, and
there are many factors that affect the accuracy of machine learning. When machine learning
is applied to the field of marine geology, several main factors affect the prediction accuracy:

(1) Whether the geological problem is suitable for machine learning models;
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Although machine learning models can be applied to many problems, they still cannot
solve all problems. Machine learning methods are suitable for solving problems that can be
accurately calculated quantitatively; have a large amount of accurate associated research
data; and require experience, such as geohazard prediction, weather forecasting, geological
phenomenon identification, etc. Some geological problems that do not have associated data
or for which the amount of data does not meet machine learning requirements, such as
tectonic geology and geological hazard on-site monitoring, are not suitable for machine
learning solutions.

(2) Whether the selected input factors are complete and representative of the entire
geological process;

Due to their complexity, geological problems are often subjected to various internal
and external geodynamic effects. For example, there may be more than a dozen factors
influencing the evaluation of submarine landslide hazards. However, we do not need to
bring all the influencing factors into the model for calculation because there is a specific
correlation between many influencing factors (such as wind speed and waves). In addition,
having too many influencing factors is not conducive to modeling efficiency. Therefore,
when we choose the input parameters of the machine learning model, we need to select
several factors with the most significant degree of influence through professional knowl-
edge analysis. Having too many chosen factors is not conducive to data acquisition and
modeling efficiency, and having too few factors is not representative of the geologic process.

(3) The quality and quantity of the data;

The core objective of machine learning is to obtain the desired patterns from a large
amount of available data through numerical methods. Therefore, the quality and quantity
of the data itself are essential. When machine learning is applied in data-rich fields, such
as the Internet and finance, the amount of data generated per second is several Gs, so
there is no data volume problem. However, the geological field does not have a large
amount of data related to many issues due to the difficulty and high cost of obtaining
data, which are the main reasons for some errors in model prediction results. Like the
gravity sampler penetration depth problem studied in this paper, there are only 19 groups
of real sampling data from the seafloor. Each data group contains a certain amount of
human and environmental errors, so it is challenging to represent the sampling penetration
process accurately through the data. Therefore, there must be relative error values in the
prediction results.

(4) Whether an appropriate machine learning model has been selected to solve the
geological problem;

Different machine learning methods can solve the same geological problem, and
it is essential to choose a suitable algorithm. Even if the research problem is identified
as a specific category of regression, fitting, clustering, etc., each category has multiple
algorithms. Furthermore, new machine learning models are being developed all the time..
When it is impossible to determine which algorithm is suitable for a geological problem,
more than one should be tried. The appropriate algorithm should be selected through
analysis and comparison. In addition, there is no best algorithm—only the algorithm that
meets the accuracy needs of the research problem through data, algorithm selection, and
model training.

5.2. Comparison of Different Penetration Depth Models

To demonstrate the accuracy of the gravity sampler penetration depth machine learn-
ing model developed in this paper, three other t analytic solution models, defined as AS1 [9],
AS2 [11], and AS3 [10], were used for computation and comparison. The 75 groups of
gravity sampling data analyzed in this paper were computed using machine learning
models and three other analytical solution models. The penetration depths calculated by
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the four models were analyzed in comparison to the actual penetration depths obtained
using statistical methods (MSE, MAE, EVS, and R2) mentioned in Section 3.2.

The comparison results of the accuracy of different gravity sampling penetration depth
prediction models are demonstrated in Table 3 and Figure 6. It well known that smaller
MSE and MAE and larger EVS and R2 values indicate more accurate prediction results. In
terms of statistical metrics, the ML model yields the lowest MSE and MAE and the highest
EVS and R2 values. As for the other three analytic solution models, AS3 performs best on
MSE, MAE, and EVS, and AS2 performs best on R2. Therefore, the accuracy of the four
models is: ML > AS3 > AS2 > AS1. Moreover, the performance of the machine learning
model is clearly and substantially ahead of that of the other analytical solution models.

Table 3. Statistical performance metrics of different penetration depth models.

Model Performance Metrics

MSE MAE EVS R2

ML 0.50 0.31 0.98 0.98
AS1 3.94 1.33 0.88 0.82
AS2 2.85 0.77 0.87 0.97
AS3 1.57 0.54 0.93 0.93

Note: MSE = mean square error; MAE = mean absolute error; EVS = explained variance score; R2 = determination
coefficient. Underline denotes the best performance value for each performance metric.
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Figure 6. Comparison of the accuracy of results from different gravity sampling penetration depth
prediction models. (a) Comparison of MSE of prediction results of four models; (b) comparison of
MAE of prediction results of four models; (c) comparison of EVS of prediction results of four models;
(d) comparison of R2 of prediction results of four models. ML is the machine learning model, AS1 is
analytical solution model 1, AS2 is analytical solution model 2, and AS3 is analytical solution model 3.
The smaller the value of MSE and MAE, the higher the accuracy. The larger the EVS, the higher the
accuracy. The closer R is to 1, the better the prediction result. The red dashed line denotes the best
performance value for each performance metric.
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The prediction accuracy of machine learning models is much higher than that of
various analytical solution models because the two computational methods employ very
different processes. The traditional analytical solution model mainly analyzes the force
of the gravity sampler penetration process, derives the energy of each component and
process, and solves the equation according to energy conservation. This way of solving
the energy conservation equation presents the following problems: (1) the calculation
of each process is approximated, leading to the existence of certain errors; (2) there is a
certain abbreviation in the calculation process, for example, AS2 does not consider the
cutter head cutting work; and (3) because it involves sliding friction work between the
sampling tube and the sediment, cutting work, and other processes, the calculation requires
the estimation and approximation of the friction coefficient and other parameters, so it is
difficult to calculate accurately. The machine learning model only needs to establish the
numerical relationship between the input parameters and the penetration depth directly
through continuous training and backpropagation based on the data, skipping the complex
and extensive approximation process of various forces and energy calculations. Therefore,
the prediction results of machine learning models are more accurate.

In addition, because solving the energy conservation equation contains the physi-
cal meaning of numerous sampler penetration processes, many process parameters are
required, such as the inner wall friction coefficient, outer wall friction coefficient, cutter
head cutting coefficient, and other difficult-to-determine parameters. This status quo leads
to numerous estimates for the modeling of the conventional analytical solution, which
increases the complexity of the computational process and the error of the prediction
results. In contrast, the machine learning model only requires a few critical influencing
parameters to directly connect with the penetration depth. The computational parameters
used in this model can be obtained before sampling. No parameter valuation is required,
which significantly reduces the complexity of the model calculation and improves the
prediction accuracy. Overall, the machine learning algorithm is superior to traditional
analytical solution models in predicting the penetration depth of gravity samplers, both
in terms of the accuracy of the model prediction results and the scientific nature of the
computational process.

6. Conclusions

In this study, a machine learning model using an MLP neural network was applied to
predict the penetration depth of a gravity corer. A database of 75 gravity corer penetration
depths from both real sampling at sea and physical model test data was used to generate
the datasets for modeling, considering six penetration depth factors. The models were
validated using the MSE, MAE, EVS, and R-square methods. The results show that the
proposed machine learning model achieved great accuracy in predicting the gravity corer
penetration depth (test set accuracy: EVS = 0.95, MAE = 0.26, MSE = 0.38, R2 = 0.94).
Furthermore, in this study, we used three analytical solution models of gravity corer
penetration depth to predict the same cases. The results show that the machine learning
model is superior to the traditional analytical solution models in terms of both the accuracy
of the prediction results and the scientific nature of the computational process. Thus, it can
be reasonably concluded that the proposed machine learning model can be used to achieve
better penetration depth prediction. However, many factors affect the accuracy of the
machine learning model: problem type, selection of influential factors, quality and quantity
of data, and selection of machine learning models. Therefore, it is better to collect more
high-quality data and select a moderate machine learning model and influential factors to
obtain a more accurate machine learning model.
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