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Featured Application: The research results of this paper are mainly applied to a 3D reconstruction
of a forest with a single-line lidar, obtaining tree distribution at low cost.

Abstract: In order to accurately obtain tree growth information from a forest at low cost, this paper
proposes a forest point cloud real-time reconstruction method with a single-line lidar based on
visual–IMU fusion. We build a collection device based on a monocular camera, inertial measurement
unit (IMU), and single-line lidar. Firstly, pose information is obtained using the nonlinear optimization
real-time location method. Then, lidar data are projected to the world coordinates and interpolated to
form a dense spatial point cloud. Finally, an incremental iterative point cloud loopback detection
algorithm based on visual key frames is utilized to optimize the global point cloud and further
improve precision. Experiments are conducted in a real forest. Compared with a reconstruction
based on the Kalman filter, the root mean square error of the point cloud map decreases by 4.65%,
and the time of each frame is 903 µs; therefore, the proposed method can realize real-time scene
reconstruction in large-scale forests.

Keywords: single-line lidar; visual–IMU fusion; nonlinear optimization algorithm; point cloud
reconstruction

1. Introduction

High-precision sensors can collect information under forest canopies concerning the
morphological structure, key characteristics, and distribution of trees. They can provide an
important scientific basis for revealing the growth law of trees. Among the most commonly
used sensors, lidar has received extensive attention in the field of forestry monitoring
equipment due to its good stability and high precision, and it is little affected by the
surrounding environment [1–6].

A multi-beam lidar is mainly applied to 3D reconstruct a space. We can obtain 6-dof
pose and more spatial environment information based on multi-beam laser scanning. In
2014, Zhang et al. [7] proposed the LOAM framework, which uses the iterative closest point
(ICP) algorithm to realize point cloud matching. It divides localization and mapping into
two different parts. First, the pose is roughly estimated according to the high-frequency
odometry, and then, through point cloud data registration and matching based on ICP, the
pose is optimized, and a 3D point cloud map is constructed. This is the first simultaneous
localization and mapping (SLAM) framework for 3D point cloud mapping, but due to the
lack of back-end optimization, the drift is large. Shan et al. [8] added back-end optimization
on the base of LOAM and proposed a LeGO-LOAM framework that can be implemented
on a lightweight platform, and it uses a multi-beam lidar for point cloud registration. In
2020, the same authors updated the LeGO-LOAM framework and came up with LIO-
SAM [9], which includes inertial measurement unit (IMU) pre-integration factors and
GPS factors. It tightly couples lidar with IMU and realizes trajectory estimation and
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map reconstruction with high precision and in real time. In the same year, the algorithm
framework LOAM_Livox [10] using solid-state lidar was proposed, and it innovatively
uses reflection intensity to remove defects in laser points and improve the robustness of the
system. In addition, Google’s open-source Cartographer algorithm [11] was a milestone
in Lidar SLAM, which originally only supported 2D mapping with a single-line lidar.
However, with the new version, 3D laser point cloud reconstruction is also supported.
The core idea of the algorithm is to eliminate the accumulated errors in the process of
reconstruction using closed-loop detection, and the search method of branch and bound is
adopted to greatly increase the speed of the algorithm. However, a multi-beam lidar has a
large volume and a high cost. Meanwhile, the point cloud registration algorithm is highly
complex and requires a lot of time to reconstruct environmental information. Therefore, 3D
reconstruction with a multi-beam lidar cannot be widely promoted in the field of large-scale
information acquisition such as in forest areas.

In view of the above problems, single-line lidar has attracted much attention for its
light weight and low price, and it has become basic equipment for scene reconstruction. At
the same time, two-dimensional environment map reconstruction can be achieved with a
single-line lidar, such as GMapping [12] based on the particle filter, Karto SLAM [13] based
on pose graph optimization, Hector SLAM [14] based on occupancy grid map matching,
and Google Cartographer [11] based on 3D grid map matching. However, single-line
lidar mapping can only obtain the 2D information of the plane where the current lidar is
located [15], and it cannot obtain spatial 3D information due to its hardware limitations.

With the development of SLAM technology, it is also possible to obtain 3D space point
cloud information with a single-line lidar. Hähnel et al. [16] constructed a two-dimensional
map with a horizontally placed single-line lidar to recover attitude transformation and a
vertically placed single-line lidar to construct point cloud information. In order to collect
3D map information, Zhang et al. [7] installed a single-line lidar on a rotating platform so
that the system could have a larger field of view. Zhang et al. [17] used visual odometry
to estimate the ego-motion of a single-line lidar, providing a rough estimation of the pose
for point cloud registration, and then used the lidar odometry based on scan matching
to optimize the pose and register the point cloud. Bosse et al. [18] constructed a Zebedee
device, which is composed of a single-line lidar and an inertial measurement unit (IMU).
However, the above method relies on a single sensor, which has problems such as a low
accuracy, poor robustness, and a complex mechanical structure.

Relying on multi-sensor fusion technology, the above problems can be solved by fusing
the laser, vision, IMU, code disc, GPS, and other sensor information [19]. Among them,
vision can provide pose estimation in a long-term slow motion state, and IMU can compen-
sate for the positioning deviation during fast motion with its high-frequency measurement
advantage. The current fusion of vision and IMU is mainly divided into the following
two categories: Kalman filter [20–25] fusion and nonlinear optimization [11,26–29] fusion.
Chen et al. [30] used the Kalman filter algorithm to fuse RGB-D images and IMU data
to obtain the real-time pose of a mobile robot, and they bounded a single-line lidar to
the mobile robot for indoor point cloud reconstruction. However, the Kalman filter can
only be optimized based on the data of the previous frame, it cannot obtain the global
optimal solution, and the lidar mounted on the wheeled robot platform is not suitable for
the scanning of complex terrain in forest areas.

To solve the above problems, in this paper, we propose a real-time reconstruction
method of a 3D point cloud based on visual–IMU fusion with a single-line lidar, and we
construct a low-cost handheld forest information collection device. The method adopts
multi-sensor tightly coupled fusion technology to provide accurate pose estimation for
a single-line lidar. Then, we obtain an accurate 3D point cloud map using point cloud
projection, densification, and loop closure correction based on pose estimation. Finally,
we verify the mapping accuracy and real-time performance through experiments, and the
method proposed in this paper can also be seamlessly extended to other devices, such as a
multi-beam lidar and a solid-state lidar.
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2. Real-Time Reconstruction System of Forest Point Cloud

A real-time reconstruction system of a point cloud using a single-line lidar based
on visual–IMU fusion in a forest is shown in Figure 1. The whole system consists of a
monocular camera, IMU, and a single-line lidar. In order to ensure a uniform density
distribution of the 3D point cloud map, the camera is placed horizontally to obtain the front
image, and the single-line lidar is placed vertically for longitudinal scanning. When the
system moves in the forest area, the monocular camera obtains forest image information
and the IMU sensor obtains the angular velocity and acceleration. The global odometry
information of the system is obtained by the fusion of the two sensors, and the single-line
lidar obtains the laser point cloud plane.
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Figure 1. Point cloud real-time reconstruction system with a single-line lidar based on visual–IMU fusion.

The overall framework of this paper is shown in Figure 2. First, we use a nonlinear
optimization fuse method to fuse the visual reprojection error extracted from the monocular
camera images and the IMU pre-integration error from the IMU data, which can project the
pose estimation matrix TW

C from the monocular camera coordinate system (C) to the global
world coordinate system (W). Then, by calculating the pose transformation matrix TW

L of
the single-line lidar coordinate system (L) corresponding to (W), the current laser data
in the forest can be projected and reconstructed to form a three-dimensional point cloud
map. The monocular camera coordinate system (C), the IMU coordinate system (B), and
the lidar coordinate system (L) are bound together, and the relative positions of TC

B and TB
L

between (C), (B), and (L) can be directly obtained through external parameter calibration.
Meanwhile, each sensor is time-synchronized.
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Figure 2. The overall framework of forest point cloud real-time reconstruction method with a
single-line lidar based on visual–IMU fusion.
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3. Pose Estimation Based on Visual–IMU Fusion

In order to achieve the pose estimation of the forest point cloud reconstruction system
robustly and accurately, we implement a visual–IMU fusion SLAM system based on
nonlinear optimization by minimizing the errors from the camera and IMU.

3.1. Reprojection Error Based on Vision

The monocular camera collects forest image information and provides the initial image
sequence for the forest point cloud reconstruction system. At the same time, in order to
avoid the loss of the feature track, this paper establishes the following constraints to define
the key frames of the obtained image sequence:

∑
k=1

(Vk+1−Vk)

k > α

Fk < β
(1)

where Vk+1 − Vk is the parallax between the (k + 1)th frame and the kth frame; Fk is the
number of feature points of the kth frame; and α and β are the predefined thresholds. In
Formula (1), there are two strategies for key frame selection. The first one is the average
parallax of the key frames. If we add one new frame, the average parallax of the tracked
features in all key frames exceeds the specified threshold, and we treat the frame as a new
key frame. Another strategy is the number of feature points. If the number of tracked
feature points is below the specified threshold, the frame is regarded as a new key frame.

This paper uses the KLT sparse optical flow algorithm [31] to extract and track the
feature points of image key frames. Therefore, we can form matching feature point pairs
between adjacent key frames. At the same time, for each new image, we use the RANSAC
algorithm [32] with the basic matrix model for outlier elimination.

In the feature point method, camera motion is often estimated by minimizing the
reprojection error based on point pairs from adjacent frames. This paper adopts the
difference between the spatial coordinates and the pixel coordinates of the feature points to
obtain the visual reprojection error between two adjacent key frames:

rCkp = uk+1 −
1
zp

k
KTw

k Pk (2)

In Equation (2), Pk =
(

xp
k , yp

k , zp
k

)T
is the 3D spatial coordinate of the pth feature point

in the kth frame; uk+1 =
(

up
k+1, vp

k+1, 1
)T

is the pixel coordinate of the pth feature point in
the k+ 1th frame, expressed in homogeneous coordinates; Tw

k represents the transformation
matrix from the kth frame to the k + 1th frame, which is composed of the camera’s position
and attitude, pw

k and qw
k , respectively; and K is the camera internal parameter.

The visual reprojection error is obtained from the forest images, and it provides visual
constraints for the pose estimation of visual–IMU fusion.

3.2. Pre-Integration Error Based on IMU

We collect the angular velocity ω̃ and acceleration ã of the IMU sensor on the roll, pitch,
and yaw, but they are affected by the gyroscope bias bω and noise nω , and the acceleration
bias ba and noise na. We assume that the derivatives of biases bω and ba and noises nω and
na are Gaussian; the real angular velocity ω and acceleration a where the system is located
are given by

ω = ω̃− bω − nω, a = ã− ba − na (3)

Several IMU measurements are sampled between the kth and k + 1th frames of the
camera, and the position pk+1, speed vk+1, and attitude qk+1 at the k + 1th frame can be
obtained by integrating the IMU measurement values between the two frames. However,
the system needs to recalculate the integral between the two frames every time after
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the pose of the kth frame is optimized, which is time consuming. Therefore, this paper
adopts the pre-integration method in VINS-Mono [33] to transform the integration term
corresponding to the world coordinate system between the kth and k + 1th frames into the
pre-integration term corresponding to the kth frame. At the same time, due to the bias and
noise of the IMU pre-integration term, the IMU sensor usually estimates the motion by
minimizing the pre-integration error. This paper uses the pre-integration error rIk of the
IMU term. We view the pre-integration component between two frames as the measured
value, and all state variables of two frames are subtracted as the observed value:


rp
rv
rq
rba
rbω

 =



Rbk
w

(
pw

k+1 − pw
k − vw

k ∆t + 1
2 gw∆t2

)
− αk

k+1

Rk
w

(
vw

k+1 − vw
k + gw∆t

)
− βk

k+1

2
[
qk+1

k ⊗
(

qk
w ⊗ qw

k+1

)]
xyz

ba
k+1 − ba

k

bw
k+1 − bw

k


(4)

where r represents the error of the state quantity; g represents the acceleration of gravity,
which is 9.8 m/s2; ∆t represents the time interval between two adjacent frames bk and bk+1;
α and β represent the pre-integration term of p and v, respectively; and [·]xyz represents
the three-dimensional vector consisting of the imaginary part of the quaternion (x, y, z).
Therefore, through the above preprocessing, the IMU information is converted into the
IMU pre-integration error, which provides IMU constraints for the pose estimation of
visual–IMU fusion.

3.3. Pose Estimation and Optimization Based on Visual–IMU Fusion

Both the visual odometry and the IMU odometry can obtain the pose transformation
matrix. However, the feature point pairs are easily lost when the visual odometry moves
rapidly; the IMU data can easily be diverged. Therefore, we adopt a tightly coupled
approach to construct a least squares problem of minimizing the visual reprojection error
Equation (2) and the IMU pre-integration error Equation (4), and we obtain the pose
estimation using nonlinear optimization:

χ = argmin
χ

{
∑
k∈F

∑
p∈P

∥∥∥rCkp

∥∥∥2
+∑

k∈F

∥∥(rIk

)∥∥2
}

(5)

χ = {pw
k , vw

k , qw
k , bw

k , ba
k} (6)

where F represents all image frames; P represents the feature points extracted from all
image frames; pw

k , vw
k , and qw

k represent the position, velocity, and attitude, respectively, of
the kth key frame under the world coordinate system (W); and bw

k and ba
k represent the bias

of the gyroscope and the acceleration at the kth key frame, respectively. Finally, we adopt
the Gauss–Newton method to solve Equation (5) in order to obtain poses pw

k and qw
k at the

kth key frame. According to the pose information of the previous frames, the global pose
transformation matrix TW

C of the current time can be obtained.
Therefore, this paper obtains the global real-time positioning information of the forest

point cloud reconstruction system at the current time.

4. The 3D Point Cloud Reconstruction

We can obtain global real-time pose estimation through visual–IMU fusion. In order to
form a 3D point cloud map, we adopt projection, densification, and loop closure correction
to combine laser data with pose information.
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4.1. The 3D Point Cloud Space Projection

The single-line lidar can simultaneously obtain the angle and distance (θ, d) of each
laser point data in the lidar polar coordinate. By taking into account the synchronization
between the lidar data and the odometry information, this paper only receives the lidar
data at the time of the kth visual key frame of the camera and maps them to the world
coordinates according to the real-time positioning information.

Firstly, the angle and distance (θi
k, di

k) measured in the lidar polar coordinate is directly
projected to the lidar coordinate (L):

Xi(L)
k

Yi(L)
k

Zi(L)
k

 = di
k

 cos θi
k

sin θi
k

0

 (7)

where di
k indicates the distance of the ith laser point during the kth scan; θi

k is the corre-
sponding angle; and the superscript (L) indicates the lidar coordinate.

As the single-line lidar is placed vertically, the laser point data produce distortion
errors along with the system movement, resulting in a spiral deflection. In this paper, IMU
information is used to eliminate spiral deflection. During the laser point scanning at the
kth frame, we obtain poses ps and pethough IMU integration at the beginning and the end
of the lidar rotation. This paper adopts linear interpolation to eliminate spiral deflection,
and the pose pi of each intermediate point can be approximated as

pi =
(e− i)ps + (i− s)pe

e− s
(8)

where s and e represent the time stamps at the beginning time and the end time, respectively,
and i represents the time stamp of the middle laser point of the single circle scanning. ps,
pe, and pi represent the system poses at the time stamps of s, e, and i, respectively.

Then, each laser point is adjusted to form the correct coordinates of the laser point: Xi′
k
(L)

Yi′
k
(L)

Zi′
k
(L)

 = pi
T


Xi(L)

k

Yi(L)
k

Zi(L)
k

 (9)

Then, the pose estimation TW
C of the key frame is obtained using tightly coupled

multi-sensor fusion as mentioned earlier. According to the relative pose transformation
between multiple sensors, TC

B and TB
L , we obtain the global pose transformation matrix TW

L
of the forest point cloud reconstruction system, which transforms laser points in the lidar
coordinate (Xi′

k
(L), Yi′

k
(L), Zi′

k
(L)) to the world coordinate (Xi(W)

k , Yi(W)
k , Zi(W)

k ). Superscript
(W) indicates that the point is in the world coordinate system:

TW
L = TW

C TC
B TB

L (10)
Xi(W)

k

Yi(W)
k

Zi(W)
k

 = TW
L

 Xi′
k
(L)

Yi′
k
(L)

Zi′
k
(L)

 (11)

According to (11), the single-line lidar data can be projected in real time and converted
to the world coordinate system to form a 3D point cloud at the key frame.
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4.2. The 3D Space Point Cloud Densification

In order to align the data of the visual frame and the lidar frame, we only collect
point cloud data at the visual key frame, which causes data loss in the adjacent two frames
k and k + 1.

In order to obtain a dense point cloud map, this paper utilizes the local features
of point clouds at two adjacent frames to fill the point cloud information between two
frames. As shown in Figure 3, we obtain the pose matrixes Tk and Tk+1 at the kth and
k + 1th frames, respectively. The pose matrix includes a rotation matrix R and a translation
vector t. In order to provide the pose for each moment between two frames, we adopt
different interpolation strategies to interpolate R and t. For the rotation matrix R, the pose
is often expressed by the quaternion, so we use nonlinear spherical interpolation (Equation
(13)), while for the translation vector t, we use linear interpolation (Equation (14)). By
combining the pose of each moment with the lidar data of the world coordinate system
(Xi(W)

k , Yi(W)
k , Zi(W)

k ), the loss of 3D point cloud data can be filled:
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(

θk − θl
k

)
Rk + sin(θl

k)Rk+1
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(13)

tl
k =

(n− l)tk + ltk+1
n

(14)

where Rk represents the rotation matrix of the system at the initial moment of the kth
key frame; tk is the translation vector of the system at the initial moment of the kth key
frame; n is the total number of point cloud rings to be filled between two key frames; and l
indicates the sequence of point cloud rings between two key frames. Rl

k is obtained by using
nonlinear spherical interpolation, and tl

k is obtained by using linear quadratic interpolation.
The sparse point cloud at the key frame is densified between frames to form the initial

point cloud map.

4.3. The 3D Space Point Cloud Loop Closure Correction

Since the pose estimation of multi-sensor fusion is a recursive process, the accumulated
error will cause the overall deviation of the 3D reconstruction. This section adopts loop
closure detection and optimization based on the visual key frame to improve the accuracy
of the mapping.

In the process of 3D reconstruction, it is necessary to continuously detect whether the
current frame is similar to a historical frame in order to incorporate a loop. Due to the huge
number of key frames in large-scale forest scenes, it is impossible to compare the current
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frame with all previous key frames one by one. Therefore, this paper adopts the DBoW2
model with bags of binary words [34] to form a KD-Tree of feature points. If the current
frame Kcur meets the consistency detection with a past frame, the past frame is regarded as
a closed-loop frame Kloop.

After the closed-loop frame is detected, the accurately matched feature point pair is
established between the current frame Kcur and the closed-loop frame Kloop. Meanwhile,
we obtain the poses of Kcur and Kloop. According to the pose optimization proposed in
this paper in Section 3.3, we use the reprojection error of feature point pairs and the IMU
pre-integration error between Kcur and Kloop as constraints in Equation (5). The correction

matrix Tloop
cur can be obtained by tightly coupled optimization. Therefore, the 3D point cloud

data at the current frame Kcur are corrected to
Xi(W)

cur(cor)

Yi(W)
cur(cor)

Zi(W)
cur(cor)

 = Tloop
cur


Xi(W)

cur

Yi(W)
cur

Zi(W)
cur

 (15)

The above process only corrects the point cloud information of the current frame Kcur,
but the point cloud information between Kloop and Kcur still has a cumulative error.

We define one frame Kj between Kloop and Kcur, assuming that we know the pose of
Kj through the pose estimation of visual–IMU fusion. This paper establishes the residual
function of the pose error. It includes two parts. The first one is caused by the translation
and yaw angle between the Kjth key frame and the adjacent Kj+1th key frame; the other

one is caused by Tloop
cur :

rj+1
j =

 R(φ̂j, θ̂j, ψj)
−1

(tj+1 − tj)− t̂j+1
j

ψj+1 − ψj − ψ̂
j+1
j

 (16)

rloop
cur =

[
tcur − tloop − t̂loop

cur

ψcur − ψloop − ψ̂
loop
cur

]
(17)

In Equations (16) and (17), R(φ̂j, θ̂j, ψj) represents the rotation matrix that only op-
timizes the yaw angle, and t represents the translation matrix; φ, θ, and ψ represent the
roll angle, pitch angle, and yaw angle, respectively. Here, the superscript ∧ represents the
accurate value, which does not participate in the optimization process; t̂j+1

j represents the
translation vector obtained by the pose estimation of the multi-sensor fusion between the
jth and j + 1th frames, and ψ̂

j+1
j is the yaw angle obtained from the rotation matrix in the

pose estimation; and t̂loop
cur and ψ̂

loop
cur are obtained by the correction matrix Tloop

cur . This paper
constructs the loss function of the loop closure optimization by using the translation matrix
t and the yaw angle ψ as the optimization variables:

min
t,ψ

{
∑

j,j+1∈S

∥∥∥rj+1
j

∥∥∥2
+ ∑

cur,loop∈L

∥∥∥rloop
cur

∥∥∥2
}

(18)

where S is the set of adjacent frames, which are taken as constraints, and L is the set of
closed-loop frames, which are taken as constraints. The correction matrix Tj(cor) of each
frame can be obtained by minimizing the loss function using the Gauss–Newton method.
Moreover, the 3D point cloud, which has a cumulative error, can be adjusted to
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
Xi(W)

j(cor)

Yi(W)
j(cor)

Zi(W)
j(cor)

 = Tj(cor)


Xi(W)

j

Yi(W)
j

Zi(W)
j

 (19)

Finally, this paper generates globally consistent 3D point cloud maps.

5. Experiments and Discussion
5.1. Experimental System Design

This paper constructs a forest point cloud real-time reconstruction system, as shown in
Figure 4. The system includes a monocular camera, IMU, a hand-held bracket, a single-line
lidar, and a computing platform. The monocular camera and the IMU use a realsense D435i
device. The single-line lidar uses Rplidar A2, which has a 360◦ field of view and a 0.9◦

angular resolution. Each sensor is time-synchronized in advance, and the transformations
among sensors are regarded as constant values, which are calibrated offline. The computing
device adopts a PC with a quad-core 2.5 GHz frequency and an i7 processor, which uses
the Ubuntu18.04 operating system and the ROS robot operating system.
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Figure 4. The 3D point cloud reconstruction system.

We collect data from the forest of Dongsheng Bajia Country Park in Haidian District
of Beijing with the designed real-time reconstruction system of the forest point cloud. The
experiments regarding point cloud densification and loopback correction are carried out
separately. In addition, we conduct studies at different scenes, such as a single tree, a row of
trees, and some forest areas. In the experiment, the monocular camera outputs forest image
information at a frequency of 20 Hz, the IMU outputs acceleration and angular velocity
information at a frequency of 200 Hz, and the single-line lidar outputs forest laser point
data at a frequency of 12 Hz.

5.2. The 3D Point Cloud Reconstruction in Forest Area

During the 3D point cloud reconstruction process, the lidar data are first projected to
generate a sparse point cloud according to Figure 5a, and then the sparse point cloud is
densified into a 3D point cloud map, as shown in Figure 5b. When the system returns to the
starting point, a loop is formed based on key frame detection. As shown in Figure 5c, the
3D point cloud of the forest area realizes loop correction and reduces the cumulative error.
We generate a globally consistent 3D point cloud map, where features such as ground,
fences, and trees can be clearly seen.
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(b) dense point cloud; (c) dense point cloud loop closure correction.

In order to analyze the robustness and availability of the reconstruction method
proposed in this paper with a single-line lidar, this paper collects data from forest areas
with undulating terrain and a messy arrangement of trees, and a 3D point cloud map is
obtained. The reconstruction map is shown in Figure 6. It can be seen that, in the area with
rich environmental features, the 3D point cloud is well preserved and tree reconstruction is
more intensive. In the area with sparse environmental features, localization also has good
convergence, and the 3D point cloud can still accurately reflect environmental information.
Bushes, trees, branches, leaves, and paths all achieve a good reconstruction effect.
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5.3. Experiment Comparison of Different Devices

In order to evaluate the local accuracy of the 3D point cloud map, this paper compares
it with manual meter scale measurements and a RoboSense RS-Ruby multi-beam lidar
(80-line lidar) based on the LIO-SAM framework in three different scenes. LIO-SAM, the
mainstream of current reconstruction methods, is obviously superior to other methods in
the field of outdoor reconstruction [9,35,36]. Figure 7 shows several maps of a single tree,
a row of trees, and a part of the forest area using different devices. This paper takes the
measurement values from the manual meter scale as the real values D and the measurement
values from the two other devices as the measurement results Di. The absolute errors caused
by the difference between D and Di, compared with the real values, are taken as the relative
errors of the construction of mapping δ:

δ =
|Di − D|

D
× 100% (20)

In the measurement of a single tree, this paper collects the height and the diameter
of the tree at 1.25 m, 1.58 m, and 1.86 m from the root of the ground using the different
devices. The measurement data are shown in Table 1. Analyzing the data shows that the
relative error of the method proposed in this paper is 3.66%, and the relative accuracy can
reach 96.34%.
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Table 1. Measurement data of a single tree.

A Single Tree
The Diameter at 1.25 m The Diameter at 1.58 m The Diameter at 1.86 m The Height Average Error

Di (m) δ (%) Di (m) δ (%) Di (m) δ (%) Di (m) δ (%) ¯
δ (%)

Real value 1.16 0 1.13 0 1.06 0 4.38 0 0

Multi-beam lidar 1.18 1.72 1.11 1.77 1.04 1.89 4.45 1.60 1.75

Single-line lidar 1.20 3.45 1.17 3.54 1.02 3.77 4.21 3.88 3.66

Diameter at breast height (DBH) is the most direct factor reflecting tree growth. In
order to further evaluate the measurement accuracy of DBH, this paper adopts circle
fitting [37] to extract the tree diameter, as shown in Figure 8a. For better DBH estimates,
10 cm-thick sections are selected at heights of 1.25 m, 1.58 m, and 1.86 m, as shown in
Figure 8b. We measure different DBH values of 20 trees in the forest area and preprocess the
data to eliminate outliers. We use the RMSE, bias, and Pearson’s r parameters for accuracy
assessment. The results are shown in Table 2. The average RMSE of DBH is 4.35 cm in
the reconstruction with the single-line lidar compared with the real values, which is 2 cm
different from that of the multi-beam lidar. The bias values for the DBH estimations are also
presented in Table 2. They are 0.476 cm and −0.273 cm for the multi-beam lidar and single-
line lidar, respectively. The average values close to zero show that the DBH estimations are
almost unbiased. Pearson’s r represents the correlation between the estimated and the true
values of DBH. It is obvious that they all have a high correlation.
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Table 2. Accuracy assessment for DBH parameter.

Height (m)

Different Devices

Multi-Beam Lidar Single-Line Lidar

RMSE (cm) Bias (cm) Pearson’s r RMSE (cm) Bias (cm) Pearson’s r

1.25 2.92 0.439 0.987 4.47 −0.865 0.947

1.58 2.47 0.620 0.987 4.08 0.013 0.945

1.86 1.69 0.370 0.984 4.49 0.016 0.938

Average 2.36 0.476 0.986 4.35 −0.273 0.944

For tree spacing in a large-scale forest area, this paper selects a row of 10 trees with
different spacings to measure the distance between adjacent trees. The results are shown
in Table 3, in which it can be seen that the method proposed in this paper constructs a 3D
point cloud of a row of trees; the relative error of the tree spacing is 4.65%, and the relative
accuracy can reach 95.35%.

Table 3. Measurement data of a row of trees.

Tree Spacing
1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 Average Error

Di (m) Di (m) Di (m) Di (m) Di (m) Di (m) Di (m) Di (m) Di (m) ¯
δ (%)

Real value 6.30 3.27 3.75 4.80 4.80 4.25 3.80 4.36 5.13 0

Multi-beam lidar 6.50 3.33 3.85 5.10 4.80 4.27 3.90 4.32 5.10 2.06

Single-line lidar 6.30 3.01 3.55 5.22 4.66 4.20 4.02 4.65 5.30 4.65

At the same time, this paper also selects a trapezoidal forest area for study and
measures its short base, long base, altitude, lateral side, and the number of trees. The
coverage area is approximated by the trapezoidal area. By analyzing the data in Table 4, it
can be seen that the relative error of the method proposed in this paper is 1.92% in part of
the forest, and the relative accuracy can reach 98.08%.

Table 4. Measurement data of some forest areas.

Part of the Forest
Short Base Long Base Altitude Lateral Side Average Error Coverage Area

Number
Di (m) δ (%) Di (m) δ (%) Di (m) δ (%) Di (m) δ (%) ¯

δ (%) (m2)

Real value 25.3 0 35.8 0 24.5 0 26.6 0 0 748.47 32

Multi-beam lidar 24.9 1.58 35.2 1.68 24.9 1.63 27.1 1.88 1.69 748.25 32

Single-line lidar 24.8 1.98 35.3 1.40 25.0 2.04 27.2 2.26 1.92 751.25 32

As shown in Figure 7, the 3D point cloud maps constructed using different sensors
are compared with the actual scene, and they can completely reflect the abundant environ-
mental information in the forest areas. Furthermore, it can be seen from the data in the
above four tables that the algorithm proposed in this paper has good measurement results
for tree height, tree diameter at breast height, and tree spacing and distribution in forest
areas. Moreover, the measured average relative error of the algorithm in this paper is less
than 5% compared with real environmental values, while the measured average relative
error of the multi-beam lidar is about 2%. The accuracy of the maps created using the two
methods is very similar, but the cost of the proposed algorithm is less than one-tenth of that
of the multi-beam lidar. In addition, the point cloud registration algorithm based on the
LIO-SAM of the multi-beam lidar has high complexity. It takes more time compared with
real-time reconstruction based on the visual–IMU fusion of a single-line lidar proposed in
this paper. Considering that forest development pays more attention to the distribution of
trees, while the reconstruction of branches and leaves are not key factors, the algorithm
proposed in this paper achieves better real-time performance and lower price at the cost of
losing parts of branches and leaves in the point cloud data.



Appl. Sci. 2022, 12, 4442 13 of 15

5.4. Experimental Comparison of Different Methods

In the experimental comparison of the different methods with the same device, this
paper uses the Kalman filter algorithm [19] and the nonlinear optimization algorithm
proposed in this paper to collect point cloud data from the same forest area, and the
reconstruction results are shown in Figure 9.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 16 
 

5.4. Experimental Comparison of Different Methods 

In the experimental comparison of the different methods with the same device, this 

paper uses the Kalman filter algorithm [19] and the nonlinear optimization algorithm pro-

posed in this paper to collect point cloud data from the same forest area, and the recon-

struction results are shown in Figure 9.  

At the initial stage of the experiment, both methods construct the 3D scene map of 

the forest area well, as shown in the right part of Figure 9a,b. With an increase in the 

amount of collected data, a scene shift occurs with the Kalman filter method. However, 

with the method proposed in this paper, we can still accurately collect the terrain data, as 

shown in the left part of Figure 9a,b. In this paper, the root mean square error is used as 

the accuracy evaluation standard between the point cloud maps. The experiments show 

that the proposed method reduces the root mean square error by 4.65% compared with 

the method based on the Kalman filter. 

In this paper, the time cost of each part in the point cloud processing is calculated as 

the evaluation index of the 3D reconstruction system, as shown in Table 5. The Kalman 

filter algorithm in the original literature iterates with the pose covariance matrix, and its 

calculation amount increases by the order of magnitude. Moreover, it is only optimized 

based on the pose of the last frame, lacking loopback and unable to eliminate cumulative 

error. Compared with the 3D reconstruction based on the Kalman filter, the method pro-

posed in this paper has strong robustness and high precision, and its time cost meets the 

real-time requirements of a 3D point cloud reconstruction system. 

  
(a) (b) 

Figure 9. Comparison of reconstruction results of different methods: (a) 3D reconstruction based on 

Kalman filter; (b) 3D reconstruction based on the method proposed in this paper. 

Table 5. Average time cost. 

Methods 
Time Cost (μs) 

Transform to the World Frame Fill Point Cloud Loop Elimination Error 

Kalman filter 147 951 / 

Nonlinear optimization 158 571 174 

6. Conclusions 

In this paper, we propose a forest point cloud real-time reconstruction method with 

a single-line lidar based on visual–IMU fusion, and we construct a low-cost point cloud 

acquisition device consisting of a monocular camera, IMU, and a single-line lidar. We 

adopt a nonlinear optimization method to obtain the pose estimation and then transform 

laser data using projection, densification, and loop closure correction to form a 3D point 

cloud map. Meanwhile, we create 3D point cloud maps of a single tree, a row of trees, and 

part of a forest region. The experimental results show that the average relative error of the 

proposed method is 3.41% compared with real values, and the root mean square error is 

reduced by 4.65% compared with the Kalman filter fusion algorithm. The average time 

cost is 903μs and reaches the real-time requirement. The method in this paper is optimized 

based on all historical data, which makes it easier to achieve the optimum. 

Figure 9. Comparison of reconstruction results of different methods: (a) 3D reconstruction based on
Kalman filter; (b) 3D reconstruction based on the method proposed in this paper.

At the initial stage of the experiment, both methods construct the 3D scene map of
the forest area well, as shown in the right part of Figure 9a,b. With an increase in the
amount of collected data, a scene shift occurs with the Kalman filter method. However,
with the method proposed in this paper, we can still accurately collect the terrain data, as
shown in the left part of Figure 9a,b. In this paper, the root mean square error is used as
the accuracy evaluation standard between the point cloud maps. The experiments show
that the proposed method reduces the root mean square error by 4.65% compared with the
method based on the Kalman filter.

In this paper, the time cost of each part in the point cloud processing is calculated as
the evaluation index of the 3D reconstruction system, as shown in Table 5. The Kalman
filter algorithm in the original literature iterates with the pose covariance matrix, and its
calculation amount increases by the order of magnitude. Moreover, it is only optimized
based on the pose of the last frame, lacking loopback and unable to eliminate cumulative
error. Compared with the 3D reconstruction based on the Kalman filter, the method
proposed in this paper has strong robustness and high precision, and its time cost meets
the real-time requirements of a 3D point cloud reconstruction system.

Table 5. Average time cost.

Methods
Time Cost (µs)

Transform to the World Frame Fill Point Cloud Loop Elimination Error

Kalman filter 147 951 /

Nonlinear optimization 158 571 174

6. Conclusions

In this paper, we propose a forest point cloud real-time reconstruction method with
a single-line lidar based on visual–IMU fusion, and we construct a low-cost point cloud
acquisition device consisting of a monocular camera, IMU, and a single-line lidar. We adopt
a nonlinear optimization method to obtain the pose estimation and then transform laser
data using projection, densification, and loop closure correction to form a 3D point cloud
map. Meanwhile, we create 3D point cloud maps of a single tree, a row of trees, and part
of a forest region. The experimental results show that the average relative error of the
proposed method is 3.41% compared with real values, and the root mean square error is
reduced by 4.65% compared with the Kalman filter fusion algorithm. The average time
cost is 903µs and reaches the real-time requirement. The method in this paper is optimized
based on all historical data, which makes it easier to achieve the optimum.
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