
Citation: Söylemez, M.;

Tekinerdogan, B.; Kolukısa Tarhan, A.

Feature-Driven Characterization of

Microservice Architectures: A Survey

of the State of the Practice. Appl. Sci.

2022, 12, 4424. https://doi.org/

10.3390/app12094424

Academic Editors: Paula Fraga-

Lamas and Vito Conforti

Received: 22 March 2022

Accepted: 25 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Feature-Driven Characterization of Microservice Architectures:
A Survey of the State of the Practice
Mehmet Söylemez 1 , Bedir Tekinerdogan 2,* and Ayça Kolukısa Tarhan 1

1 Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey;
mehmetsoylemez@hacettepe.edu.tr (M.S.); atarhan@hacettepe.edu.tr (A.K.T.)

2 Information Technology Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
* Correspondence: bedir.tekinerdogan@wur.nl

Abstract: With the need for increased modularity and flexible configuration of software modules,
microservice architecture (MSA) has gained interest and momentum in the last 7 years. As a result,
MSA has been widely addressed in the literature and discussed from various perspectives. In
addition, several vendors have provided their specific solutions in the state of the practice, each with
its challenges and benefits. Yet, selecting and implementing a particular approach is not trivial and
requires a broader overview and guidance for selecting the proper solution for the given situation.
Unfortunately, no study has been provided that reflects on and synthesizes the key features and
challenges of the current MSA solutions in the state of the practice. To this end, this article presents
a feature-driven characterization of micro-service architectures that identifies and synthesizes the
key features of current MSA solutions as provided by the key vendors. A domain-driven approach
is adopted in which a feature model is presented defining the common and variant features of the
MSA solutions. Further, a comparative analysis of the solution approaches is provided based on the
proposed feature model.

Keywords: microservice architecture; micro-service; architecture; survey

1. Introduction

Traditionally, software systems were for a long time developed as monolithic systems
with a monolithic architecture. As a result, software systems were built as a single unit in
which different functional aspects, such as data input and output, data processing, business
logic, error handling, and user interface, are interconnected and interdependent rather than
loosely coupled [1]. In this tightly coupled monolithic system, each component and its
associated components must be present for code to be executed or compiled. Provided that
the system is not too large, this architectural style can be applied for small teams and small
applications and can be easy to develop, debug, and test. However, with the increased size
and complexity, monolithic architectures have to cope with serious disadvantages [2]. The
start-up time of larger monolithic applications may slow down. Small changes in a single
function can require compiling and testing the whole system, and thus maintenance and
evolution of the system will become difficult. For each update, a redeployment of the entire
application is necessary, and continuous deployment is difficult.

To cope with the obstacles of this architectural style, the notion of service-oriented
architecture (SOA) has been proposed [3]. SOA services are provided to the other compo-
nents by application components through a communication protocol that describes how
they pass and parse messages using description metadata. The metadata provide the
functional characteristics of the service, as well as the quality-of-service characteristics.
Software components are made reusable via service interfaces, which utilize common
communication standards and protocols over a network. A service is defined as a discrete
unit of functionality that is made accessible by developers, and which can be remotely

Appl. Sci. 2022, 12, 4424. https://doi.org/10.3390/app12094424 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12094424
https://doi.org/10.3390/app12094424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2826-5273
https://orcid.org/0000-0002-8538-7261
https://doi.org/10.3390/app12094424
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12094424?type=check_update&version=1

Appl. Sci. 2022, 12, 4424 2 of 20

accessed and acted upon by other users [3,4]. Examples of services are checking inventory,
retrieving a credit card statement online, and payment. A large software application can be
provided by using and composing different services.

MSA can be considered as a variant of the SOA, which includes a collection of loosely
coupled services. In MSA, services are small in size, autonomously developed, indepen-
dently deployable, and decentralized, while the protocols are lightweight. An MSA is
assumed to have the following properties: (1) it lends itself to a continuous delivery soft-
ware development process. This implies that a change to a small part of the application
only requires rebuilding and redeploying only one or a small number of services. (2) It
adheres to principles such as fine-grained interfaces (to independently deployable services),
business-driven development (e.g., Domain-Driven Design (DDD)). The goal is that teams
can bring their services to life independent of others. Loose coupling reduces all types of
dependencies and complexities, as service developers do not need to care about the users
of the service and they do not force their changes onto users of the service. MSA gives
importance to autonomous and lightweight services [4]. MSA has been in more demand
because it minimizes the disadvantages that come with SOA and it has a lightweight
architecture. MSA can be deployed, developed, tested, and operated independently.

MSA has been widely addressed in the literature and discussed from various perspec-
tives [5]. In addition, several vendors have provided their specific solutions in the state of
the practice, each with its challenges and benefits. Yet, selecting and implementing a partic-
ular approach is not trivial and requires a broader overview and guidance for selecting the
proper solution for the given situation. Unfortunately, no study has been provided that
reflects on and synthesizes the key features and challenges of the current MSA solutions in
the state of the practice. The main contribution of this article is a general framework for
characterizing MSA platforms. To this end, this article first presents a feature-driven char-
acterization of micro-service architectures that identifies and synthesizes the key features
of current MSA solutions as provided by the key vendors. A domain-driven approach is
adopted in which a feature model is presented, defining the common and variant features of
the MSA solutions. Further, a comparative analysis of the solution approaches is provided
based on the proposed feature model. For this, we have identified the three key cloud
platforms, including Amazon AWS, Google Cloud Platform, and Microsoft Azure, and
characterize these with the presented characterization framework.

The remainder of the paper is organized as follows. In Section 2, we present the
background on MSA. Section 3 explains the research methodology. Section 4 introduces
the characterization framework that is used to characterize the MSA solutions. Section 5
presents the survey of the selected MSA technologies using the characterization framework.
Section 6 focuses on the analysis of existing cloud providers’ technologies according to our
identified classification framework. Section 7 presents related works and their research
directions. Section 8 provides the discussion, including the threats to validity and the
lessons learned. Finally, Section 9 concludes the paper.

2. Microservice Architecture

MSA is the latest trend while designing, developing, deploying, and delivering dis-
tributed applications [6]. MSA aims to accelerate software development by ensuring
continuous delivery and deployment. There are many definitions of microservices. Sam
Newman defines microservices as: “small autonomous services that work together, mod-
elled around a business domain” [7], and the most used definition of the MSA is the one
defined by Martin Fowler and James Lewis. They define MSA as “an approach for develop-
ing a single application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API”.

It will be useful to compare the features and development stages of the microservices
with the monolithic structure before moving on. Monolithic applications are developed and
deployed as a single unit. Any error on this single unit reveals the necessity of rebuilding
the whole application and obtaining the new version. In monolithic applications, all needs

Appl. Sci. 2022, 12, 4424 3 of 20

are put in a single unit. This structure can be successful in some cases, but the MSA may be
a better alternative as needs are shaped. Because, with this structure, you cannot separate
the deployment cycle of each part of the application, maintaining modularity can become
increasingly difficult, and it can also be difficult to track changes and their effects. In
addition, the scale remains the size of the whole application and you cannot do more
resource allocation for a specific part of the application.

Microservice-based development is a result of the evolutionary process. It completely
changes the way our applications are designed. In real life, many applications need to be
easily reconfigured, modified, and scaled as scenarios evolve. Since every microservice
is a small business process and represents a small aspect of business functionality, it is
easy to change the workflow [8]. The process starts with using DevOps applications and
shaping the organization accordingly. The next step is to have a self-service, on-demand,
and elastic infrastructure. Following this step, continuous integration (CI) with automation
and the establishment of a continuous distribution (CD) pipeline are important. With such
an infrastructure, advanced distribution techniques can be established and the company
becomes ready to use microservices [4,9].

The main purpose of MSA is to design, develop, and maintain services that can be
delivered faster, improving scalability and autonomous services [4]. Providing autonomous
services significantly affects the success of the other two goals, so it can be considered
as the primary goal. Service boundaries and communication interfaces with the outside
world must be well defined for the fast delivery of services. At this point, domain-driven
design can be used to divide the services into subdomains and determine bounded contexts.
Autonomous services should be developed, deployed, tested, scaled, versioned, and oper-
ated independently. It also allows decentralization of governance and data management
services [10]. Another important point here is that the CI and CD infrastructure should be
robust and automated so that manual effort is minimized, and speed is gained in order to
build, deploy, and operate microservices.

Having improved scalability is the ability to scale our services independently from
each other. The importance of determining how the services should be separated from each
other and from their boundaries emerges once again. Otherwise, we obtain services with
interdependent scaling rules with designs that are made wrong, which is definitely not what
is desired [4]. Other advantages that come with MSA are high availability, fault-tolerant
infrastructure, and the elimination of long-time commitments to the technology stack. It
can be evaluated as a result of the autonomous development of systems. In addition, when
we think that each service developed is smaller and more understandable and changeable,
it is easier to change the workflows of the services. Another advantage is that the teams
become more autonomous and cross-functional. This provides a high level of agility to the
teams. Moreover, teams can start developing microservices much faster.

It is not an easy task to develop and maintain the MSA due to its distributed nature. It
contains many challenging points and a lot of processes from the distributed architecture
that must be managed. It is a matter of expertise to implement a distributed application
with this architecture, which includes dealing with basic challenges, such as service dis-
covery, communication, integration, data integrity, fault tolerance, service orchestration,
load balancing, data consistency, transaction management, and unavailability. Besides that,
there are many complex challenges, such as profit optimization, elastic scheduling, intelli-
gent autoscaling, anomaly detection, etc. [11–14]. However, thanks to both the advanced
infrastructure of cloud providers and the community that recommends many common
solutions and patterns, practitioners can use MSA easily.

Many companies, such as Amazon, Netflix, LinkedIn, and Spotify, have started to use
MSA in their projects [10,15,16]. All of these companies follow the basic model for MSA, as
shown Figure 1. This model is structured by some crucial building blocks, such as main
business services, infrastructural services, discovery mechanisms, and communication
infrastructure. Each block must be isolated from other blocks and communicate with them

Appl. Sci. 2022, 12, 4424 4 of 20

using a lightweight protocol. Therefore, it is easy for them to evolve over time according to
the needs of the business or technology.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 20

as main business services, infrastructural services, discovery mechanisms, and communi-

cation infrastructure. Each block must be isolated from other blocks and communicate

with them using a lightweight protocol. Therefore, it is easy for them to evolve over time

according to the needs of the business or technology.

Client API Gateway

Microservices

Service

Service

Service

Management & Orchestration

Figure 1. Reference model for MSA. Source: adapted from [17].

3. Research Methodology

This study aims to facilitate the design and development stages of applications to be

developed with MSA and to serve as a guide. For this purpose, it is intended to identify

the features in the MSA and to classify the technologies according to these features. In this

way, the decision-making process will be accelerated, and it will be determined which

factors the technology choice depends on. In order to achieve this goal, we have deter-

mined the following research questions:

RQ1—What are the current key MSA approaches in the state of the art?

RQ2—What are the key features of these MSA approaches in RQ1?

RQ3—What are the current implementation approaches for the MSA features in RQ2?

RQ4—What are the common and different features of the selected MSA vendor’s ap-

proaches?

We developed and applied a research methodology shown in Figure 2 to reliably

analyze all of the published work involved in this study. This protocol starts by perform-

ing domain analysis for MSAs and components; then, a characterization framework is de-

veloped according to this domain analysis. Domain analysis is the systematic process for

analyzing and modeling the corresponding domain knowledge necessary for the engi-

neering process. Domain analysis includes two key sub-steps of domain scoping and do-

main modeling. In the domain scoping process, the scope of the investigated domain is

defined. In the domain modeling step, the domain knowledge is modeled for further reuse

[18]. In this article, we use feature diagrams, which is one of the approaches for domain

modeling [19]. Feature diagrams represent the common and variant features of a domain

or system.

Figure 1. Reference model for MSA. Source: adapted from [17].

3. Research Methodology

This study aims to facilitate the design and development stages of applications to be
developed with MSA and to serve as a guide. For this purpose, it is intended to identify the
features in the MSA and to classify the technologies according to these features. In this way,
the decision-making process will be accelerated, and it will be determined which factors
the technology choice depends on. In order to achieve this goal, we have determined the
following research questions:

RQ1—What are the current key MSA approaches in the state of the art?
RQ2—What are the key features of these MSA approaches in RQ1?
RQ3—What are the current implementation approaches for the MSA features in RQ2?
RQ4—What are the common and different features of the selected MSA vendor’s approaches?

We developed and applied a research methodology shown in Figure 2 to reliably
analyze all of the published work involved in this study. This protocol starts by perform-
ing domain analysis for MSAs and components; then, a characterization framework is
developed according to this domain analysis. Domain analysis is the systematic process
for analyzing and modeling the corresponding domain knowledge necessary for the en-
gineering process. Domain analysis includes two key sub-steps of domain scoping and
domain modeling. In the domain scoping process, the scope of the investigated domain
is defined. In the domain modeling step, the domain knowledge is modeled for further
reuse [18]. In this article, we use feature diagrams, which is one of the approaches for
domain modeling [19]. Feature diagrams represent the common and variant features of a
domain or system.

This process is followed iteratively because, in the meantime, the missing points in
the characterization framework can be completed by returning to domain analysis again.
Then, to validate our characterization framework, the studies that suggest technology and
patterns from both the key providers and MSA area are handled separately and the related
technologies are structured according to the characterization framework developed. While
selecting and evaluating related MSA technologies and key vendors’ infrastructure, the
characterization framework can be updated again by going back to the domain analysis
phase. Finally, we will eventually present a general evaluation of the work done.

Appl. Sci. 2022, 12, 4424 5 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 20

Domain Analysis to MSAs

Develop Characterization
Framework

Characterize each MSA
using Characterization FW

Overall Reporting and
Discussion

Select relevant MSA
Technologies/Patterns

Select relevant MSA from
key vendors in the

state-of-the-practice

Characterize each MSA
Cloud Provider approach

using Characterization FW

Figure 2. Research methodology.

This process is followed iteratively because, in the meantime, the missing points in

the characterization framework can be completed by returning to domain analysis again.

Then, to validate our characterization framework, the studies that suggest technology and

patterns from both the key providers and MSA area are handled separately and the related

technologies are structured according to the characterization framework developed.

While selecting and evaluating related MSA technologies and key vendors’ infrastructure,

the characterization framework can be updated again by going back to the domain anal-

ysis phase. Finally, we will eventually present a general evaluation of the work done.

4. Characterization Framework

We followed a bottom-up approach to classify studies on the MSA. As a result of this

process, the characterization framework emerged. Figure 3 introduces the feature dia-

gram of MSA, which represents the common and variant features as provided by the so-

lutions. Table 1 defines the features of MSA. It has many features, with sub-elements being

optional, obligatory, or having AND/OR and XOR relationships. Each top-level feature,

together with the sub-elements, will be evaluated and discussed in detail in the following

sub-section.

Figure 2. Research methodology.

4. Characterization Framework

We followed a bottom-up approach to classify studies on the MSA. As a result of
this process, the characterization framework emerged. Figure 3 introduces the feature
diagram of MSA, which represents the common and variant features as provided by the
solutions. Table 1 defines the features of MSA. It has many features, with sub-elements
being optional, obligatory, or having AND/OR and XOR relationships. Each top-level
feature, together with the sub-elements, will be evaluated and discussed in detail in the
following sub-section.

Appl. Sci. 2022, 12, 4424 6 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 20

Figure 3. Top-level feature diagram of MSA.

Table 1. Description of the top-level features of the feature diagram for MSA.

1 Data Management and

Consistency

Data Management and Consistency highlights en-

suring the quality of the distributed data manage-

ment and consistency between microservices. More-

over, it tries to answer what kind of techniques exist

to tackle data management and consistency.

2 Communication Style Communication Style pays attention to the im-

portance of communication style because it is one of

the most complicated parts of microservices. So, it is

crucial to find out what kind of communication

method exists to provide a stable communication

channel between microservices and outside.

3 Service Orchestration Service Orchestration is the most comprehensive

one, addressing lots of critical concerns, such as

auto-scaling, service discovery, resource manage-

ment, load balancing, container availability, and de-

ployment. It focuses on the methods and concepts to

handle all of these concerns.

4 Decomposition Decomposition is the most basic stage of the design

of microservices. It directly affects the further detail

designs and development activities. It is concerned

with which practices we can use while dividing our

domain model to microservices.

5 Service Mesh and Sidecar

Pattern

Sidecar Pattern is a preceded pattern for the service

mesh, and the Service Mesh is usually built on this

pattern. Sidecar pattern and service mesh infrastruc-

ture is a dedicated infrastructure layer for communi-

cation among services and providing resiliency and

fault tolerance.

6 Observability Observability is an important item that ensures the

sustainability of the system. In distributed systems,

Figure 3. Top-level feature diagram of MSA.

Table 1. Description of the top-level features of the feature diagram for MSA.

1 Data Management and
Consistency

Data Management and Consistency highlights ensuring
the quality of the distributed data management and
consistency between microservices. Moreover, it tries to
answer what kind of techniques exist to tackle data
management and consistency.

2 Communication Style Communication Style pays attention to the importance of
communication style because it is one of the most
complicated parts of microservices. So, it is crucial to find
out what kind of communication method exists to provide
a stable communication channel between microservices
and outside.

3 Service Orchestration Service Orchestration is the most comprehensive one,
addressing lots of critical concerns, such as auto-scaling,
service discovery, resource management, load balancing,
container availability, and deployment. It focuses on the
methods and concepts to handle all of these concerns.

4 Decomposition Decomposition is the most basic stage of the design of
microservices. It directly affects the further detail designs
and development activities. It is concerned with which
practices we can use while dividing our domain model to
microservices.

5 Service Mesh and Sidecar
Pattern

Sidecar Pattern is a preceded pattern for the service mesh,
and the Service Mesh is usually built on this pattern.
Sidecar pattern and service mesh infrastructure is a
dedicated infrastructure layer for communication among
services and providing resiliency and fault tolerance.

Appl. Sci. 2022, 12, 4424 7 of 20

Table 1. Cont.

6 Observability Observability is an important item that ensures the
sustainability of the system. In distributed systems, it is
critical to obtain information about the general
performance of the system and the status of each block of
the system and to take appropriate action according to
this information or to avoid problems that will force
the system.

7 Provisioning and
Configuration Management

Provisioning is the process of setting up the system
infrastructure. In this process, the necessary resources for
the system and users must be managed. These
management operations can be achieved with various
specialized tools. Configuration Management, on the
other hand, is a process that takes charge after
provisioning and is used to ensure that our system
remains in the desired and consistent state.

8 Security Security stands on two headings, which are authentication
and authorization. In microservice-based systems, since a
system consists of many small parts, it must be designed
very differently from the one that is designed for
monolithic application. Being authenticated and being
authorized for many services are the main topics for
this feature.

9 Testing In the MSA, although the fact that a system consists of
smaller services increases the testability and maintenance
capability of the system to a great extent, it is necessary to
develop structures suitable for the distributed architecture
in order to test use cases that spread on many services.

10 Resilience and
Fault Tolerance

Resilience and Fault Management is the concept for
admitting that failures always happen and the system is
designed for failures.

4.1. Data Management and Consistency

The relationship between the data layer and services creates different alternative situa-
tions in a distributed architecture because the design is shaped according to preferences.
When a monolithic application is allocated to microservices, it begins to separate in transac-
tions, which means that local transactions, which were previously in the monolithic, are
now being handled as distributed between services. There are different approaches here.

The first and more primitive of these is to manage distributed transactions with
a shared database. Each service can access data owned by other services using local
Atomicity, Consistency, Isolation, Durability (ACID) transactions. While this situation
enables distributed transactions to be handled more easily and to make queries that require
joining from different tables more easy, it causes many disadvantages. These are coupling
creation in run time, different services needing different requirements from the same
database during development, and changes to affect all services [13].

Another method is to have a database for each service. There are many advantages
over a shared database in this more common alternative, where microservices are liter-
ally decoupled. Each service uses the database that best suits its needs and, since the
dependency between services is removed, loosely coupled services are obtained, and this
situation makes deployment activities more independent.

As shown in Figure 4, there are some operations that need to be handled if a database
per service pattern is selected. First of all, the business transactions spanning multiple
services need to be managed and data consistency must be provided. In this case, since it is
important to have a highly available system, one needs to choose availability, as specified in
the CAP theorem [20], and consider the consistency eventually. This situation corresponds
with the Base Availability, Soft State, Eventually Consistency (BASE) database types, which

Appl. Sci. 2022, 12, 4424 8 of 20

is proposed by eBay for supporting faster reaction to possible inconsistencies by dismissing
synchronization [21]. It is a database design methodology which favors availability over
consistency of operations [22].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 20

services need to be managed and data consistency must be provided. In this case, since it

is important to have a highly available system, one needs to choose availability, as speci-

fied in the CAP theorem [20], and consider the consistency eventually. This situation cor-

responds with the Base Availability, Soft State, Eventually Consistency (BASE) database

types, which is proposed by eBay for supporting faster reaction to possible inconsistencies

by dismissing synchronization [21]. It is a database design methodology which favors

availability over consistency of operations [22].

Figure 4. Feature diagram of data management and consistency.

For data consistency, there are three alternatives. Two-phase commit (2PC) pattern

is the traditional and only synchronous solution recommended for the management of

distributed transactions. This pattern consists of prepare and commit phases and ensures

that the data in the entire service are consistent at any given time. According to its setup,

in case of failure, writing operations are blocked and availability is compromised. SAGA

is another alternative for distributed transaction management. It is asynchronous and is

used to ensure eventual data consistency without ACID operations when spanning mul-

tiple services [23]. When necessary, SAGA carries out compensatory actions at different

stages to take it back when any business rule is violated. Each local transaction causes the

start of the new local transaction by publishing a new domain event and, at the same time,

compensatory functions are executed to undo local transactions as needed [24]. SAGA is

difficult to implement due to the reasons of implementing these compensatory actions,

the developers implementing these compensatory actions, and the difficulty of managing

and debugging these processes. Furthermore, a microservice needs to update its business

entity and transmit the message atomically to avoid data integrity and possible bugs. This

situation is possible with some improvement of the solution brought by SAGA. With the

event sourcing pattern, the atomicity problem is avoided. It stores all states of the business

entity in order in the event store. State changes and message delivery are performed atom-

ically on the business entity and a new state event store is added for each state change. In

this way, a more reliable transaction infrastructure is provided. Moreover, the status of

the business entity at any time can be determined by queries made over the event store

[25].

Queries requiring different microservices have become difficult with the existence of

distributed transactions. Because most queries are obtained by joining operations over

data of more than one service, to overcome this situation, a structure that makes separate

queries from each service and combines them can be considered. The API composer pat-

tern recommends this. The results of the original query are calculated by firstly dividing

the queries into the required services and then composing the results from each service.

However, this situation often causes in-memory problems due to the excess of in-memory

joins [23]. Another solution is the command query responsibility segregation (CQRS) pat-

tern. With the CQRS pattern, queries are made over a view database that is registered to

domain events and shaped according to the type of queries, thus making handling of com-

plex queries easier [26,27].

Figure 4. Feature diagram of data management and consistency.

For data consistency, there are three alternatives. Two-phase commit (2PC) pattern
is the traditional and only synchronous solution recommended for the management of
distributed transactions. This pattern consists of prepare and commit phases and ensures
that the data in the entire service are consistent at any given time. According to its setup, in
case of failure, writing operations are blocked and availability is compromised. SAGA is
another alternative for distributed transaction management. It is asynchronous and is used
to ensure eventual data consistency without ACID operations when spanning multiple
services [23]. When necessary, SAGA carries out compensatory actions at different stages
to take it back when any business rule is violated. Each local transaction causes the start
of the new local transaction by publishing a new domain event and, at the same time,
compensatory functions are executed to undo local transactions as needed [24]. SAGA is
difficult to implement due to the reasons of implementing these compensatory actions,
the developers implementing these compensatory actions, and the difficulty of managing
and debugging these processes. Furthermore, a microservice needs to update its business
entity and transmit the message atomically to avoid data integrity and possible bugs. This
situation is possible with some improvement of the solution brought by SAGA. With the
event sourcing pattern, the atomicity problem is avoided. It stores all states of the business
entity in order in the event store. State changes and message delivery are performed
atomically on the business entity and a new state event store is added for each state change.
In this way, a more reliable transaction infrastructure is provided. Moreover, the status of
the business entity at any time can be determined by queries made over the event store [25].

Queries requiring different microservices have become difficult with the existence of
distributed transactions. Because most queries are obtained by joining operations over
data of more than one service, to overcome this situation, a structure that makes separate
queries from each service and combines them can be considered. The API composer
pattern recommends this. The results of the original query are calculated by firstly dividing
the queries into the required services and then composing the results from each service.
However, this situation often causes in-memory problems due to the excess of in-memory
joins [23]. Another solution is the command query responsibility segregation (CQRS)
pattern. With the CQRS pattern, queries are made over a view database that is registered
to domain events and shaped according to the type of queries, thus making handling of
complex queries easier [26,27].

4.2. Communication Style

Communication in a microservices architecture is one of the most challenging points
due to its distributed nature. It directly affects the availability and resiliency of the systems.
In the MSA, we can examine the communication in two headings, intra-microservice
communication and inter-microservice communication.

Appl. Sci. 2022, 12, 4424 9 of 20

As shown in Figure 5, the first and most complex of the two is communication be-
tween services. Services can communicate with each other through a sync communication
infrastructure, but, with this architecture, both the client and the server must be available
to sustain the communication. Moreover, there is a tight runtime coupling among services.
Communication can be sustained without the need for any message brokers, but services
need to know each other’s locations, which brings extra complexity. Furthermore, an exter-
nal request generally needs collaboration between services, which might cause blocking
of the system for a long time and some problems in availability and resource usage of the
system. However, these concerns can be eliminated with async messaging. Availability
and resource management improves, and runtime coupling becomes loose. The presence
of a message broker can be counted as a challenging point. In addition, communication
management is more complex, too. Sometimes, domain-specific protocol can be used in the
communication between services; although this type of usage is limited, it can be preferred
in an appropriate use case, such as SMTP or IMAP [23].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 20

4.2. Communication Style

Communication in a microservices architecture is one of the most challenging points

due to its distributed nature. It directly affects the availability and resiliency of the sys-

tems. In the MSA, we can examine the communication in two headings, intra-microservice

communication and inter-microservice communication.

As shown in Figure 5, the first and most complex of the two is communication be-

tween services. Services can communicate with each other through a sync communication

infrastructure, but, with this architecture, both the client and the server must be available

to sustain the communication. Moreover, there is a tight runtime coupling among services.

Communication can be sustained without the need for any message brokers, but services

need to know each other's locations, which brings extra complexity. Furthermore, an ex-

ternal request generally needs collaboration between services, which might cause block-

ing of the system for a long time and some problems in availability and resource usage of

the system. However, these concerns can be eliminated with async messaging. Availabil-

ity and resource management improves, and runtime coupling becomes loose. The pres-

ence of a message broker can be counted as a challenging point. In addition, communica-

tion management is more complex, too. Sometimes, domain-specific protocol can be used

in the communication between services; although this type of usage is limited, it can be

preferred in an appropriate use case, such as SMTP or IMAP [23].

Figure 5. Feature diagram of communication style.

As shown in Figure 5, some patterns are recommended to make the communication

of microservices outside of them healthier. For example, with the API Gateway pattern,

all requests coming from outside are transferred to the appropriate services inside

through this structure, and the services respond to this request by communicating with

each other [28]. Different APIs can be created for each type of client. It is called Backend

for Frontend (BFF) by SoundCloud [29]. Moreover, it can translate external requests into

protocols used across microservices. Since the location information of the services changes

dynamically, the outside world does not need to know this location information thanks to

API Gateway. This structure can be thought of as the only door opening to the outside

world and isolates the system inside. Security concerns can be addressed here. For exam-

ple, in a scenario where HTTPS is used when talking to the outside world, it will be suffi-

cient for the services inside to talk with the HTTP protocol because the inside can be con-

sidered safe after the API Gateway. Some cross-cutting concerns, such as SSL, could be

handled in API Gateway so internal microservices are lightweight and simplified [30].

Another solution is that each client communicates directly with microservices, but this

method is a primitive method and its usage area is very limited. None of the benefits that

come with API Gateway can be achieved with this pattern.

4.3. Service Orchestration

This concept, which can be referred to as service orchestration or container orches-

tration, automates the management, scaling, deployment, and networking of micro-

services. The application provides great assistance in deploying to different environ-

ments, without the need for a new design, to orchestrate the services. In this context, ser-

vice orchestration is a concept that addresses many different concerns.

Figure 5. Feature diagram of communication style.

As shown in Figure 5, some patterns are recommended to make the communication of
microservices outside of them healthier. For example, with the API Gateway pattern, all
requests coming from outside are transferred to the appropriate services inside through this
structure, and the services respond to this request by communicating with each other [28].
Different APIs can be created for each type of client. It is called Backend for Frontend
(BFF) by SoundCloud [29]. Moreover, it can translate external requests into protocols used
across microservices. Since the location information of the services changes dynamically,
the outside world does not need to know this location information thanks to API Gateway.
This structure can be thought of as the only door opening to the outside world and isolates
the system inside. Security concerns can be addressed here. For example, in a scenario
where HTTPS is used when talking to the outside world, it will be sufficient for the services
inside to talk with the HTTP protocol because the inside can be considered safe after the
API Gateway. Some cross-cutting concerns, such as SSL, could be handled in API Gateway
so internal microservices are lightweight and simplified [30]. Another solution is that each
client communicates directly with microservices, but this method is a primitive method
and its usage area is very limited. None of the benefits that come with API Gateway can be
achieved with this pattern.

4.3. Service Orchestration

This concept, which can be referred to as service orchestration or container orchestra-
tion, automates the management, scaling, deployment, and networking of microservices.
The application provides great assistance in deploying to different environments, without
the need for a new design, to orchestrate the services. In this context, service orchestration
is a concept that addresses many different concerns.

As shown in Figure 6, auto-scaling is one of them, and, by monitoring our application,
it automatically adjusts the capacity according to the incoming load and keeps the system
highly available and steady [31,32]. Within the auto-scaling configurations, the system
can scale horizontally or vertically. It also provides a manual scaling feature to be used in
some cases.

Appl. Sci. 2022, 12, 4424 10 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 20

As shown in Figure 6, auto-scaling is one of them, and, by monitoring our applica-

tion, it automatically adjusts the capacity according to the incoming load and keeps the

system highly available and steady [31,32]. Within the auto-scaling configurations, the

system can scale horizontally or vertically. It also provides a manual scaling feature to be

used in some cases.

Figure 6. Feature diagram of service orchestration.

Another concern is load balancing. It is used to distribute the traffic coming to the

system efficiently. It also provides high availability and reliability by sending incoming

requests only to the servers that are standing [33]. It works in harmony with the new

server, adding and removing operations when necessary. In this way, the system will be

more scalable and flexible. Different variations depend on where the load balancing setup

is carried out. For example, in server-side load balancing, the client does not interfere with

the load balancing process and its request is distributed efficiently to the appropriate serv-

ers on the server side; but, in client-side load balancing, the client takes over the load bal-

ancing job. After querying which servers are suitable or not from a structure, such as a

service registry, it distributes the load effectively.

Service discovery, on the other hand, is an indispensable structure in the distributed

architecture. Thanks to this structure, the changing services, whose location information

is dynamic, become able to discover after they complete service-registration. Here, similar

to the client- and server-side load balancer distinction, there is either a registry-aware cli-

ent mechanism or a structure that requires the request from the client to be directed to our

services via a registry-aware router.

Independent deployment is one of the most important skills aimed at and acquired

by MSA. In this way, the CI and CD pipelines of our services are separated. An advanced

deployment setup is created with automated infrastructure. In this way, fast delivery is

ensured. While deploying, one can prepare an application for deployment with the help

of containers. Thus, the containers are isolated from each other and encapsulated in the

technology stack used while the services are built. Moreover, the services can be easily

scaled up and down. Another method is to deploy the services using virtual machine

(VM). Compared to containers, resource usage is high in VM. The container-based method

has become a de facto for deploying the services at the moment and it is a lot more porta-

ble. Another deployment method is serverless deployment. It emerged as a result of the

spread of microservices and cloud environments. With this deployment method, the user

simply writes the code and uploads a provider that provides a serverless infrastructure.

After that, it is completely up to the provider. Many headings, such as scalability, deploy-

ment, and operating system, are completely managed by the provider. Moreover, server-

less is the deployment and development method, which is developed to implement the

Function as a Service (FaaS) category of cloud computing services.

4.4. Decomposition

One can develop systems, which are large in terms of business rule and domain, with

MSA. Hence, the aim is to develop the system in smaller applications and achieve contin-

uous delivery and deployment. In addition, each microservice is developed faster and

Figure 6. Feature diagram of service orchestration.

Another concern is load balancing. It is used to distribute the traffic coming to the
system efficiently. It also provides high availability and reliability by sending incoming
requests only to the servers that are standing [33]. It works in harmony with the new server,
adding and removing operations when necessary. In this way, the system will be more
scalable and flexible. Different variations depend on where the load balancing setup is
carried out. For example, in server-side load balancing, the client does not interfere with the
load balancing process and its request is distributed efficiently to the appropriate servers
on the server side; but, in client-side load balancing, the client takes over the load balancing
job. After querying which servers are suitable or not from a structure, such as a service
registry, it distributes the load effectively.

Service discovery, on the other hand, is an indispensable structure in the distributed
architecture. Thanks to this structure, the changing services, whose location information is
dynamic, become able to discover after they complete service-registration. Here, similar to
the client- and server-side load balancer distinction, there is either a registry-aware client
mechanism or a structure that requires the request from the client to be directed to our
services via a registry-aware router.

Independent deployment is one of the most important skills aimed at and acquired
by MSA. In this way, the CI and CD pipelines of our services are separated. An advanced
deployment setup is created with automated infrastructure. In this way, fast delivery is
ensured. While deploying, one can prepare an application for deployment with the help
of containers. Thus, the containers are isolated from each other and encapsulated in the
technology stack used while the services are built. Moreover, the services can be easily
scaled up and down. Another method is to deploy the services using virtual machine (VM).
Compared to containers, resource usage is high in VM. The container-based method has
become a de facto for deploying the services at the moment and it is a lot more portable.
Another deployment method is serverless deployment. It emerged as a result of the spread
of microservices and cloud environments. With this deployment method, the user simply
writes the code and uploads a provider that provides a serverless infrastructure. After that,
it is completely up to the provider. Many headings, such as scalability, deployment, and
operating system, are completely managed by the provider. Moreover, serverless is the
deployment and development method, which is developed to implement the Function as a
Service (FaaS) category of cloud computing services.

4.4. Decomposition

One can develop systems, which are large in terms of business rule and domain,
with MSA. Hence, the aim is to develop the system in smaller applications and achieve
continuous delivery and deployment. In addition, each microservice is developed faster
and more easily. However, determining the boundaries of these small applications is
not an easy task and needs to be carried out carefully. Moreover, the aim is to create
loosely coupled, highly cohesive, and autonomous services. In addition, tools can be more
cross-functional in this way.

The method used to design an application as smaller services are either decompose
by business capability or decompose by subdomain, as shown in Figure 7. In decompo-
sition by business capability, services are concentrated around business capability; while

Appl. Sci. 2022, 12, 4424 11 of 20

using DDD [34] principles in the decomposition by subdomain, they are concentrated on
subdomains and use cases related to these subdomains.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 20

more easily. However, determining the boundaries of these small applications is not an

easy task and needs to be carried out carefully. Moreover, the aim is to create loosely cou-

pled, highly cohesive, and autonomous services. In addition, tools can be more cross-func-

tional in this way.

The method used to design an application as smaller services are either decompose

by business capability or decompose by subdomain, as shown in Figure 7. In decomposi-

tion by business capability, services are concentrated around business capability; while

using DDD [34] principles in the decomposition by subdomain, they are concentrated on

subdomains and use cases related to these subdomains.

Figure 7. Feature diagram of decomposition.

4.5. Service Mesh and Sidecar Pattern

Before the service mesh ecosystem was introduced, sidecar proxies had emerged and

started to be used. Sidecar proxies encapsulate service discovery, communication proto-

cols, load balancing, and fault tolerance mechanism to abstract them from the developer

[8,27]. With the service mesh structure built on the sidecar proxy pattern, a fully integrated

service-to-service communication infrastructure is provided and the security, reliability,

and observability features are managed by the platform layer [9,28].

4.6. Observability

The large and complex nature of modern systems, dynamic infrastructure, and mon-

itoring the health of these systems and taking the necessary actions as a result of this mon-

itoring reveal the importance of observability.

As shown in Figure 8, monitoring collects information about a system by communi-

cating with services. In order for this need to continue uninterruptedly, the system must

have a scalable infrastructure and it must be easy to query the collected information. Mon-

itoring focuses on runtime metrics created by the applications themselves and related

measurements, such as CPU, memory, I/O, etc., which are the infrastructural metrics of the

system. Distributed tracing in a system, on the other hand, is where requests are spread

over multiple services and each service responds to this request by communicating with

different layers. It follows the behavior of the application while responding to this request

and whether it is experiencing any problems by assigning an external request ID to each

request and recording it. In log aggregation, it is ensured that the logs coming from all

these services are collected in a central service and can be queried and analyzed from there.

In addition, by creating alerts for specific logs to be examined, developers are notified

when such logs occur. Exception tracking, on the other hand, concentrates on exceptions

and records the exceptions that occur in the system. With the help of the recorded data,

various inquiries and informing the developers using alerts are provided when necessary.

In this way, with a central exception tracking infrastructure, developers are prevented

from working continuously with the same error because historic data are provided for the

relevant error type and the user knows that the error has been solved before. Audit log-

ging, on the other hand, records the information that the system users performed on the

system and the stages they went through.

Figure 7. Feature diagram of decomposition.

4.5. Service Mesh and Sidecar Pattern

Before the service mesh ecosystem was introduced, sidecar proxies had emerged and
started to be used. Sidecar proxies encapsulate service discovery, communication protocols,
load balancing, and fault tolerance mechanism to abstract them from the developer [8,27].
With the service mesh structure built on the sidecar proxy pattern, a fully integrated
service-to-service communication infrastructure is provided and the security, reliability,
and observability features are managed by the platform layer [9,28].

4.6. Observability

The large and complex nature of modern systems, dynamic infrastructure, and mon-
itoring the health of these systems and taking the necessary actions as a result of this
monitoring reveal the importance of observability.

As shown in Figure 8, monitoring collects information about a system by commu-
nicating with services. In order for this need to continue uninterruptedly, the system
must have a scalable infrastructure and it must be easy to query the collected information.
Monitoring focuses on runtime metrics created by the applications themselves and related
measurements, such as CPU, memory, I/O, etc., which are the infrastructural metrics of the
system. Distributed tracing in a system, on the other hand, is where requests are spread
over multiple services and each service responds to this request by communicating with
different layers. It follows the behavior of the application while responding to this request
and whether it is experiencing any problems by assigning an external request ID to each
request and recording it. In log aggregation, it is ensured that the logs coming from all
these services are collected in a central service and can be queried and analyzed from there.
In addition, by creating alerts for specific logs to be examined, developers are notified
when such logs occur. Exception tracking, on the other hand, concentrates on exceptions
and records the exceptions that occur in the system. With the help of the recorded data,
various inquiries and informing the developers using alerts are provided when necessary.
In this way, with a central exception tracking infrastructure, developers are prevented
from working continuously with the same error because historic data are provided for the
relevant error type and the user knows that the error has been solved before. Audit logging,
on the other hand, records the information that the system users performed on the system
and the stages they went through.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20

Figure 8. Feature diagram of observability.

4.7. Provisioning and Configuration Management

Provisioning and configuration management has become a hot topic with the increas-

ing interest in distributed systems and MSA. As shown in Figure 9, they should be estab-

lished in each mature MSA.

Figure 9. Feature diagram of provisioning and configuration management.

Within the scope of provisioning, operations such as introducing the information

technology (IT) infrastructure and then managing the resources needed by this infrastruc-

ture are handled. In addition, providing this infrastructure to the service of the system and

users is also one of the provisioning activities. There are four subtypes: service, user,

server, and network, coming after provisioning. It is a process to maintain systems and

software, which ensures that systems remain in the desired state. With any configuration

management tool, we can separate and manage the system into related groups or modify

the basic configuration center, prioritize some actions, and automate processes, such as

updating the system and expanding new settings [35]. Infrastructure as code can be con-

sidered as the next step. With this feature, one can program infrastructure by writing code

and configure it the way it is wanted. In other words, one writes code to automate the

infrastructure and run it. The idea behind this approach is that the systems and devices

used to run the software themselves can be treated like software [36].

4.8. Security

In an MSA, security is actually gathered under two main headings as in all other

systems, as shown in Figure 10. These are authorization and authentication. As shown in

Figure 10, both are concepts to be addressed. However, handling these processes in MSA

can create a more complex structure compared to the monolithic architecture. There are

some best practices and patterns for this.

Figure 10. Feature diagram of security.

For authentication, a token is usually given to the user by performing an identity

check through a structure that is developed into a communication task between the exter-

nal world and the internal world, such as the API Gateway. This token contains the infor-

mation that the user has authenticated to the system and what his/her permissions are.

Thanks to this structure, the user can authenticate from a single point to a structure with

many services. This eliminates the disadvantage that many services have relations with

the outside world. Moreover, in this way, the services inside will have the convenience of

talking to each other with HTTP instead of HTTPS as an example. In this case, however, it

should not be forgotten that the API Gateway is a centralized failure point and the design

Figure 8. Feature diagram of observability.

4.7. Provisioning and Configuration Management

Provisioning and configuration management has become a hot topic with the in-
creasing interest in distributed systems and MSA. As shown in Figure 9, they should be
established in each mature MSA.

Appl. Sci. 2022, 12, 4424 12 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20

Figure 8. Feature diagram of observability.

4.7. Provisioning and Configuration Management

Provisioning and configuration management has become a hot topic with the increas-

ing interest in distributed systems and MSA. As shown in Figure 9, they should be estab-

lished in each mature MSA.

Figure 9. Feature diagram of provisioning and configuration management.

Within the scope of provisioning, operations such as introducing the information

technology (IT) infrastructure and then managing the resources needed by this infrastruc-

ture are handled. In addition, providing this infrastructure to the service of the system and

users is also one of the provisioning activities. There are four subtypes: service, user,

server, and network, coming after provisioning. It is a process to maintain systems and

software, which ensures that systems remain in the desired state. With any configuration

management tool, we can separate and manage the system into related groups or modify

the basic configuration center, prioritize some actions, and automate processes, such as

updating the system and expanding new settings [35]. Infrastructure as code can be con-

sidered as the next step. With this feature, one can program infrastructure by writing code

and configure it the way it is wanted. In other words, one writes code to automate the

infrastructure and run it. The idea behind this approach is that the systems and devices

used to run the software themselves can be treated like software [36].

4.8. Security

In an MSA, security is actually gathered under two main headings as in all other

systems, as shown in Figure 10. These are authorization and authentication. As shown in

Figure 10, both are concepts to be addressed. However, handling these processes in MSA

can create a more complex structure compared to the monolithic architecture. There are

some best practices and patterns for this.

Figure 10. Feature diagram of security.

For authentication, a token is usually given to the user by performing an identity

check through a structure that is developed into a communication task between the exter-

nal world and the internal world, such as the API Gateway. This token contains the infor-

mation that the user has authenticated to the system and what his/her permissions are.

Thanks to this structure, the user can authenticate from a single point to a structure with

many services. This eliminates the disadvantage that many services have relations with

the outside world. Moreover, in this way, the services inside will have the convenience of

talking to each other with HTTP instead of HTTPS as an example. In this case, however, it

should not be forgotten that the API Gateway is a centralized failure point and the design

Figure 9. Feature diagram of provisioning and configuration management.

Within the scope of provisioning, operations such as introducing the information tech-
nology (IT) infrastructure and then managing the resources needed by this infrastructure
are handled. In addition, providing this infrastructure to the service of the system and users
is also one of the provisioning activities. There are four subtypes: service, user, server, and
network, coming after provisioning. It is a process to maintain systems and software, which
ensures that systems remain in the desired state. With any configuration management
tool, we can separate and manage the system into related groups or modify the basic
configuration center, prioritize some actions, and automate processes, such as updating the
system and expanding new settings [35]. Infrastructure as code can be considered as the
next step. With this feature, one can program infrastructure by writing code and configure
it the way it is wanted. In other words, one writes code to automate the infrastructure
and run it. The idea behind this approach is that the systems and devices used to run the
software themselves can be treated like software [36].

4.8. Security

In an MSA, security is actually gathered under two main headings as in all other
systems, as shown in Figure 10. These are authorization and authentication. As shown in
Figure 10, both are concepts to be addressed. However, handling these processes in MSA
can create a more complex structure compared to the monolithic architecture. There are
some best practices and patterns for this.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20

Figure 8. Feature diagram of observability.

4.7. Provisioning and Configuration Management

Provisioning and configuration management has become a hot topic with the increas-

ing interest in distributed systems and MSA. As shown in Figure 9, they should be estab-

lished in each mature MSA.

Figure 9. Feature diagram of provisioning and configuration management.

Within the scope of provisioning, operations such as introducing the information

technology (IT) infrastructure and then managing the resources needed by this infrastruc-

ture are handled. In addition, providing this infrastructure to the service of the system and

users is also one of the provisioning activities. There are four subtypes: service, user,

server, and network, coming after provisioning. It is a process to maintain systems and

software, which ensures that systems remain in the desired state. With any configuration

management tool, we can separate and manage the system into related groups or modify

the basic configuration center, prioritize some actions, and automate processes, such as

updating the system and expanding new settings [35]. Infrastructure as code can be con-

sidered as the next step. With this feature, one can program infrastructure by writing code

and configure it the way it is wanted. In other words, one writes code to automate the

infrastructure and run it. The idea behind this approach is that the systems and devices

used to run the software themselves can be treated like software [36].

4.8. Security

In an MSA, security is actually gathered under two main headings as in all other

systems, as shown in Figure 10. These are authorization and authentication. As shown in

Figure 10, both are concepts to be addressed. However, handling these processes in MSA

can create a more complex structure compared to the monolithic architecture. There are

some best practices and patterns for this.

Figure 10. Feature diagram of security.

For authentication, a token is usually given to the user by performing an identity

check through a structure that is developed into a communication task between the exter-

nal world and the internal world, such as the API Gateway. This token contains the infor-

mation that the user has authenticated to the system and what his/her permissions are.

Thanks to this structure, the user can authenticate from a single point to a structure with

many services. This eliminates the disadvantage that many services have relations with

the outside world. Moreover, in this way, the services inside will have the convenience of

talking to each other with HTTP instead of HTTPS as an example. In this case, however, it

should not be forgotten that the API Gateway is a centralized failure point and the design

Figure 10. Feature diagram of security.

For authentication, a token is usually given to the user by performing an identity
check through a structure that is developed into a communication task between the external
world and the internal world, such as the API Gateway. This token contains the information
that the user has authenticated to the system and what his/her permissions are. Thanks
to this structure, the user can authenticate from a single point to a structure with many
services. This eliminates the disadvantage that many services have relations with the
outside world. Moreover, in this way, the services inside will have the convenience of
talking to each other with HTTP instead of HTTPS as an example. In this case, however, it
should not be forgotten that the API Gateway is a centralized failure point and the design
for failure should be carried out accordingly. Another option, for each microservice to
run, is having its own authentication and authorization processes locally, as opposed to
global management. This situation requires the requests to be authenticated separately for
each microservice and the complexity increases. However, each service can use different
authentication and authorization methods according to preference and, at this point, a
more fine-grained mechanism should be designed.

4.9. Testing

With the spread of software development with MSA, the need for revising some
approaches used in monolithic applications and adding new approaches has arisen, because,
now, this is an environment where each microservice can be deployed individually and
perhaps developed by different teams.

Appl. Sci. 2022, 12, 4424 13 of 20

As shown in Figure 11, there are various types of test able to be used in MSA. We can
test whether the system shows the expected behavior from end to end, with the end-to-end
test, as in monolith applications. However, this approach is very difficult to manage because
the test boundaries are too large and tests are very fragile. We can test smaller parts with
integration tests. For example, it can be detected with this approach whether there is an
error in the communication interfaces between different layers, such as the data layer and
service layer. With the consumer-driven contract test, we concentrate on communication
between services and, in the communication of the two services, it is tested whether the
waiting of the service that will consult a message can be met by the service that will produce
the message. In the service component test, which is another type of test, the components
to be tested are isolated from the remaining parts of the system by using test doubles and
are tested by manipulating through internal interfaces. This enables each tested item to be
tested in more detail. Finally, in chaos engineering, to ensure the stability of the system
under all kinds of conditions, the system’s responses are examined by leaving the system to
deal with various failure conditions in the production environment, and thus the reliability
of the system is tested. To sum up, it is of great importance to use the mentioned test
approaches together and in harmony for the systems to reach high test coverage.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 20

for failure should be carried out accordingly. Another option, for each microservice to run,

is having its own authentication and authorization processes locally, as opposed to global

management. This situation requires the requests to be authenticated separately for each

microservice and the complexity increases. However, each service can use different au-

thentication and authorization methods according to preference and, at this point, a more

fine-grained mechanism should be designed.

4.9. Testing

With the spread of software development with MSA, the need for revising some ap-

proaches used in monolithic applications and adding new approaches has arisen, because,

now, this is an environment where each microservice can be deployed individually and

perhaps developed by different teams.

As shown in Figure 11, there are various types of test able to be used in MSA. We can

test whether the system shows the expected behavior from end to end, with the end-to-

end test, as in monolith applications. However, this approach is very difficult to manage

because the test boundaries are too large and tests are very fragile. We can test smaller

parts with integration tests. For example, it can be detected with this approach whether

there is an error in the communication interfaces between different layers, such as the data

layer and service layer. With the consumer-driven contract test, we concentrate on com-

munication between services and, in the communication of the two services, it is tested

whether the waiting of the service that will consult a message can be met by the service

that will produce the message. In the service component test, which is another type of test,

the components to be tested are isolated from the remaining parts of the system by using

test doubles and are tested by manipulating through internal interfaces. This enables each

tested item to be tested in more detail. Finally, in chaos engineering, to ensure the stability

of the system under all kinds of conditions, the system’s responses are examined by leav-

ing the system to deal with various failure conditions in the production environment, and

thus the reliability of the system is tested. To sum up, it is of great importance to use the

mentioned test approaches together and in harmony for the systems to reach high test

coverage.

Figure 11. Feature diagram of testing.

4.10. Resilience and Fault Tolerance

In monolithic applications, any failure had the potential to completely down the ap-

plication. However, in case of failure that can be experienced with the MSA, it provides an

opportunity to compensate for this situation without affecting the overall application. It is

necessary to admit that there will always be failures in the system, and designs that ad-

dress failure situations should be made to quickly avoid such failures or to reduce the

number of failures. For this, failure scenarios should be determined as much as possible,

locations that may cause a single point of failure should be identified, and our designs

should be arranged to avoid cascading failure in case of a failure. As shown in Figure 12,

there are many ways to ensure resiliency. It is highly recommended to use as many pat-

terns as possible.

Figure 11. Feature diagram of testing.

4.10. Resilience and Fault Tolerance

In monolithic applications, any failure had the potential to completely down the
application. However, in case of failure that can be experienced with the MSA, it provides
an opportunity to compensate for this situation without affecting the overall application.
It is necessary to admit that there will always be failures in the system, and designs that
address failure situations should be made to quickly avoid such failures or to reduce the
number of failures. For this, failure scenarios should be determined as much as possible,
locations that may cause a single point of failure should be identified, and our designs
should be arranged to avoid cascading failure in case of a failure. As shown in Figure 12,
there are many ways to ensure resiliency. It is highly recommended to use as many patterns
as possible.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 20

for failure should be carried out accordingly. Another option, for each microservice to run,

is having its own authentication and authorization processes locally, as opposed to global

management. This situation requires the requests to be authenticated separately for each

microservice and the complexity increases. However, each service can use different au-

thentication and authorization methods according to preference and, at this point, a more

fine-grained mechanism should be designed.

4.9. Testing

With the spread of software development with MSA, the need for revising some ap-

proaches used in monolithic applications and adding new approaches has arisen, because,

now, this is an environment where each microservice can be deployed individually and

perhaps developed by different teams.

As shown in Figure 11, there are various types of test able to be used in MSA. We can

test whether the system shows the expected behavior from end to end, with the end-to-

end test, as in monolith applications. However, this approach is very difficult to manage

because the test boundaries are too large and tests are very fragile. We can test smaller

parts with integration tests. For example, it can be detected with this approach whether

there is an error in the communication interfaces between different layers, such as the data

layer and service layer. With the consumer-driven contract test, we concentrate on com-

munication between services and, in the communication of the two services, it is tested

whether the waiting of the service that will consult a message can be met by the service

that will produce the message. In the service component test, which is another type of test,

the components to be tested are isolated from the remaining parts of the system by using

test doubles and are tested by manipulating through internal interfaces. This enables each

tested item to be tested in more detail. Finally, in chaos engineering, to ensure the stability

of the system under all kinds of conditions, the system’s responses are examined by leav-

ing the system to deal with various failure conditions in the production environment, and

thus the reliability of the system is tested. To sum up, it is of great importance to use the

mentioned test approaches together and in harmony for the systems to reach high test

coverage.

Figure 11. Feature diagram of testing.

4.10. Resilience and Fault Tolerance

In monolithic applications, any failure had the potential to completely down the ap-

plication. However, in case of failure that can be experienced with the MSA, it provides an

opportunity to compensate for this situation without affecting the overall application. It is

necessary to admit that there will always be failures in the system, and designs that ad-

dress failure situations should be made to quickly avoid such failures or to reduce the

number of failures. For this, failure scenarios should be determined as much as possible,

locations that may cause a single point of failure should be identified, and our designs

should be arranged to avoid cascading failure in case of a failure. As shown in Figure 12,

there are many ways to ensure resiliency. It is highly recommended to use as many pat-

terns as possible.

Figure 12. Feature diagram of resilience and fault tolerance.

Client-side load balancing is often used in some scenarios as it eliminates a single
point of failure and distributes the responsibility for load balancing and is easier to scale
than server-side load balancing. Service instances query and cache information of health
services from service discovery. In calls to be made by the service to other services, service
information is received from the service discovery and communication is provided in a
way that the load will be distributed equally. If one of the services responds late or gives an
error, the load balancing mechanism detects this problem and removes it from the service
repository and prevents cascading failures and system downtime. If service discovery does
not respond, client services can use the information in their own cache copy. In circuit
breaker pattern, if a client faces several problems over the call to another service, it stops
communicating with the relevant service, and thus prevents cascading failure in the system.
Fallback pattern is another approach for handling failure cases. In this pattern, as a result

Appl. Sci. 2022, 12, 4424 14 of 20

of the detection of a problematic request, it prevents the occurrence of a large problem
that will affect the system in general by giving an alternative response to the client. In
bulkhead pattern, by separating and isolating both suitable components and data from
each other, it is ensured that the problems encountered in any group will not affect those in
the other group.

5. Survey of MSA

With the development of microservices and distributed architecture, the need for
practitioners to develop common solutions to problems arose. Due to these needs, many
products have been or are still being developed by various companies or communities.
Knowing what purpose these developed solutions serve and where they are located in the
MSA enable us to design the architecture more comfortably and to make our architecture
more robust. Therefore, we think that showing the feature set we have determined in the
field of microservices to match the relevant technologies will benefit practitioners greatly.

As is seen in Table 2, common solutions have been developed by various companies
or open-source communities for many features. We observe that no technology has been
developed for some feature sets and they are more design-oriented feature sets. In other
words, for these feature sets, it is recommended to apply the design decisions specified
in the feature instead of a solution. For example, database per service or shared database,
which are two different patterns in data management and consistency, is entirely a design
decision about how you will position the data layer.

Table 2. Mapping features with MSA technologies.

Feature Technology/Product/Service

Testing/Chaos Engineering
Chaos Monkey
Chaos Toolkit
Simian Army

Testing/Service Component Test Spring Cloud Contract Test

Resilience and Fault Tolerance/Circuit Breaker Netflix Hystrix
Resilience4j

Communication Style/API Gateway
Nginx
Netflix/Zuul
Spring Cloud Gateway

Communication Style/Domain Spesific Protokol SMTP
IMAP

Communication Style/Async Communication
Apache Kafka
Rabbit MQ
Active MQ

Observability/Log Analysis
Kibana
Datadog
LogDNA

Observability/Distributed Tracing

Zipkin
Datadog
OpenCensus
Sentry
LogDNA

Observability/Monitoring

Prometheus
Graphite
Grafana
InfluxDB
Zabbix

Appl. Sci. 2022, 12, 4424 15 of 20

Table 2. Cont.

Feature Technology/Product/Service

Observability/Log Aggregation
Kibana
Datadog
LogDNA

Observaility/Exception Tracking Sentry

Provisioning and Configuration Management

Ansible
Chef
Puppet
SaltStack

Provisioning and Configuration Management/Infrastructure
as Code Terraform

Security/Authentication
CAS
Spring Security
SSO

Security/Authorization JWT
Spring Security

Decomposition/Decompose by Subdomain Domain Driven Design

Service Orchestration
Kubernetes
Apache Mesos + Marathon
Docker Swarm

Service Mesh and Sidecar Pattern

Istio
Linkerd
Envoy
Redhat Openshift

Deployment/CI & CD

Jenkins
CircleCI
Travis
DroneCI
Gitlab CI
Bamboo

Deployment/Container Docker
LXC

Deployment/Virtual Machine VMWare
VirtualBox

Load Balancing/Server-side
Nginx
Zuul
Eureka

Load Balancing/Client-side Ribbon Client

Service Discovery/Service Registry

Eureka
Zuul
Consul
Apache Zookeeper

Service Discovery/Server-side

Eureka
Zuul
Consul
Apache Zookeeper

Service Discovery/Client-side Ribbon Client

We also observe that some features are taken together, and solutions are proposed
accordingly. Such solutions suggest a more comprehensive solution for one or more
features. For example, provisioning and configuration management are two separate
activities that can be considered as a continuation of each other. One cannot be thought of

Appl. Sci. 2022, 12, 4424 16 of 20

without the other. Therefore, it makes sense to propose a solution that handles these two
features together while recommending a solution. Instead of learning and using multiple
technologies and integrating them, it is a more preferred way for developers to use the
ready-made solution. In such cases, if these solutions are suitable for all sub-features of
the relevant parent feature, these solutions are shown at the parent level. If it does not
fit all children, these technologies are shown in the feature diagram for each feature. It
is also observed that some solutions may be not only for siblings, but also for features
in different feature families. For example, the solutions suggested in load balancing and
service discovery are taken together for both features, and solutions addressing these two
features are produced.

6. Analysis of Existing Key Cloud Providers

In parallel with the development of the distributed architecture and MSA, cloud com-
puting is also improving. Cloud providers develop managed services for the difficulties
brought by the distributed architecture and make them ready to be used in related archi-
tectures. Users configure and use the relevant services and are not interested in many
quality indicators because the services give warranties on many basic quality indicators
and developers focus more on domains and business rules. However, it should be decided
by considering the cost of the usage of cloud services.

In this section, the services provided by Amazon AWS, Google Cloud Platform, and
Microsoft Azure, which are the three most preferred cloud providers today, have been
examined and which solutions are available for which functions are presented.

As is seen in Table 3, services are offered by cloud providers for many features. These
services are provided as managed by the cloud provider, so you can start using the services
by making the necessary configurations. The services have the ability to work in harmony
with each other and can be easily configured as interoperable. In this respect, using these
products will give us speed. Another important point is the fact that services are developed
parallel to each other by all three providers. You can find the equivalent of each service in
another provider. Here, which one will be selected can be concluded by making some more
detailed evaluations within the scope of performance, usability, use cases, and cost analysis.
The absence of a direct solution for some features indicates that it must be a feature that
needs to be programed and designed, that is, it cannot be fully managed by the cloud
provider. They are more conceptual and design-oriented features. However, by bringing
together more than one service, the design criteria recommended within the scope of these
features can be met.

Table 3. Feature-based service comparison among AWS, Google Cloud, and Microsoft Azure.

Feature AWS Google Cloud Microsoft Azure

Communication Style
Async Communication

AWS MQ
AWS SNS
AWS SQS
AWS Kinesis

Google Dataflow
Google Pub/Sub

Azure Queue Storage
Azure Service Bus
Azure Event Grid
Azure Event Hubs

API Gateway AWS API Gateway Google Apigee Azure API Management

Service Orchestration
AWS ECS
AWS EB
AWS EKS

Google Cloud Run
Google App Engine
Google Kubernete Engine

Azure Container Instances
Azure App Service
Azure EKS

Service Orchestration

Deployment/CI and CD
AWS CodeDeploy
AWS CodeBuild
AWS CodePipeline

Google Cloud Build Azure Devops

Deployment/Serverless
Function

AWS Lambda
AWS Step Function

Google Cloud Function
Google Cloud Composes

Azure Durable
Azure Functions

Deployment/Container AWS Fargate
AWS EKS

Google Cloud Run
Google Kubernete Engine

Azure Container Instance
Azure Kubernete Service

Appl. Sci. 2022, 12, 4424 17 of 20

Table 3. Cont.

Feature AWS Google Cloud Microsoft Azure

Deployment/VM AWS EC2 Google Compute
Engine Azure VM

Auto-scaling AWS EC2 Auto-scaling Google Computer
Engine Auto-scaling

Azure Virtual Machine
Scale Set

Load
Balancing/Server-side AWS ELB Google Cloud Engine

Load Balancing Azure Load Balancing

Service
Discovery/Server-side

AWS Route 53
AWS Cloud Map
AWS ELB

Google Cloud DNS
Google Cloud Engine
Load Balancing

Azure DNS
Azure Load Balancing

Service Mesh and Sidecar Pattern AWS AppMesh Google Anthos Service
Mesh

Azure Service Fabric
Mesh

Observability

Log Analysis

AWS Elasticsearch
Service
AWS Redshift
AWS Quicksight
AWS Athena

Google Elasticsearch
Service
Google BigQuery

Azure Elasticsearch
Service
Azure PowerBI
Azure Data Lake
Analytics

Exception Tracking AWS CloudWatch
Google Cloud
Debugger
Google Cloud Trace

Azure Application
Insights
Azure Monitor

Log Aggregation AWS CloudWatch Google Cloud Logging
Azure Application
Insights
Azure Monitor

Audit Logging AWS CloudTrail
AWS Config

Google Audit Logs
Google Cloud Asset
Inventory

Azure Monitor

Distributed Tracing AWS X-Ray
Google Cloud
Debugger
Google CloudTrace

Azure Monitor

Monitoring AWS CloudWatch Google Cloud
Monitoring Azure Monitor

Provisioning and Configuration Management AWS CloudFormation Google Cloud
Deployment Manager

Azure Resource
Manager
Azure VM extensions
Azure Automation

Security AWS Cognito Google Firebase
Authentication

Azure Active Directory
B2C

7. Related Work

There is a limited amount of work focusing on the comprehensive approach to
help practitioners to identify and choose features they need during the designing phase.
A few studies on MSA [2,37–41] present an overview of academic and grey literature.
Pahl et al. [37] discover practical motivations behind using MSA and different types of
MSA. In addition, existing research issues and potential future research items have been
identified in this study. Soldani et al. [2] explore the potential challenges and obstacles.
Furthermore, the advantages of MSA are explained by reviewing more than 50 studies.
Alshuqayran et al. [38] identify the quality attributes and architectural diagrams in MSA,
as well as architectural challenges from 33 studies. Vural et al. [40] focus on the practical
motivations in MSA-related studies and provide overview of emerging standards and tools
in MSA development. Francesco et al. [39] present publication trends and industrial adop-
tions of MSA with the help of more than 100 studies. Bushong et al. [41] study more than
50 studies and extract some useful information, such as current issues, opportunities, and

Appl. Sci. 2022, 12, 4424 18 of 20

potential future research items. Moreover, methods and techniques in MSA are examined.
Finally, Shanshan et al. [42] aim to identify quality attributes of MSA by focusing from a
QA point of view.

Some studies do not give a complete overview of MSA. They just focus on one aspect or
feature of MSA. By the way of illustration, Berardi et al. [43] and Pereira et al. [44] focus on
the microservice security, Karabey et al. [45] address the deployment and communication
patterns in MSA, whereas Fredy et al. conduct a systematic literature review to reveal the
approaches to be used to define MSA granularity and identify the metric to be used to
evaluate MSA granularity.

According to our observations, there is only one study to classify some technologies
and patterns. Jamshidi et al. [4] present MSA evolution from scratch. Progression within
MSA evolution is also detailed with the technology used in this period. In addition, tools
and technologies in MSA are also provided regarding the predetermined categories.

Our approach differs from studies in this section by addressing many aspects and also
making characterization with a well-defined comprehensive characterization framework.

8. Discussion

In this study, we have proposed a characterization framework by performing domain-
driven analysis and a feature modeling approach. The approach provides a comprehensive
analysis of MSA features. It is stated that there are many critical features in the MSA and
for what purposes these features are used and what kind of contributions they make in
terms of the integrity of the system. Knowing the sub-features of these features and their
relationships is critical to designing a strong and highly maintainable architecture. The
teams that design the architecture and develop it later need information on what solutions
have been developed, both in the academic field and on the industry side, and what
purposes they serve. From this point of view, a feature diagram was proposed for MSA.

With the help of the proposed framework, we have also identified and described the
existing platforms without the focus on qualitative comparisons. This study may work as a
well-defined guide for both software architects and developers. However, it is observed that
there are not enough solutions in some features, such as testing, or some features, such as data
management and consistency, remain more in the form of design level or pattern. Features
such as these remain more conceptual, so it is recommended that related components should
be designed according to the proposed design or pattern-based features.

It has been shown that the technologies used within the scope of MSA are either
based on the cloud provider or developed as separate technology by a community or a
company. As can be seen in Table 2, the services developed by the cloud providers based on
features are very diverse and rich. On the other hand, de facto technologies, such as Docker
and Kubernetes, in this area are among the technologies developed by the companies or
communities. A company that uses MSA can also use the solutions in both in a hybrid way.

As a result of researching our solutions on a feature basis, it has been evaluated that
there are solutions for lots of features and the teams can easily adapt them. However, the
lack of sufficient solutions for data management and consistency and testing shows that
these features are areas open for further solution proposals. When we develop our software
system as multiple microservices, transaction integrity becomes critical. In a process that
concerns different microservices, data management should be ensured while maintaining
transaction integrity. Similarly, it is necessary to test whether these microservices have
a problem in their communication with each other before going to the real environment.
Testing the communication of the microservices is seen as a challenging step at this point.

In future work, we plan to enhance our characterization framework by adding a
quantitative comparison module for practitioners to select suitable platforms comfortably
and easily. We consider this study to be a good basis for such a study to be evolved.

Appl. Sci. 2022, 12, 4424 19 of 20

9. Conclusions

MSA has gained interest and momentum in the last years and has ben discussed in
both the literature and applied in practice. For practitioners, it is not easy to select the
proper vendor solution and apply the MSA properly. To this end, this article has presented
first a characterization framework that captures the common and variant features of MSAs.
The framework has been developed after a thorough domain analysis process following
our research questions, which resulted in a family feature model for the MSA domain.
The second part of the study focused on the illustration and validation of the framework.
For this, we have selected three key vendor solutions and were able to characterize these
with the characterization framework. The framework does not only cover the three MSAs,
but can be also used for other vendor solutions. The framework can be used for both
researchers and practitioners. Researchers can obtain a broad insight into the common
and variant features and this way will pave the way for further research. Practitioners can
use the result of the study to guide their activities in selecting and applying MSAs. In our
future work, we will apply the framework for other vendor solutions and aim to provide
further support for architecture design solutions of applying the MSA.

Author Contributions: Conceptualization, M.S., B.T. and A.K.T.; methodology, M.S., B.T. and A.K.T.;
software, M.S.; validation, M.S., B.T. and A.K.T.; writing-review and editing, M.S., B.T. and A.K.T.; su-
pervision, B.T. and A.K.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Valdivia, J.A.; Lora-González, A.; Limón, X.; Cortes-Verdin, K.; Ocharán-Hernández, J.O. Patterns Related to Microservice

Architecture: A Multivocal Literature Review. Program. Comput. Softw. 2020, 46, 594–608. [CrossRef]
2. Soldani, J.; Tamburri, D.A.; van den Heuvel, W.J. The Pains and Gains of Microservices: A Systematic Grey Literature Review. J.

Syst. Softw. 2018, 146, 215–232. [CrossRef]
3. Josuttis, N. Soa in Practice: The Art of Distributed System Design; O’Reilly Media, Inc.: Newton, MA, USA, 2007; ISBN 0596529554.
4. Jamshidi, P.; Pahl, C.; Mendonca, N.C.; Lewis, J.; Tilkov, S. Microservices: The Journey so Far and Challenges Ahead. IEEE Softw.

2018, 35, 24–35. [CrossRef]
5. Thönes, J. Microservices. IEEE Softw. 2015, 32, 116. [CrossRef]
6. Zimmermann, O. Microservices Tenets. Comput. Sci. 2017, 32, 301–310. [CrossRef]
7. Newman, S. Building Microservices, 1st ed.; O’Reilly Media, Inc.: Newton, MA, USA, 2015; ISBN 1491950358.
8. Shadija, D.; Rezai, M.; Hill, R. Towards an Understanding of Microservices. In Proceedings of the ICAC 2017—2017 23rd IEEE

International Conference on Automation and Computing: Addressing Global Challenges through Automation and Computing,
Huddersfield, UK, 7–8 September 2017. [CrossRef]

9. Benevides, R. Istio on Kubernetes. Available online: http://bit.ly/istio-kubernetes%0A (accessed on 13 March 2022).
10. Fowler, M.; Lewis, J. Microservices. Available online: https://martinfowler.com/articles/microservices.html (accessed on 13

March 2022).
11. Liu, C.; Li, K.; Li, K.; Buyya, R. A New Service Mechanism for Profit Optimizations of a Cloud Provider and Its Users. IEEE Trans.

Cloud Comput. 2021, 9, 14–26. [CrossRef]
12. Wang, S.; Ding, Z.; Jiang, C. Elastic Scheduling for Microservice Applications in Clouds. IEEE Trans. Parallel Distrib. Syst. 2021, 32,

98–115. [CrossRef]
13. Khaleq, A.A.; Ra, I. Intelligent Autoscaling of Microservices in the Cloud for Real-Time Applications. IEEE Access 2021, 9,

35464–35476. [CrossRef]
14. Jin, M.; Lv, A.; Zhu, Y.; Wen, Z.; Zhong, Y.; Zhao, Z.; Wu, J.; Li, H.; He, H.; Chen, F. An Anomaly Detection Algorithm for

Microservice Architecture Based on Robust Principal Component Analysis. IEEE Access 2020, 8, 226397–226408. [CrossRef]
15. Villamizar, M.; Garcés, O.; Castro, H.; Verano, M.; Salamanca, L.; Casallas, R.; Gil, S. Evaluating the Monolithic and the

Microservice Architecture Pattern to Deploy Web Applications in the Cloud. In Proceedings of the 2015 10th Computing
Colombian Conference (10CCC), Bogota, Colombia, 21–25 September 2015; pp. 583–590.

http://doi.org/10.1134/S0361768820080253
http://doi.org/10.1016/j.jss.2018.09.082
http://doi.org/10.1109/MS.2018.2141039
http://doi.org/10.1109/MS.2015.11
http://doi.org/10.1007/s00450-016-0337-0
http://doi.org/10.23919/IConAC.2017.8082018
http://bit.ly/istio-kubernetes%0A
https://martinfowler.com/articles/microservices.html
http://doi.org/10.1109/TCC.2017.2701793
http://doi.org/10.1109/TPDS.2020.3011979
http://doi.org/10.1109/ACCESS.2021.3061890
http://doi.org/10.1109/ACCESS.2020.3044610

Appl. Sci. 2022, 12, 4424 20 of 20

16. Yahia, E.B.H.; Réveillère, L.; Bromberg, Y.-D.; Chevalier, R.; Cadot, A. Medley: An Event-Driven Lightweight Platform for Service
Composition. Lect. Notes Comput. Sci. 2016, 9671, 3–20. [CrossRef]

17. O’Connor, R.V.; Elger, P.; Clarke, P.M. Continuous Software Engineering-A Microservices Architecture Perspective. J. Softw. Evol.
Process 2017, 29, e1866. [CrossRef]

18. Tekinerdogan, B.; Aksit, M. Classifying and Evaluating Architecture Design Methods. Softw. Archit. Compon. Technol. 2002, 3–27.
[CrossRef]

19. Tekinerdogan, B.; Öztürk, K. Feature-Driven Design of SaaS Architectures. In Software Engineering Frameworks for the Cloud
Computing Paradigm; Springer: London, UK, 2013; pp. 189–212. [CrossRef]

20. Brewer, E. CAP Twelve Years Later: How the “Rules” Have Changed. Computer 2012, 45, 23–29. [CrossRef]
21. DeLoatch, C.; Blindt, S. NoSQL Databases: Scalable Cloud and Enterprise Solutions; University of Illinois at Urbana Champaign:

Champaign, IL, USA, 2012.
22. Ganesh Chandra, D. BASE Analysis of NoSQL Database. Future Gener. Comput. Syst. 2015, 52, 13–21. [CrossRef]
23. Richardson, C. Microservices Patterns: With Examples in JAVA; Simon and Schuster: New York, NY, USA, 2019.
24. Limon, X.; Guerra-Hernandez, A.; Sanchez-Garcia, A.J.; Perez Arriaga, J.C. SagaMAS: A Software Framework for Distributed

Transactions in the Microservice Architecture. In Proceedings of the 2018 6th International Conference in Software Engineering
Research and Innovation (CONISOFT), San Luis Potosi, Mexico, 24–26 October 2018; pp. 50–58.

25. Event Sourcing. Available online: https://martinfowler.com/eaaDev/EventSourcing.html (accessed on 13 March 2022).
26. Command Query Responsibility Segregation (CQRS). Available online: https://microservices.io/patterns/data/cqrs.html

(accessed on 13 March 2022).
27. CQRS. Available online: https://martinfowler.com/bliki/CQRS.html (accessed on 13 March 2022).
28. What Is an API Gateway? NGINX Learning. Available online: https://www.nginx.com/learn/api-gateway/ (accessed on 13

March 2022).
29. BFF@SoundCloud|ThoughtWorks. Available online: https://www.thoughtworks.com/insights/blog/bff-soundcloud (accessed

on 13 March 2022).
30. The API Gateway Pattern versus the Direct Client-to-Microservice Communication|Microsoft Docs. Available online:

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-
client-to-microservice-communication-versus-the-api-gateway-pattern (accessed on 13 March 2022).

31. Microservices on AWS. Available online: https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/
microservices.html (accessed on 13 March 2022).

32. AWS Auto Scaling. Available online: https://aws.amazon.com/autoscaling/ (accessed on 13 March 2022).
33. Liu, C.; Li, K.; Li, K. A Game Approach to Multi-Servers Load Balancing with Load-Dependent Server Availability Consideration.

IEEE Trans. Cloud Comput. 2021, 9, 1–13. [CrossRef]
34. Evans, E. Domain-Driven Design: Tackling Complexity in the Heart of Software; Addison-Wesley: Boston, MA, USA, 2004.
35. What is Configuration Management? Available online: https://www.redhat.com/en/topics/automation/what-is-configuration-

management (accessed on 13 March 2022).
36. Infrastructure as Code: A Reason to Smile|ThoughtWorks. Available online: https://www.thoughtworks.com/insights/blog/

infrastructure-code-reason-smile (accessed on 13 March 2022).
37. Pahl, C.; Jamshidi, P. Microservices: A Systematic Mapping Study. In Proceedings of the 6th International Conference on Cloud

Computing and Services Science, Rome Italy, 23–25 April 2016; pp. 137–146. [CrossRef]
38. Alshuqayran, N.; Ali, N.; Evans, R. A Systematic Mapping Study in Microservice Architecture. In Proceedings of the 2016 IEEE

9th International Conference on Service-Oriented Computing and Applications (SOCA), Macau, China, 4–6 November 2016;
pp. 44–51.

39. Francesco, P.D.; Lago, P.; Malavolta, I. Architecting with Microservices: A Systematic Mapping Study. J. Syst. Softw. 2019, 150,
77–97. [CrossRef]

40. Vural, H.; Koyuncu, M.; Guney, S. A Systematic Literature Review on Microservices; Springer: Cham, Switzerland, 2017.
41. Bushong, V.; Abdelfattah, A.S.; Maruf, A.A.; Das, D.; Lehman, A.; Jaroszewski, E.; Coffey, M.; Cerny, T.; Frajtak, K.; Tisnovsky, P.;

et al. On Microservice Analysis and Architecture Evolution: A Systematic Mapping Study. Appl. Sci. 2021, 11, 7856. [CrossRef]
42. Li, S.; Zhang, H.; Jia, Z.; Zhong, C.; Zhang, C.; Shan, Z.; Shen, J.; Babar, M.A. Understanding and Addressing Quality Attributes

of Microservices Architecture: A Systematic Literature Review. Inf. Softw. Technol. 2021, 131, 106449. [CrossRef]
43. Berardi, D.; Giallorenzo, S.; Melis, A.; Prandini, M.; Mauro, J.; Montesi, F. Microservice Security: A Systematic Literature Review.

PeerJ Comput. Sci. 2022, 7, e779. [CrossRef]
44. Pereira-Vale, A.; Fernandez, E.B.; Monge, R.; Astudillo, H.; Márquez, G. Security in Microservice-Based Systems: A Multivocal

Literature Review. Comput. Secur. 2021, 103, 102200. [CrossRef]
45. Karabey Aksakalli, I.; Çelik, T.; Can, A.B.; Tekinerdogan, B. Deployment and Communication Patterns in Microservice Architec-

tures: A Systematic Literature Review. J. Syst. Softw. 2021, 180, 111014. [CrossRef]

http://doi.org/10.1007/978-3-319-38791-8_1
http://doi.org/10.1002/smr.1866
http://doi.org/10.1007/978-1-4615-0883-0_1
http://doi.org/10.1007/978-1-4471-5031-2_9
http://doi.org/10.1109/MC.2012.37
http://doi.org/10.1016/j.future.2015.05.003
https://martinfowler.com/eaaDev/EventSourcing.html
https://microservices.io/patterns/data/cqrs.html
https://martinfowler.com/bliki/CQRS.html
https://www.nginx.com/learn/api-gateway/
https://www.thoughtworks.com/insights/blog/bff-soundcloud
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices.html
https://aws.amazon.com/autoscaling/
http://doi.org/10.1109/TCC.2018.2790404
https://www.redhat.com/en/topics/automation/what-is-configuration-management
https://www.redhat.com/en/topics/automation/what-is-configuration-management
https://www.thoughtworks.com/insights/blog/infrastructure-code-reason-smile
https://www.thoughtworks.com/insights/blog/infrastructure-code-reason-smile
http://doi.org/10.5220/0005785501370146
http://doi.org/10.1016/j.jss.2019.01.001
http://doi.org/10.3390/app11177856
http://doi.org/10.1016/j.infsof.2020.106449
http://doi.org/10.7717/peerj-cs.779
http://doi.org/10.1016/J.COSE.2021.102200
http://doi.org/10.1016/j.jss.2021.111014

	Introduction
	Microservice Architecture
	Research Methodology
	Characterization Framework
	Data Management and Consistency
	Communication Style
	Service Orchestration
	Decomposition
	Service Mesh and Sidecar Pattern
	Observability
	Provisioning and Configuration Management
	Security
	Testing
	Resilience and Fault Tolerance

	Survey of MSA
	Analysis of Existing Key Cloud Providers
	Related Work
	Discussion
	Conclusions
	References

